An interactive approach for the solution of a class of
discrete optimisation problems

E. S. Page and L. Waller

Computing Laboratory, University of Newcastle-upon-Tyne, Claremont Tower,
Claremont Road, Newcastle-upon-Tyne NE1 7RU

The paper describes the design and implementation of an interactive system for attacking a wide class
of discrete optimisation problems. Features requiring consideration in such a system are the interface
with the human, the requirements from the operating system, and the variety of heuristic techniques
that must be provided. Some details are given of interactive facilities for limiting the amount of
computation expended in a backtracking approach for a ‘branch-and-bound’ search.

(Received August 1972)

1. Introduction

Certain types of discrete optimisation problems have the
characteristic that a solution may be represented by a vector v
which minimises some cost function C(v). In effect, the cost
function, C, is a ‘black box’ which takes as input a vector v
and outputs a cost associated with the vector. The difficulties
presented by such problems in general arise from the great
number of possible input vectors and make the determination
of one which produces the minimum cost far from trivial. An
orthodox approach is to utilise knowledge of the black box’s
behaviour to attempt to arrive at an analytical solution to the
problem. There are, however, problems in which such know-
ledge provides little help in deriving an analytical solution or of
devising a computationally practical deterministic algorithm.
The usual approach is to adopt a heuristic method which
provides a ‘good’ approximate solution and attempts to back
it up with an assessment as to how good the solution is. To
attack a wide class of discrete optimisation problems there is
thus a need for a set of general purpose heuristics. The heuristic
approach described here is an interactive one intended to
utilise the powerful facilities offered by modern multi-program-
ming computers. Man-machine interaction provides the
ability to direct computational effort into areas which one’s
judgement and/or intuition suggest are worth exploring. The
human can be ignorant of the mechanism of the black box
function but may learn that ‘similar’ input vectors yield
‘similar’ costs. The class of combinatorial problems that may
be attacked by the interactive system described here may be
termed ‘permutation problems’; i.e. the input vector to the cost
function can be represented as a permutation of 1 to n, where n
is a positive integer but other problems could be tackled in a
similar fashion and similar techniques developed. Examples
of permutation problems are the job-shop scheduling problem
(Sisson, 1959), the travelling salesman problem (Little, Murty,
Sweeney and Karel, 1963) and a problem of assigning facilities
to locations (Gavett and Plyter, 1966).

The interactive system described in this paper has been named
IMPACT (‘an Interactive System for the Manipulation of
Permutations for attacking Combinatorial Problems’); it has
been implemented on the IBM 360 Model 67 computer running
under the Michigan Terminal System (MTS) at the University
of Newcastle-upon-Tyne but system dependence is limited to a
small number of features like the handling of ‘attention’
interrupts.

2. Design objectives of IMPACT

Several objectives were formulated in the design of IMPACT.
It clearly needed to be applicable to a wide range of discrete
optimisation problems. A set of powerful heuristics should be
made available with interactive access to permit decision taking
and provide immediate feedback from the system to the decision
taker. The system had to be easy to use so that the user could

Volume 17 Number 1

easily concentrate his intellectual effort into the problem-
solving without being encumbered with troublesome system
details. Furthermore, whilst the system was to be easy to use it
should also be difficult to abuse in the sense that any typing ar
logical errors by the user should not result in a catastrophe b\ﬁ
should be detected as minor errors and be catered for bg
IMPACT so that the user could be prompted to remedy h&
mistake.

Extendability was required so that new heuristics or con§-
mands could be introduced and to cater for different problemz.
IMPACT should also lend itself to easy transfer under differefit
operating systems and to depend as little as possible on @
particular machine; it was therefore decided that IMPA
ought to be written in a high level language and FORTRAR
was chosen. Recourse to ASSEMBLER language has be¢n
permitted only where absolutely necessary, namely to access
certain system functions (the current version of IMPACT us&
only three such routines).

Extendability is obtained by modularity in the programmn@
of IMPACT. Each facility provided occupies its own moduie
and has access to a common database (areas of COMMORN
blocks). A skeleton of a main program provides a switchirg
network between these modules and hence additional featuré
may be easily incorporated by the writing of an approprlatc
module and a slight modification to the main program. Q

Modularity also made possible the objective of being able tg
attack a wide class of combinatorial problems. To use IMPACT
upon a different problem of the class defined earlier, a usgr
must write a suitable module to calculate the cost of a given
input to his particular black box function. This and a suitable
routine to place any data in the common database w1thtn
IMPACT allows use of many of the powerful heuristics that
exist in the system. Similar but more extensive changes and
additions would permit different classes of problems to Be
tackled. Use of corrective programming allows the system o
protect the user from himself. Checking is performed to ensute
that common errors by the user are trapped. Parameters
required by the commands are checked; for example, if the
user enters what he considers to be a permutation of 1 to some
positive integer n a suitable subroutine performs a test to see
that this is so. Errors result in a meaningful diagnostic message
being printed out and a chance to re-enter is provided for the
user. Ease of use also stems from a ready feedback from
IMPACT to the user and from the provision of facilities which
permit the user to interrupt IMPACT at will. Interrogation by
the user is then available as is modification of certain major
variables. Finally the user may instruct IMPACT to continue
the interrupted process or to abandon this process and initiate
another (possibly different one).

IMPACT possesses a powerful set of heuristics, some of which
are described below; certain of them were introduced as
interactive problem solving with the system suggested them.

69

3. The operating system and IMPACT

IMPACT appears to the operating system as one large program
which when running needs only a small portion of the compiled
program to be kept in main storage since in essence IMPACT
consists of a set of subroutines which share a common database
and are linked by a main program which performs the function
of allowing the user to switch from one subroutine to another.
Under MTS any subroutine called which does not reside in
main storage is ‘paged’ into main storage from secondary drum
storage by the operating system. The virtual storage require-
ment for IMPACT is currently about 85 pages (1 page = 4096
bytes) and only a small proportion of this (10-20 pages) is
required in core at any one time. In a particularly interactive
session the large amounts of ‘think’ time would mean that
almost all of IMPACT would reside on secondary storage
should the main storage be required by other users’ programs
in MTS. The core storage requirements for IMPACT are thus
not excessive.

Central processor usage time for IMPACT is dependent upon
which facilities the user requires and how heavily he uses them.
Most facilities provided require computing times of the order
of a few milliseconds, whilst some involving powerful search
techniques can demand computing times of a few minutes or
more. Controls are however provided for interrupting or
policing such time-consuming processes.

4. Usage of IMPACT

Once the user has initiated the execution of IMPACT and has
provided basic data to specify the particular problem he is
attacking he can invoke any of a set of heuristics by simply
specifying a particular command word whenever IMPACT
places him in command mode.

Commands consist of the name of a particular operation to be
carried out and may require certain parameters.

In command mode the user may enter a command name and
be prompted for parameters, or he may enter the name and
the parameters together. An effort has been made to make
command names meaningful, e.g. ‘CMC’ is used to invoke a
Chain Monte Carlo technique. Any parameters entered are
positional parameters and a single parameter may be an integer
number or a permutation (part permutation) name.

The ability to interrupt execution of command provides a
powerful facility in IMPACT.

Certain commands are specified as being interruptable and the
depression of the attention button places the user in inferrupt
mode. In such a mode a meaningful message will be displayed
and will be followed by a single line
ps
and the unlocking of the keyboard. The user may then enter
local (or sub-commands) which allow the display and modi-
fication of major variables. As an example, the state of search
may be ascertained, modified and resumed. Examples of such
techniques are given.

Storage display commands allow IMPACT to be interrogated
by the user to ascertain various features of the interactive
session. Typically, the best solution found so far may be viewed
(RECAP); the permutation which the interaction is currently
considering may be viewed and manipulated (BASE, POPCAP);
permutations may be defined and displayed (GIAN,
CATALOG); the CPU time used over an interval can also be
determined (TIME).

5. Heuristic techniques

Several heuristics are provided by permutation manipulation
commands. A single permutation specified by the user may be
submitted to the cost function and the resulting cost displayed
(HUNCH). Elements in a particular permutation may be
interchanged (INTCH) as may different sized blocks of elements
(MOVE). Parts of permutations may be reversed (REV) or

70

cycled (CYCLE) and specific elements in the permutations
may be tried in other positions (WEAVE, TONFRO). After
each of the above commands the resulting permutation is
displayed. At any stage in an interactive session the user will be
informed if there has been any improvement in the best value
found so far. Random permutations may be generated
(SHUFFLE), as may permutations that are part random in
the sense that certain elements of a base permutation are not
to be disturbed from their original position (RANFIX).
Various more complex heuristic techniques are also provided.
Some of these are based upon sorting techniques (SELECT,
EXCHANGE, MERGE) (Page, 1961), whilst others adopt a
Monte Carlo approach (CMC) (Page, 1965). Methods which
permit complete enumeration are also included. One (PERLEX)
allows the generation in a lexicographic manner of all permut-
ations of 1 to n, or restricts this generation to part of an
original permutation. Others allow the use of branch-and-
bound approaches with different methods of performing the
branching. One method of branching (TRAKBAK) utilises a
straightforward backtracking method (Lomnicki, 1965),
while another permits an approach developed interactivel
(see Waller, 1971). These branch-and-bound techniqueg
require, of course, that the user provide suitable routines for
calculating lower bounds. &
Commands which are peculiar to the particular cost function.
being investigated may be inserted in IMPACT. Typicallyg
such facilities have been so far used for measuring the value of
a solution found by a heuristic technique, for looking inside &
cost function, and for testing out ideas. Although IMPAC"E
aimed at providing a set of heuristics into which a user coulé
simply insert his own cost function and thus arrive at som&
‘solution” without any exploitation of special features whick
the cost function might have, the extendability of IMPACE
permitted the introduction of special commands which can b&
made interruptable without undue difficulty. 3

/lufwooy

6. Aids to ease of use of IMPACT
Human factors enter prominently into the design of an interS
active system; one of these concerns the size, number and forng
of keyboard entries that are required. In a system manipulating®
permutations it is slow (and productive of error) for a user t%
enter complete permutations of 1 to » unless » is very small©
accordingly, permutations or part permutations may be name£
either explicitly or implicitly. Explicit definition is achieveds
by the use of the command GIAN (‘Give It A Name’) and at;
any later stage named permutations may be retrieved for use as,
input parameters to commands. Certain names are reserve@
and have predefined meanings. o

Implicit naming uses the concept of a current active permu—
tation which refers to a temporary storage mechanism for,
permutations which the user may use and retrieve without thes.
necessity of having to define them explicitly. A certain number
(an IMPACT parameter at generation time, and currently®
three) of permutations are stored in a push-down stack manner
and may be referred to by CAP 1, CAP 2, ... etc. (CAP 1
being the most recently implicitly defined permutation, CAP 2
the one before that, and so on). Whenever a new implicitly
defined permutation enters the stack the permutation which
was CAP 1 becomes CAP 2, the old CAP 2 becoming CAP 3
and so on. (The permutation at the lowest level is discarded if
necessary). Also manipulated with this stack of permutations
is a stack with their associated cost. These costs may be
referred to as CC1, CC2.. .. etc., in the same manner as above.

Most of the commands available have as result a permutation
and cost which become CAP 1 and CC1 respectively, thus
causing stack manipulation. _

If after the use of a command which created a new member of
the CAP family, the user wishes to base his next command on
the previous permutation he may do so by use of the command

The Computer Journal

POPCAP. There is, of course, no means of recovering per-
mutations which had to be discarded from the bottom of the
stack so the situation retrieved may be different in this respect.

The reserved permutation names are BEST, NATU, NTOI,
PADD and the generic name CAP k mentioned above (where
k represents a digit in the range 1 to 9).

By referring to BEST in a string of parameters to a command
the user will obtain the permutation corresponding to the
lowest cost (stored at BC) found so far. NATU will result in the
natural permutation (1,2, ..., n) being supplied and NTOI
gives its reverse (n,n — 1, .. ., 2, 1). PADD is used to indicate
that the parameters supplied to date are to be padded out with
those elements of 1 to n in the natural order which have not
yet been entered. For example, if n = 8 the parameters 6,4,8,
PADD; are equivalent to 6, 4, 8, 1, 2, 3, 5, 7;. Thus PADD; is
equivalent to NATU: .

At the end of a problem-solving session a user may obtain
access to a permanent machine-readable record of the session
stored upon a disc file. This record may be used for a variety
of purposes. One possibility is that scrutiny of it together
with explanations inserted by a COMMENT command might
provide insight into the problem-solving approaches used by
humans and thus suggest more powerful heuristic techniques.
Judicious use of the attention button also allows one to ask
for information which might be too voluminous for terminal
output but which will be recorded onto the disc file and hence
be available for a more suitable output device, e.g. a line printer,
character display, or graph plotter.

7. Bounds and backtracking

Initial attempts upon problems using heuristic approaches
gave some apparently ‘good’ results but it was not possible to
assess just how good they were or whether they were obtained
by good fortune or by some particular decision mechanism.
There was no indication as to whether a search ought to be
made in the neighbourhood of a permutation obtained or
whether effort ought to be directed elsewhere. If the problem
needed a minimum cost permutation access to the lower bounds
on the costs associated with part permutations was desirable;
accordingly a command ‘BOUNDS’ was implemented. Upon
entering ‘BOUNDS’, which of course needs a user-provided
routine appropriate to the particular cost function, and provid-
ing a part permutation P; = (iy, iy, . . ., i;) to IMPACT the
lower bounds associated with the part permutations (i, iy, . - -
i}, k) are displayed in ascending order. If the user decides that
he has seen enough of such information during the printing
the remainder may be suppressed by the depression of the
ATTENTION button. For example, the command, bounds, 7,
3; could produce the lower bounds for part permutations
beginning with (7, 3) .

Q- 142)
(1 - 142)
(5 — 145)
6 — 147)
4 — 149)
8 — 151)

A backtracking ‘branch-and-bound’ approach to permutation
problems lends itself to an easy implementation by the use ofa
‘push-down’ stack. At the first level of the tree n nodes are
generated and ordered according to their lower bounds. The one
with the lowest lower bound is retained and the remainder
placed upon the stack so that in the event of any of them being
required later the smallest will be retrieved first. Similarly at
the next level of the tree n — 2 lower bounds will be placed
upon the stack, again ordered amongst themselves. Fig. 1
depicts the arrangement of the lower bounds on the stack.
When a complete permutation is reached bounds are removed
from the top of the stack and either rejected (the lower bound

Volume 17 Number1

} level n-2 (2 entries)

small values I

level 2 (n-2 entries)
large values

small values [

}level 1 (n-1 entries)
Large values

Fig. 1 Arrangement of a ‘push-down’ stack for backtracking

is too high) or explored further. When a node is explored
further any new nodes generated can be added to the stack as
before. It can thus be seen that only as many nodes will be
added as have been removed and hence no more storage is

required. The maximum number of storage locations requiresd
for the stack is thus s
1 8
(n—1)+(n—2)+...+2=”(”2‘)—1. o

o

An approximate solution can be measured against the bounas
shown in the backtracking approach and potentially fruit@l
regions for the search identified. Backtracking can however be
very time-consuming and limits need to be set. The command
‘TRAKBAK’ takes a part permutation upon which backtrack-
ing is to be performed, which restricts the amount of compa-
tation to be performed as well as providing a facility f8r
following up ‘hunches’. The maximum number of vertices to be
examined in such a search must also be specified. 3

/|ulwoo/wogd

8. Interaction and backtracking
During the course of backtrackingthrough the tree of permua-
tions, situations may arise where the bounds show that the
computational effort of the search is directed in a part of the tree
which could give at most a small decrease in the lowest cgst
found so far. Further computational effort might be better eff-
ployed in a different part of the tree. Facilities have therefore
been provided for allowing one to interrupt the backtracking
procedure. g

Whenever the backtracking is interrupted by a depressionf
the attention button the number of vertices of the permutatin
tree (i.e. part-permutations) that have been examined is dis-
played together with the number of complete permutations that
have been examined. This gives an indication of whether the
computational effort has been expended in nearly complgte
permutations. Local commands provide the ability to dispgy
the tree remaining for investigation. For example, IMPAET
might respond to an attention with

YOU’VE INTERRUPTED THE BACK TRACKING
AFTER 39 VERTICES AND 4 COMPLETE

PERMUTATIONS
0

entering ‘HOWF’ might then result in

howf

THE DEPTH OF THE SEARCHIS 5

AND THE PERMUTATION BEING EXPLOREDIS 52867

WITH LOWER BOUND = 117
?

‘STAC’; shows the stack representation of those vertices of the
tree that have lower bounds less than the current target value

(Fig. 2).

"

stac
ID BACK BOUND LEVEL
24 3 119 S
22 1 116 4
21 7 117 4
20 3 118 4
18 6 119 3
13 1 114 2
12 4 114 2
11 6 114 2
10 8 115 2
9 7 117 2
7 7 117 1

?

Fig. 2 The stack representation of a tree

ALL

LeveL i
NODE A "7 @
14 d) \4’4@9 114@ ns 147@'_""“" 2.
———
/ ~
s ~J LEVEL 3
/
/

NODE C N
| LEVEL 4

16 d) n7@\ NTYENN L
NODE. B%NODE D
@ ‘
N

—_———

e @ LEVEL S 1
-— /

NoDE E //

————

Fig. 3 The tree corresponding to Fig. 2

?
draw
117 « Lower bound of part permutation being investigated

. 119
5(1)—(3)
. 116 117 118
4(6) 1) (N (3)
119
3(8)———(6)
. 114 114 114 115 117
2(2) 1) 4) (6) (8) (M
. 117
1(5) (7
1
level

Fig. 4 The DRAW command

The above information is interpreted in the following manner:
the permutatlon beginning with (5, 2, 8, 6, 3) is in position
number 24 in the stack and has a lower bound of 119, whilst
that beginning with (5, 4) is in position number 12 and has a
lower bound of 114. The state of the search is thus depicted

T2

by Fig. 3. Parts of the tree that are still active are represented
by nodes and their lower bounds are attached to them.

Tree drawing

The same information that is printed by the commands HOWF
and STAC may be displayed graphically by use of the local
command DRAW (Fig. 4).

Nodes lower down the tree are displayed first, and thus the
part of the tree that will be examined soonest is seen first by
the user. A parameter to the DRAW command gives the user
the choice of drawing the root first or last. Use of the ATTEN-
TION button during printing of the tree will terminate the
printing although a drawing of the tree will be stored away
automatically onto the recording file and will not be suppressed.
Thus if one wishes only to store a drawing for later viewing the
DRAW command can be issued and followed immediately by a
press of the ATTENTION button.

Parts of the tree may be discarded or pruned in various
fashions. A simple method is to MASK and specify which nodes
are to be rejected. Implementation is performed by altering the
lower bound associated with the node to be masked to a value
higher than the best cost found so far. Thus to discard the
nodes labelled A and B in Fig. 3 one should specify that posi-
tions 12 and 21 in the stack are to be masked.

A more powerful method of reducing the amount of compu-
tation in a search is to alter the target-value (the value with
which the lower bounds are compared) by the command
TARG. If at some stage the cost of the best solution found so

far is C, then altering the target-value to C, = C, — & will :

cause only those nodes with a lower bound less than C, to be
examined. 6 would normally be positive (but need not be so)
and thus fewer nodes of the tree would be examined. It does
not follow that no permutatlons giving a cost between C, and
C, will be found since a part permutation of n — 2 elements
may have a lower bound less than C, and thus warrant
investigation.

In the example if the best cost discovered so far is 120 then 3
usmg TARG 1o search for values better than 118 would result =
in nodes C, D and E in Fig. 3 being thrown away, leaving =

Fig. 5. Implementation is performed by adjusting the value 2
with which the lower bounds are compared rather than by X

altering values in the stack. Thus after a time if the manoeuvre
appears to be fruitless in the sense that no improvement in C,
is made the attention button may be used and TARG reset.
A certain amount of the information can thus be retrieved.

In practice the TARG facility has been found useful for
making large jumps up the tree to levels where the potential
payoff (with reference to the lower bounds) could be greater
and for avoiding other parts of the tree where the payoff could
at best be small.

The TARG command is also useful for limiting in a selective
manner the amount of information displayed by the STAC or
DRAW commands. The stack of lower bounds is of the order
of n? elements but TARG permits the display of only those
nodes which have lower bounds less than the value speciﬁed
The targetvalue may of course later be reset to its previous
value should it be desired. Thus the user may see which parts
of the tree he will be pruning before committing himself to
such a course, and hence the possibility of being too severe
may be avoided.

Jumping up the tree

The two previous methods of tree pruning have the disadvant-
age that any nodes which are rejected because they are unlikely
to yield a sufficiently high payoff cannot be retrieved easily
within IMPACT. An alternative means of curtailing a search
is available in the ‘JUMP’ command and does not have the
above drawback. Use of the command allows the search to
jump to a higher level of the tree, disregarding (either tempor-

The Computer Journal

ouuapeoe//.sduq wouy pepé0|umoq

O
U

00/W09°

3

\

(')
9}

I~

202 Iudy 61 uo 1sanb Aq L61.€17/69/

?

targ
ENTER NEW TARGET VALUE(User Command and
118; IMPACT’s confirmation
TARGETVALUE ALTERED FROM 120 to 118
9
draw
117
Node E has disappeared
5(7)—*—(/
Node D has disappeared
. 116 117
4(6) (1) (7 (v
38 ——(« Node C has disappeared
. 114 114 114 115 117
2(2) (1) 4 (6) (8) (7) (
117
1(5)——(7)—~(

Fig. 5 The effect of altering the targetvalue

?
Jjump

ENTER LEVEL TO JUMP TO »User—IMPACT dialogue
3;

SHALLWESAVETHEINFORMATIONJUMPED OVER ?
yes

ENTER A NAME TO DEFINE IT
fred

INFORMATION STORED AND NAMED FRED
9

draw

Lower bound of part permutation now being investigated

119,/ ie. (52, 6)
36—

114 114 114 115 117
22— ——@——(O——E——(—
. 117
1(8)——(N——(

Fig. 6 The effect of ‘JUMP’ing up the tree

arily or permanently) the subtree jumped over. On invoking
the command one is prompted whether information jumped
over is to be saved or not. If it is to be saved than it must be
named by the user and stored on a disc file. It then may be
later retrieved by its name. In the example, if the search is to
jump to level 3 then the part of the tree encircled in Fig. 3
would be jumped over and the next subtree examined would be

Volume 17 Number 1

F
resume
ENTER NAME OF THE TREE TO RETRIEVE
fred
RETRIEVED TREE NAMED ‘FRED’
SEARCH RESTARTS WITH 1000 VERTICES AS
INITIAL MAXIMUM
YOU’VE INTERRUPTED THE BACKTRACKING
AFTER
0 VERTICES AND
0 COMPLETE PERMUTATIONS
9
howf
THE DEPTH OF THE SEARCH IS 5
AND THE PERMUTATION BEING EXPLORED IS
52 8 6 17

WITH LOWER BOUND = 119
?

draw
119 U
o
5
S
. 119 &
5(7) ?) (=
R o
. 3
=
]
116 117 118 §
46— ——()——)— g
. 3
o
o
: S
3(8) (8
: 3
8
3.
2(2) §
=}
: o
N
. >
1(5) (§
Fig. 7 Retrieval of the tree previously ‘JUMP’ed over @
(o]

Aq

based upon the part permutatlon (5, 2, i) where i is the ncxt
element in the filial set of (5, 2), i.e. 6.

Fig. 6 illustrates such an effect. The subtree jumped over I;Ias
been saved and named ‘FRED’; it can be retrieved later by a
‘RESUME’ command and when retrieved will be as in Fig%>7.

The JUMP command is implemented by adjusting the pointgrs
for the level of the search and for the information stagk
Information temporarily discarded can be saved in a compact
form. The jump from level 5 to level 3 means that the part of
the tree discarded can be specified by (5, 2, 8, 6, 7), the part
permutation that was being examined, and the branches of the
original tree that lay between the two levels concerned, i.e.
(level 4, node 1 with bound 116, node 7 with bound 117,
node 3 with bound 118) and (level 5, node 3 with bound 119).

The ability to jump and save the part of the tree jumped over
allows the user to make the search more like branching from
the lowest bound without losing all of the attractions of
backtracking.

9. Conclusion

Use of an interactive system like IMPACT exposes the desir-
ability of new facilities and heuristics. For example, in some
problems it was helpful to keep certain elements of a permu-

13

tation fixed in an exchanging sequence and the EXCHANGE
command was modified to allow this. As a result of the use of
the system a significantly improved deterministic algorithm
has been developed for the job-shop scheduling problem where
the cost function is that of minimising the makespan of jobs
upon machines. Interaction provided insight into the cost

References

GAVETT, J. W., and PLYTER, N. V. (1966).
pp. 210-232,

LiTTLE, J. D. C., MURTY, K. G., SWEENEY, D. W., and KAREL, C. (1963).

Vol. 11, pp. 972-989.
Lomnickl, Z. A. (1965).
Quart, Vol. 16, pp. 89-100.
Pack E. S. (1961).
PAGE, E. S. (1965).
Vol. 13, pp. 291-299.
SissoN, R. L. (1959).
WALLER, L. (1971).
Tyne.

function and resulted in the discovery of improvements in
lower bounds proposed by Lomnicki (1965) for a branch-and-
bound approach. The lower bounds were strengthened and a
slightly different branching mechanism, which exploited the
structure of the problem, was adopted leading to a compu-
tationally feasible approach for moderately sized problems.

‘The Optimal Assignment of Facilities to Locations by Branch and Bound’, Opns Res., Vol. 14.

‘An Algorithm for the Travelling-Salesman Problem’, Opns Res.,

‘A “Branch-and-Bound” Algorithm for the exact solution of the three-machine scheduling problem’, Opns Res.,

‘An Approach to the Scheduling of Jobs upon Machines’, J Roy Stat Soc. B, Vol. 23, pp. 484-492.
‘On Monte Carlo Methods in Congestion Problems; 1. Searching for an Optimum in Discrete Situations’, Opns Res.,

‘Sequencing in job shops—A review’, Opns. Res., Vol. 7, pp. 10-29.
Interactive Approaches to the Solution of a Class of Combinatorial Problems, Ph.D. Thesis, University of Newcastle-upon-

Book reviews

Computer Programming in Algol, by J. D. Earnshaw and W. A. R.
Blackford, 1970; 170 pages. (Sir Isaac Pitman and Sons Ltd,
£1-40)

This is a Pitman Programmed Text, suitable for self instruction or
for use as part of an elementary programming course for scientists
at a college or technical school. The format of the book is the familiar
format of a programmed text: some material is introduced; a
question is asked on the material just introduced, or on earlier
material; an answer is given. The validation report quoted in the
introduction indicates that this text successfully fulfils its objective
of teaching Elliott 903B ALGOL.

And this is my major criticism of the book. The authors admit that
there are different implementations of ALGOL 60, and that their
book attempts to teach the Elliott 903B implementation; but when
the chosen implementation differs from the ALGOL of the Revised
Report as widely as Elliott ALGOL does, there seems to be a good
case for either teaching the language of the Report (or of one of the
subsets defined in the document ISO 1538), or at least making very
clear the points at which the language being taught departs from the
standard.

To those people wishing to learn ALGOL for the 903B, this book
can be recommended.

M. C. THomas (London)

The Settlement of Polynesia: A computer simulation, by M. Levison,
R. Gerard Ward and J. W. Webb, 1973; 137 pages. (Minnesota
University Press; Oxford University Press, London, £5-50)

The ‘Polynesia problem’, concerning the origins of the people of the
Pacific islands and how they came to inhabit such a vast ocean area,
has been a fruitful subject for academic speculation during the past
25 years. Information and ideas have been contributed by several
disciplines, including archaeology, cultural and physical anthro-
pology, botany and linguistics, but no general theory seems to offer
the prospect of being adequately tested and so providing some
resolution of the conflicting interpretations. In fact, one suspects
that the fascination of these problems of early human history lies
in the remoteness of any final answer.

In this book, two geographers and a computer scientist describe
some work which, rather insensitively one suspects, attempts to
answer one major question once and for all. It is unlikely that they
will convince everyone, but they have obviously made a highly

4

significant contribution to the general debate. Their question is,
‘Could the Pacific Basin have been discovered and settled by drift
voyaging, as some interpretations have suggested ?” To supplement
this, they also consider the likelihood of navigated voyages being
responsible for the colonisation of some areas.

Their method is an ingeniously devised spatial simulation model of
the geography and natural conditions of the Pacific. This takes into
account the probability of drift voyagers experiencing different wind
and current conditions at various times of the year, based on data
for the last century; the likely speed capabilities of canoes and rafts
under different conditions; the probability of survival over different
lengths of time; and the conditions under which a destination island
might be sighted and a successful landfall achieved. The computer
simulation was used to reproduce more than 100,000 drifts from 62
starting locations, including some which were run in reverse from
speculated landing points. A further 8,000 voyages were simulated
which were assumed to have been intentionally guided according to
fairly simple navigational rules. Thus the experiment had the
advantage both of taking a synoptic view of an enormous area, and
of reproducing a very large number of possible drift and navigated
voyages. The results, of course, simply provide probabilities of
contact between the island groups. In detail these are fascinating,
and the general pattern which emerges is difficult to fault. Three
regions can be identified ; western Polynesia could have been occupied
by island-hopping and drift voyages from the west, but much of the
East Polynesia area of the central Pacific could not have been colon-
ised in this way unless the eastern-most group, the Marquesas, was
settled first. The outer arc of islands, including Hawaii, Easter
Island and New Zealand, are most unlikely to have been settled by
drift voyages. On the other hand, the simulations of navigated
voyages confirm that purposeful crossings of all the major ocean
stretches would have been possible with only limited degrees of
navigational skill.

The construction of the model and its sources of data are lucidly
explained in the text of the book, while useful appendices include
computer-drawn microfilm maps of the ‘drift fields’ from different
starting points and a a detailed listing of and commentary on the
basic simulation program, which is in ICT Atlas ALGOL. The
‘Polynesia problem’, as the authors acknowledge, still includes many
intractable questions, especially relating to the motivations of the
voyagers in setting out. Nevertheless, the computer simulation has
given us the first comprehensive view of what they were likely to
encounter once the journey had got under way.

P. A. Woobp (London)

The Computer Journal

20z udy 61 U0 1s9n6 Aq |L6LELH/69/1// L/I0NIE/UlWOD/W0d dNo"dlWspeoe)/:SA]Y WOJ) POPEOUMOQ

