Consistency auditing of databases

dJ. J. Florentin

Computer Science Department, Birkbeck College, Malet Street, London WCI1E 7HX

Many databases need to have their contents kept at a high level of accuracy. New kinds of auditing
procedures must be devised to ensure this. Inaccuracies arise from various causes; in this paper one
particular fundamental aspect of accuracy is isolated—that of consistency of the stored data.
Inconsistencies occur when the stored data fails to reflect the rules of compatibility of the elements
of the applications world. The expression of the rules governing the generation of the data in the
application, and the resulting complexity of validation procedures are investigated through

mathematical logic.
(Received October 1972)

1. Introduction

Many databases are extensions of the traditional files and
records of business and government organisations. An import-
ant activity in these traditional information systems is that of
auditing; the main reasons for auditing can be summarised
briefly as:

(a) management has a legal obligation towards shareholders
and government taxation agencies to see that accurate
financial accounts are kept

(b) records, such as stock, personnel, and customers, are used
as a basis for management decisions, and it is prudent to
see that these records are kept properly

(c) errors and malpractices in administration are brought to
light
Computerised databases need to be audited for the same
reasons, but further issues also arise; two of these are:

(d) in an automated system the storage of erroneous data may
initiate a chain of actions which can reach outside the
organisation, and cause various kinds of losses. For
example, an error in a customer billing system may
eventually cause unfavourable publicity to a company

(e) legislatures in several countries are considering the
regulation of databases dealing with private citizens.
Should these considerations actually lead to legislation it
seems likely that some new kinds of auditing will be
instituted.

At the present time accountants have adapted manual
auditing procedures to computerised accounts and stock
records; however, in many cases the checks are oriented
towards the faults which occurred in manual systems, for
example errors in addition. Now, errors in addition are rare in
machines. On the other hand, the complexity and flexibility of
computerised information processing is such that entirely new
errors arise, and work from several directions will be needed to
devise procedures to ensure the accuracy of large volumes of
stored data. This paper isolates one fundamental aspect of the
problem by pointing out that the preservation of accuracy
ultimately depends on a statement of logical constraints. All

present data storage systems incorporate a variety of data.

validity checks, and this paper shows how some of these can be
subject to detailed study in the light of the above logical
statements. Even in scientific computing systems, users of
shared databases will be forced to rely on a well-designed data
management system to preserve the accuracy of their data; for,
in any shared database one particular user will not have the
comprehensive knowledge required to make a chain of several
updates which might be needed following one specific update.
Generally, any large data store will accumulate more and more

errors as time passes, so that the reliability of retrieved inform-
ation is continually degraded; auditing can be regarded as a
means of keeping the reliability of the information at some
required level.

There are many ways in which inaccuracies can occur in
stored data. A number of authors (Fraser, 1969; Wilkes, 1972)
have discussed database integrity problems in relation to hard-
ware and software malfunctions; this paper discusses the
inaccuracies which occur when the hardware and software
functions correctly, but chains of insertions and deletions by 3
users eventually cause inconsistencies to appear. These have
been mentioned by Codd (1970). These inconsistencies are
logical, semantic incompatibilities as an example consider a
company in which it is an organisational rule that every ©
department has one manager but, on inspecting the personnel §
file it is found that two employees have the designation g
‘manager of data processing’. This error is a discrepancy 3
between the known rules of the outside world, and the des-
cription of that world held in the database. Such an incom-
patibility could have occurred because of an erroneous input,
or because of a time lag in deleting an entry. Time lags in
entering changes are always likely in large databases, and there
is no simple validation procedure which will catch them. More
complex validation procedures are needed, and these must be
founded on the known rules of the outside world which gives
rise to the data.

In a large database it would not be practical to make periodic
checks of the whole of the stored data; instead, every update
must be checked to see whether it could cause an inconsistency
to appear, and also to see whether the data management
system should take some consequential action. Such action
could be automatic data modification or signalling of an error.
To make a system of entry validation effective it is essential for 3
the user to have pre-formatted transactions. Of course, these
pre-formatted transactions may be extracted by a translator
from an apparently free format input. Also the number of
formats could be large.

To design the validation procedures it is necessary for the
systems analyst to determine the conditions under which
updates to the database occur, and then to show how these
give rise to consistency conditions on stored data. During the
design of a database decisions have to be made as to which
aspects of data accuracy are the responsibility of the user, and
which are the responsibility of the database administrator. By
considering the underlying logic of the validation procedures
the issue can be discussed in a systematic way. An important
objective of validation theory is to estimate the amount of
effort needed to effect validation; this paper presents a method
for making such estimates. The discussion in the paper is
based on highly simplified examples, but for the discussion of

The Computer Journal

eoe//:sd)y Wolj papeojumoq

Q
3
o
o
o°
8

o
3

Z I!JdV 6l uo 159”5 Aq 190€L¥/2S/LIL L/QIO!JJB/Iu

validation effort it is necessary to introduce mathematical
logic.

2. Consistency

The manifestation of accuracy considered here is the con-
sistency of the stored data. Data solely within a machine cannot
be consistent, or inconsistent; it can only take on this quality
when considered as a description of some world outside. If the
stored data describes a permitted state of the outside world
then it is consistent, if some feature of the application is
misrepresented then the data is inconsistent. Thus, to test
consistency it is first necessary to have a well-documented
account of the applications world. Systems analysts, of course,
already collect such information during their normal work.
Naively, all that would be necessary to design a database with
consistency checking would be to extract from the systems
documentation all the logical constraints on the data. Taking
these logical constraints the permitted updates can be deter-
mined, together with the circumstances in which they occur,
and then validation procedures can be devised. Needless to say,
such a completely general and undirected approach is imprac-
ticable. To make progress it is essential to set up a limited
framework within which the problems can be analysed. Here,
a specific framework is established for describing the applic-
ations world. This makes it possible to describe the consistency
problem in an effective manner, more particularly it enables
the sources of changes in the data to be described easily. It
should be noted that these issues appear when using any data-
base system; for instance, in most systems a data item can be
accessed by several paths, and it is necessary to give rules to
determine when an item can be completely deleted. Such
rules must be found from the systems analysis.

There are two aspects of consistency: when at one time
instant the database must reflect a possible state of the applic-
ations world, it is szatic consistency. At successive time instants
the world may change in certain, limited, ways and the data-
base will be correspondingly updated. Any database state
must have been arrived at by a sequence of permitted changes
from the initial state; this is dynamic consistency.

2.1. The world description method .

The world description method is based on the notion of an
entity, like an employee, a product, etc. which has properties
and can enter into relationships with other entities. An entity
is of a single, specified, type, and entities of the same type are
collected into sets. The description is to be considered as a
symbolism for reasons explained later. The following symbols
occur.

Entity set symbols There is an entity set symbol for each type
of entity. Sets of entities may have a finite or denumerably
infinite number of elements. It is convenient to allow an infinite
number of elements when the systems analyst does not want to
place an upper limit on the numbers involved. Of course the
number of items actually stored in the database is always
finite.

Attribute set symbols Attributes are properties of entities, and
also of relations over entities. Attribute sets are also finite or
denumerably infinite, and may contain a special symbol mean-
ing ‘temporarily undefined’.

Property function symbols An entity set or relation is associ-
ated with its attributes by a property function. A property
function may be permanently undefined for certain arguments
values; for example, in a personnel file, if factory workers have
a works number but office workers do not, the property func-
tion ‘works number’ taking employees as arguments is un-
defined for office workers. This situation is different to the
‘temporarily undefined’ attribute above.

Volume 17 Number1

Relation symbols Relations between entities only are con-
sidered here. Some extension is possible, but will not be carried
out here.

It would be possible to elaborate this model, and introduce
further symbols, for instance, for the world state. However,
such symbols are not used in the present examples. More
advanced work will need a more elaborate model, especially
where time synchronisation effects are more fully taken into
account.

2.2. Definition of consistency
It is now clear that consistency means that a detailed corres-
pondence exists between the world state and the contents of the
database. But in the theoretical treatment a direct corres-
pondence between the world and the stored data is not made;
instead, the relevant properties of the world are first ab-
stracted into logical axioms, and then both the world and the
stored data are taken to be models of the same axioms. Two
interpretations, in the sense of mathematical logic, are made;
this is illustrated in Fig. 1. This approach allows the database
and world to differ, and yet retain the same logical rules. =
A detailed correspondence must now be set up between t
symbols in the axioms and the data items, and also between t
symbols and the entities in the world. To describe the database
it is convenient to imagine a specific implementation, but itSs
stressed that this is hypothetical, and does not describe apy
real implementation. In the database each entity set and each
relation is kept as a separate file. The records in these ﬁl§s
contain a key, and attribute fields for that entity, or relatioa,
entry. A key for an entity entry contains a portion identifyifg
the type of the entity, and a unique identifying portion for that
particular entity. A key for a relation entry contains a portién
identifying the particular relation, and portions describing the
particular entities involved in the relation, as shown in tﬁe
example of Fig. 2. Although this structure is hypothetical evegy
real implementation must still preserve the key structure,
although keys may be realised in many ways. A key could be &n
Q

Axioms for Data Description1

Interpretation Interpretation
Data Base World State

Fig. 1 Links between the data axioms, world and database

Student entity set Course entity set

¥Z0z Iudy e} uo 1senb Aq L90EL1/2S/ L/

key status key faculty
sl | part-time cl arts
s2 | full-time c2 science
s3 — c3 science

Students _taking_courses relation

key time
stc_sl_cl evening
stc_sl_c2 | day
stc_s2_c3 evening
stc_s3_c3 —

Fig. 2 An example of a database with keys

Table 1 Interpretation of the symbols of the data axioms into the world, and into the database

AXIOMS WORLD DATABASE

Individual entity symbol Entity of appropriate type Keyed data item with key showing type

A convention exists for constructing unique keys with this type
designation

Entity set symbol Entity sets

Individual attributes and Attributes of appropriate Attribute data can be stored, updated and read only by basic

attribute set symbols type operations supplied by the database management system
Relations and elements Associations between Relation entries with keys formed from a portion identifying the
of relations entities relation, and portions identifying the constituent entities

Basic operations with entity arguments exist to update and read
properties of entities. Operations supplied in fixed forms by the
data management system

Entities and relations have
properties

Property function symbols

Table 2 Updating rules for the example database when there are no data constraints

WORLD CHANGE DATABASE UPDATE

An attribute value is changed, e.g. Can be done freely, attribute value changed everywhere it occurs.

‘part-time’ becomes ‘half-time’
A new entity of existing type is introduced

Entity disappears

A new unique key of correct type is constructed, and a new entity entry created.

Entity entry erased. Attributes no longer accessible through that entity. Any

relation entry containing that entity is also erased. The relation entries to be
deleted can be found via their key constituent.

A new association occurs between entities
the database.

An association between entities is broken

An entity gains or loses a property

A new relation entry is made, but only if the constituent entities are already in

Delete the relation entry.

The attribute entry is altered accordingly. The entity must already be in the database

alphanumeric string, or an access path, or could be contained
in a record as an apparent content.

Static consistency is now defined by showing the correspond-
ence between the axioms, the world, and the database. This is
shown in Table 1. Dynamic consistency is checked by invoking
logical constraints, as described later.

2.3. An example

A highly simplified example of a database is shown in Fig. 2.
The entities are students and courses, and the relation
‘students_taking_courses’ and various attributes are shown.
The status of student s3 is ‘temporarily undefined’. In this
example there are, so far, no data constraints, so the axioms
merely assert the existence of the entities, attributes and
relations as listed.

2.4. Updating without data constraints

Table 2 shows what updates occur in the example database as
a result of changes in the world. The consequential deletion of
- relation entries following an entity deletion and the need to
validate the entity entries before accepting a relation entry are
pointed out.

2.5. Updating with a constraint
Constraints may be of many different kinds. As an illustration
consider the world rule:

‘No part-time student can take more than one science course’

Entries to the ‘students_taking_courses’ relation now have to
be validated. First the student entity file has to be checked for
the ‘part-time’ attribute, then, if necessary, the course file has
to be checked for ‘science’. Then, again if necessary, the

54

‘students_taking_courses’ file has to be checked to see if that
student has already enrolled for a science course. Several
variations of this procedure are possible.

The entry for student s3, who has no recorded status, presents
further problems. His enrolments for science courses have to
be accepted until his status is known; at this time some of his
entries may become invalid. Some implementation technique
could be devised to mark these potentially invalid entries, but
the important point is to recognise that the situation exists,
and allow for it at the database design stage.

This simple constraint shows two typical features of the
resulting validation:

1. Validity can depend on the current state of the database,
and the database itself must be referenced.

2. It can be necessary to have a sequence of searches, where one
search must be completed before another is begun.

2.6. An alternative treatment of the constraint

Another approach to handling the above constraint is to
re-structure the world picture, and hence the database One
way of re-structuring is shown in Fig. 3. Use has also been
made of the data constraint:

‘No student can be both part-time and full-time’.

New keys have been constructed to take account of the new
entities, but the numbering has been retained so that compari-
sons can be made. Now, validation of entries for the constraint
consists of checking that entries in the ‘part-time_students_
taking _science_courses’ do not duplicate a student key. This
simplification of validation has been won at the expense of
increasing the number of entity types. Student s3, whose status

The Computer Journal

20 udy 61 U0 1s8n6 Aq L90E L +/2G/1/L L/RI0IE/UlWOd W00 dno dlWspeoe)/:SAjY Wolj paPEojuMOQ

is temporarily unknown, now appears twice, and it is imperative
for the Data Management System to recognise this and update
accordingly. It is known that grouping of data in a file system
can have a profound effect on processing efficiency, and this
is also true for validation processing.

2.7. Constraints over sets

A common kind of data constraint is that certain sub-total
quantities must add up to a total held elsewhere in the database,
for instance, the sum of wage fields in a personnel file may have
to equal a wage bill total held in a departmental file. Here
the constraint is over a whole set of entities, and over a whole
file in the database. In the example of Fig. 2 this effect is shown
by the constraint.

‘No course can have more than 30 students’

One way of validating this condition would be to scan the
‘student _taking_courses’ relation once for each course, and
during each scan to total the number of entries for that course.
Some parallel operations are possible here, and they will be
discussed later.

3. Measuring validation effort
It is desirable to have some estimate of the effort involved in
validation whilst at an early stage of system design and before

Part-time student entity set Full-time student entity set

key key
psl fs2
ps3 fs3

Science courses entity set Arts courses entity set

key key
sc2 » ael
sc3

Part-time _students _taking _science _courses relation

key I time

psc_psl_sc2 I day

Part-time _students _taking_arts_courses relation

key time
pa_psl_acl evening
pa_ps3_sc3 —

Full-time _students _taking _science _courses relation

key time

fsc-fs3-sc3 —

Full-time_students _taking_arts_courses relation

key time

fa_fs2_ac3 evening

Fig. 3 Re-structuring of the database to take account of constraints

Volume 17 Number 1

any details of hardware and software have been considered.
For this purpose it is necessary to derive the estimate of effort
directly from an analysis of the logical constraints and valid-
ation procedures. Such an estimate is possible if enough
simplifying assumptions about the nature of the effort are made.
This paper explores one simple approach where all the effort
is associated with searching files. All other effort, such as
central processor activity, is ignored. The effort is measured by
the number of essentially sequential file searches; two searches
which, in principle, could be done in parallel are counted as
only one search. This measure is quite rough, but has the
advantage of being independent of hardware and software
implementations. Later, it will be shown that constraints which
could be tested by file searching could also be tested by joining;
the proposed measure is the same for this alternative basic
technique.

Since the effort measure is to be derived from the constraint
conditions it is first necessary to express these constraints in a
precise way.

3.1. Precise formulatton of constraints and validation g

The precise expression of static con51stency in the woﬁld
description will be through a predicate ‘is_compatible’ wh&h
takes as arguments all the entity sets, relations, attribute sgts
and special individuals of the world. To see how this is done
take the example of Fig. 2, and abbreviate the Student entiity
set to S, the Course entity set to C, and the Students_ takmg_
courses relation to STC. In the situation without expli€it
constraints it was still required that before a student could entol
for a course, the student had to be in the student set, and the

course had to be in the course set. Leaving out the attrlbate
sets for brevity, this constraint is expressed.

is_compatible(S, C, STC) <> (¥(s, ¢)) [(s, ¢) € STC =
(seS)A(ce (g]

Suppose now that the world changes by the addition é‘)f
(s, ¢’) to STC, it is still required that

is_compatible(S, C, STC v {(s, ¢)}) =
V(s, ©) [(5,) e STC U {(s', ¢')} = (se S)a(ce C)]

In this simple example it is intuitively obvious that the va
ation test could be written

is_valid(S, C, STC, (s', c')) < (s’ e S)An(c' € C)

However, by the mechanical application of the rules of so@e
standard formulation of predicate calculus (for example %n
Mendelson, 1964), it would be possible to derive from the tg?o
above statements of ‘is_compatible’ that

is_compatible(S, C, STC)/\ (s"eS)A(c’eC) =
is_compatible(S, C, STC u {(s', ci;})

Thus, by taking the ‘is_compatible’ predicate before and afﬁr
some change is made, it is possible to derive the validation test
bylog1cal manipulation. In practice, however, logical manipula-
tion is so tedious that it is not possible to derive the validation
test for any useful situation. In spite of this it is useful to recog-
nise the underlying principles. In fact, the validation test so
derived might not be sufficient because sometimes extra testing
is needed, for instance, it might be necessary to have permission
from a senior manager before a certain change is permitted. A
more complete expression of the situation would be

09°'dnoo

q 190¢€ LV/E/ LiLLIB1one/|u

8
>

is_compatible(Initial world) A is_permitted(change) A
is_valid(change) = is_compatible(New world)

Notice that the implication goes only one way and, as expected,
a non-permitted, non-valid, change could still lead to a com-
patible world by a fortunate juxtaposition of errors.

In the practical situation the static consistency conditions will

55

be known, and the systems analyst, and database designer will
devise tests by intuition. For the data constraint

‘No part-time student may take more than one science course’
the static consistency condition is expressed

is_compatible(S, C, STC) <
(V(s, ©)) [(s, ©) € STC A (status(s) = ‘part-time’)
A (faculty(c) = ‘science)
= (V¢') [(s,) e STC
= (faculty(c’) # ‘science’)

v(c =0a]]
where the attribute arguments have been omitted, and the
property ‘status’ is assumed to be always defined. The validation
is expressed as
is_valid (S, C, STC, (s, ¢)) <

(status(s) = ‘part-time’) A (faculty(c) = ‘science’)
= (V¢') [(s,) e STC
= faculty(c") # ‘science’]
with the same conventions.
The set constraint

‘No course may have more than 30 students’

is expressed with the aid of an auxiliary predicate, ‘is_less_
equal’ which is expressed as

is_less_equal(STC, ¢, n) <> [(n = 0) A (STC = Q)] v
[(STC # 0) A (Vs) [(s, ¢) e STC
= (n > 1) Ais_less_equal(STC — {(s, ¢)}, c,n — 1)]]
where it is understood that ‘¢’ is a course, and ‘»’ is a positive
integer or zero. The static consistency is now expressed

is_compatible(S, C, STC) <> (Vc) is _less-equal(STC, c, 30)

A recursive definition is used to check the properties of a set,
this device can also be used to define a function over a set.
The validity is

is_valid(S, C, STC, (s, c)) <> is_less_equal(STC, c, 29)

3.2. Validation test procedures

To discuss validation test procedures the hypothetical database
with files corresponding to entity sets and relations will be
assumed; the measures derived will still apply to any imple-
mentation. Logical validation conditions on the world model
can be translated systematically into operations on the data-
base: for example, ‘(s, ¢) € STC’ translates to saying that a
certain keyed record is in file STC, the formula ‘faculty(c) =
“science’’ translates to a test on a field of a keyed record.
Formulae with quantifiers translate into file searches, in the
formula

Ve[€ C) A (s, ¢') € STC = faculty(c’) # ‘science’]

the quantification (Yc¢')[(¢' € C) . . . translates to a full scan of
the C file, selecting each record in turn, and carrying out the
tests in the remainder of the formula; the tests indicated by
(s, ¢') € STC = faculty(c’) # ‘science’ are the looking up of a
record with a fully known key in the STC file, followed by
testing the contents of the ‘faculty’ field.

If the above formula were re-written as

(s, I, e STCA(S =s)A(c'eC) =
faculty(c’) # ‘science’]

the translation would be different, although the overall effect
would be the same. Here, the quantification (Y(s', ¢"))[(s’, ¢') €
STC would lead to a scan of the STC file, on finding an entry
with (s" = s) the key of an entry in the C file would be retrieved.
The C file would then be consulted with a known key.

3.3. Validation effort
To measure validation effort it is necessary to make some

assumptions about the effort involved in basic operations. Here,
the assumptions are:

1. Tests on record fields such as ‘faculty(c) # “‘science”’, do
not involve any effort once the record has been accessed.

2. Accessing a record with a fully known key does not involve
effort. This gross assumption avoids entanglement with
details of possible implementations of indexes,and is essen-
tial to avoid discussing implementation.

3. Looking for a record with an unknown, or partly known,
key does involve effort. Here a record is specified by attri-
bute, or by being related to another record.

This measure is associated with unavoidable searches in the
database. In a constraint without quantifiers, such as
‘age(e) < 65 there is no reference to the database, and thus
the validation could be carried out off-line, or at a remote
terminal. Several searches can be involved in one constraint,
for example in:

is_valid(E, E1, E2, e) <>
(3el) [(Fe2) [el € E1 Aname(e) = name(el) Ae2 € E2 A age(e)
= age(e2)]]

where the convention is introduced that En, Rn are entity sets
and relations, .e is to be inserted into E, and ‘name’, etc. are
properties. Notice that here ‘¢’ can only be inserted if its
properties are known at the time of insertion, this is a typical
situation. Now, this constraint can be re-written as:

(Jel)[el € E1 Aname(e) = name(el)] A
\ (Fe2)[e2 € E2 A age(e) = age(e2)]

This form shows that the two searches can be carried out in
parallel. For the measure used here this counts as a single
search; but, if the constraint were:

(3el)[el € E1 Aname(e) = name(el) A
[(3e2) e2 € E2 A age(el) = age(e2)]]

it would be first necessary to search the E1 file on the attribute
‘name’, when a candidate ‘el’ had been found it would be
possible to search the E2 file. Here the searches must be in
sequence, so that the measure is two searches.

These remarks apply to two searches of a single file, where the
validation

(3el) [el € E1 Aname(el) = name(e) A

(3e2)[e2 € E1 A age(e2) = age(e)]]

involves one essential search, whereas

(3el) [el € E1 Aname(el) = name(e) A
(3e2) [e2 € E1 A age(e2) = age(el)]]

involves two essential searches.

Validation conditions over sets will usually involve recursive
statements of the conditions, as was illustrated above. Checking
a recursive condition, or evaluating a recursively stated function
over a set (file) does not change the search situation, what is
new is that auxiliary storage is required to record the changing
goals of the search. This can be seen in the ‘is_less_equal’
predicate defined above. As another example consider the
function ‘2" which acts on a personnel file, P, to sum the
salary fields. The function X can be defined by saying how it acts
on an empty set and then on a non-empty set

[(P=0)ACP)=0)]v [P #0O)A(p) [(peP =
Z(P) = salary(p) + Z(P — {p}]]

Only one scan of the file is needed, but after each record is read
a sub-total has to be held.

Complexity can be found by inspection of the validation
conditions. To make the inspection easier the validation con-
dition can be written so as to show only quantifier and test

The Computer Journal

/61 UO 150nB AG L90OE L #/2G/1/L L /BI0ME/UlL0o/W0o"dno"oILapeO.//:SARY WO} PAPEoUMOQ

ud

N

[}
N

positions with the entity and relation symbols involved, for
example

(Qel) [test(E1, el, e) (Qe2) [test2(E2, el, e2)]]

where Q indicates a quantifier symbol. The variables and tests
can be checked for their depth of nesting within quantifiers;
predicate—‘test’—above encloses variables of depth one,
whereas, ‘test2’ has argument variables at depth two.

3.4. Join operations on files

In the above discussion the basic operation on files has been a
search. An alternative basic operation is a join of two files,
when records with fields meeting certain conditions are placed
in the output file, the records being suitably amalgamated.
Codd (1971) has discussed the join operation on two files;
suppose files F1 and F2 contain records with fields, say
(f11, f12, .., fln) and (f21, f22,.., f2m). Certain fields in
the two records contain data of the same type, say f11 is
of the same type as f21, and f12 is of the same type as f22,
but the other fields are of different types. Then
JOIN(F1, F2, f11, f12) produces a file with records having
fields (11, f12, f13,.., f1n, £23, .., ,2m) made up from the
records of F1 and F2 which have exactly equal contents in the
f11, £21 and f12, £22 fields. A validation constraint

(3el) [(el € E1) Aname(el)

can be treated as a join test which can be written

= name(e)]

JOIN(E1, {e}, name) is non-empty

The output file so obtained will contain all the elements, which
satisfy the quantification condition.

The JOIN operation is taken to act on actual files, and not on
sets in the world model, through axioms. It would be possible
to introduce algebraic operations in the data axioms, like union,
intersection, set product, etc. and totally re-phrase the con-
straint conditions in algebraic terms; however, this has been
found to be inconvenient in practice. It is, therefore, preferable
to regard the JOIN operation as an alternative implementation
of conditions expressed logically. As a further example the
validation condition

(3el) [el € E1 Aname(e) = name(el) A
(3e2)[e2 € E2 A age(el) = age(e2)]]

would be implemented by
JOIN(E2, JOIN(E1, {e}, name), age) must be non-empty

This needs two join, and so the resulting join measure is the
same as the previous search measure. Taking searches over into
joins in this way will always produce the same number of
joins as searches.

3.5. Remarks on the validation effort measure
The measure of validation effort has to be deduced from the
form of the validation condition, quantifiers have to be recog-
nised as giving rise to searches, or joins. Nested quantifiers
give rise to essential sequencing of searches. This measure is
entirely dependent on the written form of the validation con-
dition, now logical formulae may be transformed into many
truth-value equivalent forms, and some forms will be more
economical in searches than others. An economical form will
have a minimum nesting of quantifiers. The extent to which
transformations may be carried out will depend on all the
axioms which are available, which will include axioms on the
data, as well as the constraint conditions. In an axiom system of
reasonable power there will not be a universal method of
transforming validation formulae into minimal search form,
and each formula will have to be considered within the special
circumstances of the problem.

The measure is very coarse, and a number of possibilities of

Volume 17 Number 1

refinement can be considered, for instance differentiating
between universal and existential quantifiers. However, it
seems that such refinements need more detailed consideration
of data organisation, indexing, and hardware performance.

4. Use of the entity model

In the approach to consistency checking outlined above the
most critical design decision is made when the elements of the
applications world are labelled as entities, attributes, and
relations. By this labelling the acceptable world changes are
circumscribed, and some basic compatibilities are established.
Also, all the possible insertions and deletions are settled and
pre-formatted. In a practical situation it is not easy to label the
elements of the application in this way, and many systems
analysts may question whether the effort is worthwhile. The
argument in favour of making such an effort is that it is always
necessary to examine how errors could arise in the database
through user mistakes. If this examination is done in a hap-
hazard fashion a great deal of effort can be expended without
any assurance that nothing has been overlooked. Construction
of an entity model provides a disciplined framework for an
examination, and every element is properly considered. Als3,
when new data types are added to the database there is a meags
of testing how they interact with data already present, aﬁ’d
unexpected interactions can be detected.

It has to be admitted that sometimes the evidence for dec1d1
whether an element is an entity, attribute, or relation will bg
based on hypothesising the database transactions. Such reverge
reasoning will often be necessary when existing files must ke
incorporated in a new database, without change. In this cit-
cumstance it may be necessary to allow anomalous transactio

- but these can be clearly recognised. It must be made clear that

the sole aim of the world model is to provide a working framg-
work for the design of validation procedures. It is obvious]

useful to database designers, but its fault is that it might
1mpose extra burdens on systems analysts. Other methods for
organising data might be found, which will have to be studléi
when available.

Y |L/ajone)|

4.1. Constraints and validation responsibility
Constraint conditions can be of many different kinds, and the
world situations described can be very complex; for examplﬂ
if details on students, classrooms, and professors were kept ina
database then the validation criteria could state that the storgl
data must represent a solution to the classroom scheduli
problem. Of course, this criterion does not demand tgi
production of a solution, but only that a check is carried out én
a proposed solution. However, in this situation it might be
argued that the user is wrongly off-loading his problem on to
the database administrator. The resolution of this argum t
depends on all the circumstances of the application, but
assignment of responsibilities should be explicit.

A more technical consideration is the acceptability of tﬁe
constraint. To illustrate this consider:

‘A student may not enrol for a science course unless he is
also going to enrol for an arts course within the next year’

Such a condition is beyond any effective checking (waiting for
a year would not be accepted as a check). A reasonable limit-
ation is that the validation should depend on searching files
which actually exist. The above constraint refers to a file entry
which does not yet exist. A more specific criterion is that the
formal logical statement should refer only to files actually in
the database, and that the criterion should be stated in a form
which does not involve the complement of any file (entity set or
relation). Another kind of logical difficulty is in circular
dependencies, as an example suppose that in recording a joint
banking account, details of the husband cannot be entered
without details of the wife being present, and also, details of

57

the wife cannot be entered without details of the husband being
present. It is clear that the only way that an entry can be made
is for the details of both husband and wife to be entered at the
same time. Such circular dependencies can arise when separate
constraints are being combined, and they have to be detected
as such.

" 4.2. Use of mathematical logic

It is usually agreed that systems design must involve creative
imagination, but there is hope that more and more of the design
effort will be carried on by routine techniques, in the same way
that engineering design involves routine calculations. It is,
therefore, pertinent to ask whether mathematical logic as used
above could become a routine design tool. At this early time
some tentative observations are:

1. Mathematical logic is obviously a tool for specialised
theoretical studies.

2. Logical notation is a concise shorthand for expressing
certain kinds of design information. It is reasonably easy to
learn, and can therefore be expected to find some general
use. It will be reinforced in use if certain types of database
programming languages come into use (see Codd, 1971).

3. The direct manipulation of logical formulae is so tedious as
to be unusable as a practical design tool. Methods of
manipulating logical formulae by computer have been
demonstrated by several research workers (see Robinson,
1967); the performance achieved so far, falls far short of
that needed for system design. The future of such develop-
ments remains speculative.

4. Progress could be made by studying specific efforts, where
concrete insights could be combined with logic. An example
might be in developing tests to recognise circular depen-
dencies in constraints.

References
Copp, E. F. (1970).

At the present time it has been found that systematic attempts
to express constraint conditions in logical notation are a
valuable aid to examining the nature of the constraints. In
particular, it is found in practise that various alternative ways
of expressing the constraint become apparent, and this is
valuable in providing more insight.

5. Conclusions

An introduction to one general aspect of the preservation of
accuracy of stored data has been given by isolating the notion
of the consistency of stored data. Accuracy needs in commercial
applications have already given rise to several methods of input
data validation which have been subjected to basic theoretical
research. On the other hand, auditing of stored data is usually
the result of an ad hoc collaboration between accountants and
systems designers, and does not appear to have been the subject
of systematic research. Since computerised systems are much
more flexible than manual ones, it seems that a slow evolution
of auditing practises will not be adequate to cope with changing
and expanding demands. It will be necessary to devise an overall
design approach to auditing that will allow the designer to
produce effective audit procedures for new, and untried,
systems.

Acknowledgements

The author would like to acknowledge stimulating discussions
on the fundamental theory of databases with P. Hopewell
(IBM UK Laboratories Ltd.), Dr. M. G. Notley and Dr. T. W.
Rogers (IBM Scientific Centre, Peterlee). The application of
logic to the theory of computation has been discussed with
C. D. Allen and C. B. Jones (IBM UK Laboratories Ltd.).
The author is also grateful for encouragement and comments
from his colleagues Professor P. J. H. King and J. Inglis.

‘A Relational Model of Data for Large Shared Data Banks’, Comm. ACM, Vol. 13, No. 6, pp. 377-387

FRASER, A. G. (1969). ‘Integrity of a Mass Storage Filing System’, The Computer Journal, Vol. 12, No. 1, pp. 1-5.
MENDELSON, E. (1964). Introduction to Mathematical Logic, Van Nostrand, New York.

ROBINSON, J. A. (1967).
Society, Providence, R.L., pp. 1-18.

A Review of Automatic Theorem Proving’, Proc Symposia in Applied Mathematics, Vol. 19, American Mathematical

WILKES, M. V. (1972). ‘On Preserving the Integrity of Data Bases’, The Computer Journal, Vol. 15, No. 3, pp. 191-194.

Book review

Pattern Recognition, Learning and Thought, by L. Uhr, 1973; 506
pages. (Prentice-Hall Inc., Englewood Cliffs, N.J. £7-30)

Professor Uhr has written an unusually personal book. In many ways,
his text reads as though it were an interesting, albeit onesided,
discussion with the author. The style is informal, colloquial, and
jargon-free.

Nevertheless, the subject matter is treated thoroughly and it is
possible to support the author’s implied claim that he has written a
useful, self-contained textbook ‘as an introduction to simulation
models of cognitive processes and artificial intelligence’.

The first nine chapters of this rather long book deal exhaustively
with the great variety of programs which have been designed to solve
pattern recognition problems. In common with many authors,
Professor Uhr hasconcentrated hisattention oncharacterrecognition
techniques, and, within this rather restricted area, has produced an
admirable survey. He introduces a programming language (EASEy)
which he describes as ‘a general-purpose list-processing, pattern-
matching language . . . closely modelled on SNOBOL’, and uses
his language to provide programmed illustrations for all the main
features of pattern recognition methodology. In this way, some of
the apparent differences between similar programs writtenin different

language structures, are ironed out.

Descriptions of useful applied pattern recognition systems, where
‘production’ pattern processing is being achieved, are not given, nor
are the problems concerned with grey-scale pictures and scene
analysis discussed. Thus, these chapters are thorough in their treat-
ment of pattern recognition only up to the point where the problems
begin to look insuperable.

The second half of the book looks at problem solving, game
playing, theorem proving and (computer) learning methods. Finally,
these various concepts are combined with the pattern recognition
ideas to suggest flexibly structured programs which learn to re-
cognise patterns in fairly simple classes of input picture.

There is a good bibliography (25 pages of references) and a short
and rather unhelpful glossary. Anyone wishing to get a good idea
from scratch as to what pattern recognition is all about could do a
lot worse than study this book. Those who are old hands in the
field will find the summary discussions, following each chapter, a
useful survey of what can be done in recognition of line patterns.
Incidentally, it is possible to read this book adequately without
bothering to learn EASEy. Programs are summarised in plain
language as well as appearing in full detail.

M. J. B. Durr (London)

The Computer Journal

20 udy 61 U0 1s8n6 Aq L90E L +/2G/1/L L/RI0IE/UlWOD/ W00 dno dlWspeoe)/:SAjY Wolj paPEojuMOq

