Procedure closure in EL1*
Ben Wegbreit

Center for Research in Computing Technology, Harvard University, Cambridge,

Massachusetts 02138, USA

Most programming languages allow the use of free variables in procedures. The mechanism for
connecting such free variables with their intended meanings has significant impact on the
convenience of the language for the programmer and the efficiency of the resulting programs.
The EL1 programming language in the ECL programming system provides a closure mechanism
which allows the programmer considerable control over the binding of free variables and serves as
an aid to efficient implementation. In this paper, the closure mechanism for EL1 is explained, its
rationale presented, and various applications displayed.

(Received March 1972)

1. Introduction

Most programming languages allow, to some degree, the use of
procedurest as values of the language. FORTRAN IV (IBM,
1966), ALGOL 60 (Naur, 1963), PL/I (IBM, 1969), ALGOL 68
(van Wijngaarden, 1969), LISP 1.5 (McCarthy, 1962), and
SNOBOLA4 (Griswold, 1968) each allow procedure values, with
differing restrictions on their use. Also, most languages allow
the appearance of freef variables in procedures and in pro-
cedures which are used as values.

Depending on the language, the values of variables and there-
fore of free variables may fall into one of a wide variety of
functional categories, including numbers, Booleans, strings,
lists, structures, etc. as well as procedures, operators, data
types, I/O ports, and process handles. Hence, the mechanism
for connecting free variables with their intended meaning has
significant impact on the convenience of the language as a
programming tool and on the potential efficiency of its evalu-
ators.

There are two basic approaches a language can employ in
regard to such free variables: 1. Choose some fixed identific-
ation rule for connecting a free variable with its meaning;
2. Provide sufficient power in the language that a program can
specify the meaning of free variables (with possibly different
identification rules for different free variables).

In regard to the first choice, three common alternatives are:

(1.1) static (or lexical) identification: The nesting of procedure
in the text determines the identification of its free variables.
Used in ALGOL 60, PL/I, SIMULA 67 (Dahl, 1968), and
ALGOL 68.

(1.2) dynamic identification: Variables are scoped according
to flow of control; a free variable is identified with the most
recently defined variable of that name. Used in SNOBOLA4,
and APL (IBM, 1970).

(1.3) global (or compool) identification: Free variables are
identified with entities in one or more common global
pools. Used in FORTRAN and JOVIAL (Shaw, 1963).

In regard to the second choice, two viable alternatives are:

(2.1) computed identification: The language provides a means
whereby the environment of each procedure activation cag
be computed during execution. This is realised in LISP 1.3
by the FUNCTION device; see Moses (1970) for a pag
ticularly thorough discussion. A generalisation of th%
which handles control as well as identification envxronments
is discussed in Bobrow and Wegbreit (1972). 3

(2.2) closure mechanism: The language evaluator includes 5
processor for explicit connection of free variables with theit
intended meanings. If appropriate records are kept, it ?&
often possible to carry out considerable optimisation b&
exploiting the invariance of these connections. 5.

Here, the two alternatives are not mutually exclusive; they a&
each useful and serve complementary roles. o

The purpose of this paper is to discuss the closure mechamsm
of EL1. Section 2 discusses the semantics of closure and ouf
lines the implementation. Section 3 discusses the use of closu
in program development and its relation to other treatments of
free variables. Section 4 presents a series of examples showing
how the various forms of closure can be used and the sort
optimisations made possible.

ELy/8E/LIL

2. The closure facility of EL1
EL1 is an operational programming language.§ It is the
language component of the ECL programming system which @
currently under continuing development at Harvard Univers
sity. A descnptlon of the Ianguage its design philosophy, and
the ECL system is found in Wegbreit (1971); Wegbreit (197ﬁ
is a programmer’s manual. Appendix A of this paper gives a
brief description of EL1 syntax, as needed for reading t
examples.

20z Iud

2.1. Relevant facets of EL1
Two facets of EL1 require discussion here since they are
pivotal to all that follows. These are storage allocation and the
treatment of procedures.

In EL1 (as in ALGOL 68), storage can be allocated either on a

*This work was supported in part by the U.S. Air Force, Electronics Systems Division, under Contract F19628-71-C-0173 and by the Advanced
Research Projects Agency under Contract F19628-71-C-0174.

+Throughout this paper, the term procedure (or proc) is used generically to denote a subroutine-like entity. That is, a unit of code, usually
defined by the programmer, that may be called with arguments and which may return a value and/or cause side effects. This includes ‘pro-
cedures’ of ALGOL 60, ‘routines’ of ALGOL 68, ‘functions’ of APL, and ‘Statement Functions’, ‘FUNCTION Subprograms’, and ‘SUB-
ROUTINE Subprograms’ of FORTRAN 1V.

1A variable is said to be bound in a procedure if it is a formal parameter, or declared local. An appearance of a variable is bound if it is in
the scope of a formal parameter or local declaration of that variable name. An appearance of a variable is free if it is not bound. A variable
is said to be free in a procedure if there is at least one free appearance of that variable.

§The current version of EL1 in the ECL programming system runs on the DEC PDP-10 under the TOPS and TENEX monitors. Versions
for other machines are contemplated.

38) The Computer Journal

stack which grows and shrinks on block entry and exit or in
the heap where storage blocks remain so long as actively
referenced. (Garbage collection reclaims storage blocks no
longer actively referenced.) A variable can be created having its
storage in either place, depending on the variable’s specification.
Consider

DECL X1: COMPLEX BYVAL CONST(COMPLEX OF
13, —14);
DECL X2: COMPLEX SHARED VAL(ALLOC(COMPLEX
OF 23, +24));

The first declaration creates a variable X1 of type COMPLEX
on the stack (with initial value 13 — 14i); the second declar-
ation creates a variable X2 of type COMPLEX in the heap
(with initial value 23 + 24i).
In EL1, procedures are values. There are proc-valued con-
stants, proc-valued expressions, and proc-valued variables.
Proc-valued constants are of the form

EXPR(formal parameter list; result type) procedure body

Any of these may contain free variables. In the simplest case,
these will be dynamically identified. Consider, for example,

EXPR(M:INT, N:INT; REAL)
BEGINM*N > U=V + W; V- WEND

This is a proc-constant which takes two INTs M and N and
returns a REAL number: either the sum of V and W, or their
difference—depending on whether or not M*N exceeds U.
The free variables U, V, and W are identified every time they
are used in executing the procedure.

Proc-valued variables have the data type ROUTINE. They
may be created as formal parameters, or by declaration, e.g.,

DECL P, F1, F2:ROUTINE;

They may be assigned procedure values, either the value of
proc-constants

P « EXPR(M:INT, N:INT; REAL)
BEGIN M*N > U=V + W; V — W END;

or the results of procedure-valued expressions (discussed in
section 2.2).

In EL1, all procedure values are pointers to the defining code
block. In particular, a proc-valued constant is a fixed pointer
to a fixed code block; a ROUTINE is a location which can
contain a pointer to a code block; assignment to a ROUTINE
sets the contents of this location to point to a code block.

2.2. Closure
The free variables of a procedure value may be explicitly bound
by constructing a closure. A closure is also a procedure value.
It is the result of executing a closure expressiont which has the
form

CLOSURE(proc-value, {closurelist))

A CLOSURE specifies that those variables which are free in
the proc-value and are members of the closurelist are to be
identified when the closure expression is executed. The other
free variables in the proc-value remain free. For example,
CLOSURE(P, (U, V})

takes the value of P (a proc-value)} and closes it with respect
to U and V. Hence, U and V are identified at this point, while
W is still free. A proc-value may be closed several times, each

time with respect to some set of free variables. Each closure is
a distinct, separate instance of the general proc-value.

It is useful to extend the concept of closure to include form a
parameters. The closure of a proc-value with respect to k of its
formal parameters is a new function which takes k fewer
arguments. For example,

CLOSURE(P, M, U, V))
is a procedure which takes a single argument N and has three
variables identified at this point—two of them formerly free
variables and the third the ‘captured’ formal parameter.

A closure can be used like any other procedure value. It can,
for example, be passed as an argument, assigned to a proc-
valued variable, or used as the {proc-value) in another
closure expression.

There are a number of different options for closure, each
specifying a different class of invariant. The next three sub-
sections outline the major options. A more complete des-
cription can be found in the user’s manual for closure (Perkovic,
1973).

2.2.1. Constant closure
The simplest form of closure binds a free variable to some
specific value. For example,

CLOSURE(G, (X CONSTANT Y))

forms the closure of G with respect to X. The constant value
used for X in G is the current value of Y at the point the closure
is formed.§

In general, a free variable may be identified with the value of
an arbitrary expression evaluated during closure. For example,

CLOSURE(G,
(F CONSTANT BEGIN P1 v P2 = Fl; F3 ENDY)

evaluates the BEGIN-END block which delivers the value of
F1 or F3 and identifies the free variable F with that value.

2.2.2. Share closure

A second form of closure binds the location of a free variable
to some specific place, but makes no commitment as to the
value of the variable. The effect is to establish a sharing relation.
For example,

CLOSURE(G, {Q SHAREVAL P))

identifies the location of free occurrences of Q in G with the

location of the object pointed to by the pointer P. The value of

such Q’s will be the value of this object; assignments to such

Q’s will change the value of this object; assignments to this

object by other access paths will change the value of such Q’s.
In general, share closure has the format

CLOSURE(proc-value, {fvar SHAREVAL expr))

where fvar is some free variable in proc-value and expr is any
expression which evaluates to a pointer value. Applications of
this are discussed in section 4.1.

2.2.3. Mode closure

A third form of closure specifies the data type, i.e. mode, of a
free variable. This is the weakest form of invariance, since each
of the preceding forms of closure implicitly specify mode.

20z udy 61 U0 1s9n6 AQ GLOELH/8E/1/L L/AI0IIE/UlWOD/W0d dNo"dlWspeoe)/:SA]Y WoJj POPEOUMOQ

There are cases, however, when nothing else can be bound and -

mode invariance has a significant pay-off. For example,consider
CLOSURE(G, <Z MODEIS COMPLEX))

If Z appears as an argument to a generic routine such as plus,
knowledge of its mode may enable selection of the appropriate

{1 For expository simplicity, the closure directives are illustrated as invoked with the syntactic form CLOSURE ; however, most of the semantic

features can also be obtained as explicit compiler directives.

$Any expression which produces the same proc-value could have been used in place of P. In particular, we could have written
CLOSURE(EXPR(M:INT, N:INT; REAL) BEGIN M*N > U=V + W; V — W; END, <U, V)
§This is the default case used above. Closure with no additional specification is treated as the constant closure of a variable with itself, e.g.,

CLOSURE(G, {X)>) means CLOSURE(G, (X CONSTANT X>).

Volume 17 Number1

39

generic alternative. Other simplifications associated with the
elimination of run-time type testing should be obvious.

2.3. Example
As an example of the various forms of closure, consider the

procedure

F « EXPR(X:VECTOR(N, REAL); REAL)
BEGIN
DECL SUM: REAL BYVAL 0;
FOR I FROM 1 TO N DO SUM « SUM + X[I]*
BASE[I];
SCALE*SUM
END
F takes an array of N REALs, forms the inner product of that
array with the array BASE, and returns the inner product
- multiplied by SCALE. The variables N, BASE, and SCALE
are free in F. Consider a closure of F where N is constant
closed, BASE is share closed, and SCALE is mode closed

F4 « CLOSURE(F, (N CONSTANT 4, BASE SHAREVAL
PB, SCALE MODEIS INT))

This fixes N to the value 4, establishes that the variable BASE
is to be stored at the location pointed to by the pointer PB, and
declares that SCALE is an integer. The resulting procedure
forms the scaled 4-vector inner product of its argument and
the current value of the previously chosen base vector.

2.4. Implementation

CLOSURE is an executable routine which takes a procedure
and a closure list and delivers a new procedure which differs
from the input proc as follows:

(a) free variables closed with constant binding are replaced by
the appropriate constant value;

(b) free variables closed with share binding are replaced by a
reference to the designated object;

(c) free variables closed with mode binding are unchanged but
simplifications based on knowledge of their modes may be
made.

The generation of this new procedure value by the CLOSURE
routine is somewhat simplified by the system’s representation
of procedures. ECL has two language processors: an inter-
preter which is driven by a list structure representation of the
program text and a compiler which accepts the same list
structure representation. CLOSURE accepts procedure values
represented as list structure and creates a copy of that list
structure with appropriate modifications. Constants are
represented in the obvious fashion. The objects being shared
with are represented as pointers from the list structure into the
heap. The difficult part of forming the closure lies in detecting
simplifications made possible by closure invariants. These
typically include removal of tests whose value is known,
removal of code which cannot then be reached, and removal of
declarations for variables which are then unused.

The proc-value delivered by CLOSURE can either be inter-
preted directly, or compiled (by calling the compiler as a
procedure) and the result executed. In the case of compilation,
rather good code can be generated. The compiler sees all
constant identified variables as constants (e.g., it can use
immediate instructions for small integers) and share identi-
fications as known addresses.

3. Discussion

It is a truism that the programming of any sizeable project
begins by decomposing the task into functional modules. Less
obvious, perhaps, is the subsequent activity of connecting these
modules to produce a complete system, and the need for tools
to aid in the connection process. In forming the connections,
it is desirable to (a) ensure that communication between

40

modules is confined to the intended access paths and to (b)
minimise the overhead resulting from the prior decomposition.
Share closure is used primarily for the first purpose while
constant and mode closure are used primarily for the second.

The minimisation of overhead is particularly important when
the program is written in a structured top-down fashion or in
an extension to a language with definitional facilities. In the
former case, routines are often written somewhat more gener-
ally then actually required; in the latter case, extensive use is
made of routines which define the unit operations of the prob-
lem area. In either case, it is desirable to consider the program
as a whole and employ mechanical means for contracting the
various layers to produce a more efficient final product. In this
contraction, a key activity is the instantiation of routines by
macro expansion followed by the simplification of these
instances. A major part of the closure implementation is
devoted to performing such specialisation and other simpli-
fications made possible by the binding invariants.

Comparing closure with computed identification (cf. Section
1), it may be seen that the two are complementary and that
neither is a substitute for the other. A facility for computed
identification allows great dynamic flexibility in the resulting
identifications. However, this flexibility has certain disadvang
ages. Optlmlsatlon of the program based on binding mvananc&
is difficult since bindings are established late. Similarly, it rs
difficult to verify that communication pools (e.g. des1gnate
variables) are used only by authorised modules, since any
module activation can connect to any other. Closure, pre01sel§
because it imposes more structure on the identification procesg;
handles these and related situations rather well.

4. Applications
4.1. Share closure
Share closure identifies a free variable with a storage block
having a location, a data type, and a value. The value can b§
used (as with constant closure) or changed. If a procedurg
shares a storage block with no one, it has an own variable.
several independent procedures share storage, they have

"dno-oiwepen

producer buffer or a mailbox). We consider these in turn.

]
o]
<
%)
-+
[¢]
8
[¢]
f<%)
=
17,
o
e
o
o
B
B
=
=4
[¢]
5]
(=g
o
=
~~
o
(1)°]
[l
o
o
[¢]
c
w
o
[N
[}
w
-5
(e]
o
=]
w
=1
B
(¢}
18E/11. 1 /5P, PR

4.1.1. Own variables

Share closure identifies a free variable with some object. If t
object is referenced by nothing else, the object is private to the
closure and the formerly free variable serves as an own var{-’;
able of ALGOL 60. Such objects may be created by thg
routine ALLOC, e.g.

ALLOC(COMPLEX OF 3, —4)

generates a new complex number in the heap with value 3 —
and returns a pointer to it. Suppose the value of G is a proE
with free variable Z. Then

G2 « CLOSURE(G, (Z SHAREVAL ALLOC(COMPLEX §
OF 3, —4)))

assigns to G2 a closure in which Z is an own variable initialised
to the value 3 — 4i. Changes to Z in one activation of this
closure affect the value of Z seen by other activations. Several
share closures of G with respect to Z using distinct ALLOC
generations may be created. Each closure is a separate instance
of the general G proc and has its own private Z.

This treatment of own variables has two advantages over that
found in ALGOL 60: (a) the provision for initial values; (b) the
provision for several instances of a proc, each with its own own
variable(s).

B

& uojsen

oc it

4.1.2. Local compools
It is frequently desirable for two or more routines to share some
common data structures. To reduce the possibility of program-

The Computer Journal

ming errors and, conversely, to aid the process of proving
program correctness, it is desirable to ensure that no other
routines can access the data. Further, if the data are referenced

frequently by the privileged routines, rapid access is important.. .. -

This can be accomplished directly by share closure.

Suppose, for example, that APOOL is to be shared between
routines F1 and F2 under that name, while BPOOL is to be
shared between F2 and F3. Let PA and PB be the only pointers
to APOOL and BPOOL, respectively. Then

F1 « CLOSURE(F1, (APOOL SHAREVAL PA));

F2 « CLOSURE(F2, (APOOL SHAREVAL PA, BPOOL
SHAREVAL PB)); ,

F3 « CLOSURE(F3, (BPOOL SHAREVAL PB))

establishes the desired sharing, while
PA <« PB « NIL

guarantees that access is restricted.

4.2. Constant closure

Constant closure identifies a free variable with a constant value,
thereby freezing the value of that variable. We have previously
displayed the use of constant closure in freezing the values of
integers used as array bounds and index limits. Similar applic-
ations include freezing the values of real, integer, and Boolean
operands to arithmetic, relational, and Boolean operators.
In the case of simple expressions where all operands are so
frozen to constant values, the value can be calculated during
closure.

4.2.1. Constant closure of mode-valued variables

A less familiar example is freezing the values of mode-valued*
identifiers. In ELI, variables can be declared to take on mode
values which are computed by mode-valued expressions. Such
variables can be used wherever a. mode value is required, e.g.
as the data type specification in a declaration.

Consider, for example, a general concatenation routine which
takes two arguments—both SEQuences whose elements are of
the same mode M—and which constructs a new array which is
their concatenation. The element data type, M, is a free variable
CONCAT « EXPR(X:SEQ(M), Y:SEQ(M); SEQ(M))

BEGIN
DECL R: SEQ(M) BYVAL
CONST(SEQ(M) SIZE LENGTH
(X) + LENGTH(Y));
FOR I FROM 1 TO LENGTH(X) DO
R[I] « X[1];
FOR I FROM 1 TO LENGTH(Y) DO
R[I + LENGTH(X)] « Y[1];
R
END

The result of executing
CLOSURE(CONCAT, {M CONSTANT CHAR})

is a procedure which concatenates two SEQuences of CHAR-
acters (i.e. STRINGsS). In general, if & is a form whose value is
some mode .#, then

CLOSURE(CONCAT, (M CONSTANT %))
is a concatenation routine tailored to arrays of ./#s.

4.2.2. Closure of procedure-valued variables
If a variable is proc-valued, then in forming a constant closure

with respect to it all appearances of the variable used in pro-
cedure calls may be replaced by the appropriate constant value.
For example, if FOO is frozen to EXPR(. . .; . ..) %, then in a
closure; forms-such as
FOO(A, B, C)
may be replaced by
(EXPR(...;...) %) (A,B,O)

where the constant explicit procedure value is directly applied

to the arguments A, B, and C. The explicit procedure applic-

ation mayf itself be replaced by an equivalent BEGIN-END

block. This has the effect of replacing the overhead of procedure

call by the comparatively cheaper cost of block entry and exit.
As an example, consider the procedure

P « EXPR(A:SEQ(REAL), B:SEQ(REAL); INT)
BEGIN
DECL COUNT: INT BYVAL 0;
DECL MAXVAL: REAL BYVAL FUM(OLDMAX);
FOR I TO LENGTH(A) DO FOR J TO LENGTH(B) DO

BEGIN
RELATION(A[I], B[J]) = COUNT « COUNT + 1 ©
END; 2
COUNT 5
END g

This takes two real arrays, A and B, calls RELATION on all 3
pairs (A;, B;), and returns the COUNT of the number of 3
times RELATION is satisfied. RELATION is used as a free%
variable and hence is identified dynamically. A possible relation £
is given by
R « EXPR(X:REAL, Y:REAL; BOOL)

BEGIN

ABS(X — Y) < MAXVAL = TRUE;

TEST A SIZELIM

END

This is TRUE if X and Y differ by no more than MAXVAL or
if TEST and SIZELIM are both TRUE. '
With these definitions, consider

P2 « CLOSURE(P, (RELATION CONSTANT R})
which forms the closure of P with the free variable RELATION X

| /ojonJe/|ufod/woo dno-oiwspese/,

(2]
o
B
7
(v
&
=
Ll
L
(=N
[¢]
B
-t
P
=
[«
(=9
z
-
=
-
=
[¢]
Q
[=1
=
-
[¢]
=1
-+
<
=
(=1
a
o
=
=
=
[\%]
=
]
@
-
=3
(¢}
<
=N
(=1
o

EXPR(A :SEQ(REAL), B:SEQ(REAL); INT)
BEGIN
DECL COUNT: INT BYVAL 0;
DECL MAXVAL: REAL BYVAL FUM(OLDMAX);
FOR I TO LENGTH(A) DO FOR J TO LENGTH(B) DO
BEGIN
 BEGIN
ABS(A[I] — B[J]) < MAXVAL = TRUE;
TEST A SIZELIM
END
=
COUNT « COUNT + 1
END;
COUNT
END

In P2 the call on RELATION has been expanded in-line.
This produces several efficiences. There is no function call
overhead. Also, register utilisation in the code is better, since
the inner block can be analysed in concert with the FOR loops

202 Iudy 61 U0 3sanb Aq GLOE L 7/8¢€/

*EL1 uses the term ‘mode’ to mean data type. A mode-valued variable is one whose values are data types (e.g. the type INT, the type

COMPLEX, the type STRING).

tSince the substitution of a BEGIN-END block for a procedure call entails inline substitution, this action trades space for time. Only the
programmer can decide, in general, whether or not the substitution is worthwhile. Hence, two forms of constant closure are provided for proc
variables: CONSTANT, which does the BEGIN-END block substitution, and SCONSTANT, which does not. The semantics of the two are
identical: a free proc variable is identified with a constant proc value. Pragmatically, they differ since all SCONSTANT identifications share
the single proc value, while each CONSTANT identification has its own substituted BEGIN-END block.

Volume 17 Number 1

41

Further, the declarations of X and Y have been removed since
A[I] and B[J] can be used in their place. Finally, note that
in-line expansion of this sort may cause additional variables
to be identified. For example, MAXVAL is free in the above
definition of RELATION. However, in the closure, MAXVAL
of the in-line expansion becomes identified with the MAX-
VAL of the outer block so that MAXVAL may now be treated
as a local in all its appearances.

4.2.3. Evaluation of forms during closure

It was observed above that simple expressions may be evalu-
ated during closure if the operands were frozen (e.g. by constant
closure). This extends to forms of all sorts. Let P be a procedure
being closed and let P contain a proc call of the form

FAy, ..., A)

Suppose that F, A,, .. ., A, are all frozen in the closure of P,
that F depends only on the values of A, ..., A,, and that F
has no side effects. Then the proc call may be executed during
closure with the result replacing the proc call in forming the
closure of P. Provided that F(A,, .. ., A,) is actually executed
in the program, this preserves functionality while speeding up
execution. The requirement that F(A,, ..., A,) be executed
is necessary to ensure functionality as well as speed-up. If
F(A,, ..., A,) does not terminate but P is written so that the
call on F is never actually reached, then it may be that the value
of P is well-defined in the original program, yet the attempt at
closure-time optimisation diverges.

For F to be thus independent of its environment, F must
contain no free variables, perform no 1/O, make no destructive
assignments to arguments passed by reference, and not ‘escape’
its scope by constructing and then executing program units
which do any of the above. These questions are, of course,
undecidable for any non-trivial language. It is possible, how-
ever, to check that F is guaranteed safe—thereby excluding,
perhaps, procedures which might be safe but for which the
verification is too difficult. For many practical purposes, this
will suffice.

4.2.4. Partial function application
In any closure of a procedure, the variables identified may be
either free variables or formal parameters of that procedure.
Taking the constant closure of a formal parameter has a
particularly useful interpretation: partial application of a
procedure.

As an example, consider

DIST « EXPR(W:COMPLEX, Z:COMPLEX; REAL)
BEGIN (W.RE — Z.RE)**2 + (W.IM — Z.IM)
*#+2)%% 5 END

which computes the distance between two complex numbers W
and Z. Let U be a complex number with value —i. Then

D2 « CLOSURE(DIST, {Z CONSTANT U})

is a new procedure which takes a single argument W and com-
putes the distance between that point and the point (0, —i).

5. Conclusion

The closure mechanism for EL1 allows the programmer to
specify binding information along several axes. For each axis,
an attempt is made to provide the best closure consistent with
that specification. In particular, considerable effort is made to
use binding information to simplify the closures. Hence, the
closure mechanism serves two complementary roles: removal
of free variables with attendant independence of invocation
environment and specialisation of procedure values to exploit
this independence.

Acknowledgements
The closure mechanism is being implemented by Paul

42

Perkovic, the compiler has been implemented by Glenn
Holloway; their contributions to the design and realisation of
closure in EL1 are gratefully acknowledged.

Appendix A. A brief description of the ELI syntax

To a first approximation, the syntax of EL1 is like that of
ALGOL 60 or PL/I. Variables, subscripted variables, arith-
metic expressions, Boolean expressions, assignments and pro-
cedure calls can all be written as in ALGOL 60 or PL/IL.
Further, EL1 is—like ALGOL 60 or PL/I—a block structured
language. Executable statements in EL1 can be grouped
together and delimited by BEGIN-END brackets to form
blocks. New variables can be created within a block by declar-
ation; the scope of such variable names is the block in which
they are declared.

The syntax of EL1 differs from that of ALGOL 60 or PL/I
most notably in the form of conditionals, declarations, data
type specifiers, and procedure definitions. Also, there are a
number of built-in procedures in EL1. For the purposes of this

paper, it will suffice to explain only these points of difference.

O
O

Al. Conditionals
Conditionals in EL1 are a special case of BEGIN-END blocks
In general, each EL1 block has a value—the value of the l@t
statement executed. Normally, this is the last statement in the
block. Instead, a block can be conditionally exited with sorfie
other value ¥~ by a statement of the form
B=>V,

If # is TRUE then the block is exited with the value of
otherwise, the next statement of the block is executed. F
example, the ALGOL 60 conditional

if 2, then ¥, else if #, then ¥, else ¥,
is written in EL1 as

BEGIN #, = ¥ 1; B, =Y ,; V'3 END
(Unconditional statements of an EL1 block are simply execut
sequentially.)

eﬁ//:sduu

3

L&JOO/LUOO'an'O!LU

A2. Declarations
The initial statements of a block may be declarations. A decl
ation has the format

DECLY: 4%,

where & is a list of identifiers, .# is the data type, and
specifies the initialisation. For example,
DECL X, Y: REAL BYVAL A[I];

This creates two REAL variables named X and Y and initidl-

ises them to separate copies of the current value of A[I]. Tge

specification & may assume one of four forms:

(a) empty—in which case a default initialisation determined Ey
the data type is used. N

(b) BYVAL ¥ —in which case the variables are initialised %o
copies of the value of 7.

(c) SHARED ¥ —in which case the variables are declared to
be synonymous with the value of ¥".

(d) LIKE ¥"—in which case the variables are synonymous with
the value of ¥ if possible (i.e. modes match); used primarily
for variables which are not modified.

onb Aq gage L v/ge/ I L/orone)|

A3. Data types

Built-in data types of the language include: BOOL, CHAR,
INT, REAL, and ROUTINE. These may be used as data type
specifiers to create scalar variables.

Array variables may be declared by using either of two built-in
procedures: VECTOR and SEQ. For example,

DECL B: VECTOR(80, CHAR) BYVAL 77;

The Computer Journal

creates a variable named B which is an array of 80 CHAR-
acters. The initial value of B is determined by the value of ¥".
An array whose size is not fixed by declaration but rather is
determined by its initial value may be written

DECL C: SEQ(CHAR) BYVAL 7",;

If the value of ¥°, is an array of k characters then C is an
array of k characters.

Structures may be defined by the built-in procedure STRUCT.
For example, the data type COMPLEX is defined to be

STRUCTURE(RE: REAL, IM: REAL)

That is, variables of data type COMPLEX have two compon-
ents, named RE and IM, respectively, both of which are of data
type REAL. If Z is a variable of data type COMPLEX, its
components may be accessed by the operation of selection—
denoted by a period. For example, Z.RE is the RE component
of Z, while

Z.IM « Z.RE**2

generates an array of F(X) + 12 integers, all given the integer
default value of zero. _

ALLOC is like CONST except that the value generated has its
storage allocated in the free storage region and the result
returned by ALLOC is a pointer to that value.

AS5. Procedure definitions
A procedure may be defined by assigning a procedure value to a
procedure-valued variable (e.g. a ROUTINE). For example,

IPOWER « EXPR(X:REAL, N:INT; REAL)
BEGIN DECL R:REAL BYVAL 1;
FORITO N DO R « R*X; R END

assigns to IPOWER a procedure which takes two arguments, a
REAL and an INT (assumed positive), and computes X".

AG6. Operator definitions

A procedure-valued variable can be declared to be an operator
of several sorts, thereby establishing certain syntactic proper-
ties. A procedure-valued variable declared to be a prefix operator

can be applied to a single argument without enclosing the 5
operand in parentheses. A procedure taking two arguments 2
declared as an infix operation can be used accordingly. (The 5
standard operators such as +, *, —, /, «, =, and others aref%’
defined in this way as part of an initial, system-provided =
operator set.) A procedure taking n arguments can be declared g
a matchfix operator, in conjunction with a right matching >
token, For example, if ¢ is a matchfix operator with right%

assigns the square of the RE component of Z to the IM
component of Z.

A4. CONST and ALLOC

Structured and array values may be constructed (on the stack)
during program execution by calling the built-in procedure
CONST. Such values can be used anywhere a value is required

(e.g. in expressions or in the initial value specification of a matching token Y, then =
declaration). For example, ’ (XY + Z,F(A, B/2)> %
CONST(COMPLEX OF 5, X + 3) denotes the application of the routine < to the three arguments =

constructs a complex number whose RE component is 5 and X, Y + Z, and F(A, B/2). o
whose IM component is the value of X + 3. Similarly, S
AT7. Miscellaneous built-in procedures S

CONST(SEQUNT) OF 2,3, 5) It is frequently useful to determine the number of components &

constructs an integer array whose components are 2, 3, and 5.

It is also possible to construct objects whose values are
defaulted according to data type. In the case of arrays, it may
be necessary to specify the size of the array. This may be done
by a SIZE specification. For example,

CONST(SEQ(INT) SIZE F(X) + 12)

in an array. The procedure LENGTH accomplishes this. If,3
for example, B is an array of 10 integers then LENGTH(B)%
equals 10.

The object referenced by a pointer may be obtained by apply-
ing the procedure VAL. If, for example, P is a pointer referenc-
ing a REAL, then VAL(P) is that REAL.

References

BoBrow, D. G. and WEGBREIT, B. (1972). A Model and Stack Implementation of Multiple Environments, BBN Report No. 2334, Bolt
Beranek and Newman Inc., Cambridge, Mass. (to appear in CACM Oct. 1973).

DaHL, O. J. et al. (1968). SIMULA 67 Common Base Language, Publication No. S-2, Norwegian Computing Centre, Oslo, Norway.

DUKSTRA, E. (1967). Recursive Programming, in Programming Systems and Languages, Ed. by S. Rosen. New York: McGraw-Hill Book Co.

GriswoLD, R. E. et al. 1968). The SNOBOL4 Programming Language, Englewood Cliffs, N.J.: Prentice-Hall, Inc.

IBM (1966). IBM System/360, FORTRAN 1V Language, Form C28-6515-4.

IBM (1969). IBM System/360, PL/I Language Reference Manual, Form C28-8201-2.

IBM (1970). APL/360 User’s Manual, GH20-0683.

LomBarDI, L. and RAPHAEL, B. (1964). LISP as the Language for an Incremental Compiler, in The Programming Language LISP, ed. by
Berkeley & Bobrow. Cambridge, Massachusetts: The M.L.T. Press.

MCcCARTHY, J. (1962). Lisp 1.5 Programmer’s Manual. Cambridge, Mass.: The M.L.T. Press.

Mosks, J. (1970). The function of FUNCTION in LISP, SIGSAM Bulletin, July, pp. 13-27.

NAUR, P. (Ed.) (1963). Revised report on the algorithmic language ALGOL 60, CACM, Vol. 6, No. 1, pp. 1-17.

PErxOVIC, P. (1973). A User’s Manual for the CLOSURE Function, Technical Report, Centre for Research in Computing Technology,
Harvard University.

SHAw, C. J. (1963). A specification of JOVIAL, CACM, Vol. 6, No. 12, pp. 721-735.

VAN WIINGAARDEN, A. (Ed.) (1969). Report on the algorithmic language ALGOL 68, Numerische Mathematik, Vol. 14, pp. 79-218.

WEGBREIT, B. (1971). The ECL programming system, Proc. FJCC, Vol. 39, pp. 253-262.

WEGBREIT, B. ef al. (1972). The ECL programmer’s manual, Technical Report No. 21-72, Centre for Research in Computing Technology,
Harvard University. :

202 Iudy 61 U0 }sanb Aq GLOEL¥/8E/L/LLIRIOM

Volume 17 Number1 43

