A preliminary investigation of function optimisation

by a combination of methods

D. A. Phillips
P.O. Box 1608, Ndola, Zambia

Function optimisation by a method comprised of several standard optimisation techniques is
considered. The combined method attempts to use the techniques to which it has access, in an order,
the order being defined by the requirement of optimal computing time.

The optimisation of functions of two to nine variables is considered. Results are given for a simple
combined program containing three standard techniques and these results are compared with those
of the individual methods. The three methods used are a method by Rosenbrock and modified by
Swann, a Simplex technique presented by Nelder and Mead and a method by Powell. The Simplex
method has been adapted to deal efficiently with initial step sizes that are too large. The modification
produces a drastic improvement in the results of the test cases which have this property.

The results show that this simple version of a combined program is generally slower than the
individual methods. Suggestions are given for improvements which may allow the combined method

to give better results.
(Received December 1971)

1. Introduction

Consider two optimisation techniques, method A and method
B. Each method generally gives a different rate of convergence
to the optimum for a certain function; and for different
regions within the function. Suppose that Fig. 1 gives the
behaviour of the two optimisation techniques attempting to
minimise the same function.

The final results e and k& (Fig. 1) are not separated by a large
amount and so it is reasonable to consider both methods as
being equally fast in arriving to within the same accuracy of the
optimum (e and k).

The assumption that both methods follow the same path of
descent but at different rates is generally not true. However the
assumption is made that the paths are relatively close. This
assumption validates a change from either of the graphs to the
other by simply changing methods. The final values of one
method are the initial values of the other method.

Thus starting with method A from point @ in Fig. 1 (as it
converges faster than method B in this region) and using this
method until, for the same values, method B would converge
faster, one arrives at point f at time ¢,. Method B is now
faster and so this method is used from point c. Carrying out the

p&peommoq

single changeover as described, the curve in Fig. 2 is obtain

This changeover provides a reduction in computing time wlgie
still achieving the same accuracy. 3

To this computing time there must be added any time taken %p
in changing from method A to method B, and also time te-
quired to determine the changeover point itself. Changeoger
time (CT) is generally small compared with decision time (lﬂ")
the former occurring at the changeover points, the latter beﬁlg
distributed throughout the computation. Fig. 3 would be a m@re
realistic representation of the situation under conmderatmm,
DT being added at the end for convenience. The smaller xglls
possible to keep the time CT and DT, the better will be
method.

The likelihood of being able to use really fast convergerﬁ:e
rates will increase as the number of optimisation methods maﬂe
available increases.

This advantage, however, must be weighed against the i mcre@e
in DT. Hence, a compromise is required between the numberf
methods and complexity of the decision processes. The id&l
giving small DT, a fast solution, and a high rate of successa,n
optimising a general function. b

In general, results of optimisation methods are given as @c
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function value (or the logarithm of the function value) at a
certain number of function evaluations. A program with a
fairly large function, requiring several hundred function
evaluations, has its running time dominated by the time it takes
to calculate this large number of function values. Consequently,
function evaluations are almost equivalent to calculation time.

Further discussion about the equivalence of these factors is
given in the Appendix.

2. Combined method
A combined method was designed which contained three
standard optimisation techniques capable of optimising
unconstrained analytic functions specified in procedure form.

The choice of three methods for a combined program was
made from proven methods, each being basically different in its
approach to the optimisation problem. Being basically different
each method performs better than the others under certain
circumstances. If this were not so then one or two methods
would dominate the rest, whose inclusion would be pointless.

Consequently, if the function to be optimised is chosen at
random, then each method has roughly the same a priori
chance of being selected as the fastest.

The three methods chosen were

1. amethod based on a quadratic convergence by Powell (1965),

2.a random search method by Nelder and Mead (1965)
(Simplex method),

3. a rotating co-ordinate method, a modification by Swann
(1964) of Rosenbrock’s method (1960).

These methods will be referred to as Powell’s, Simplex, and
Rosenbrock’s method throughout the text.

With the individual techniques in procedure form the com-
bined program can call any one method and use it to optimise,
for a given number of function evaluations and from a specified
starting point, the function under investigation.

The control part of the combined program tests the velocity
of convergence of each technique and selects the best procedure
to carry out each stage of the optimisation.

Consider »n individual methods M, i=1,..
velocities v;.

The velocity with which a particular method approaches the
optimum is taken as the change in function value per unit time
(or per unit function evaluation).

Initially the velocity for each procedure is required. This is
calculated by optimising the function for a given test period ¢.
Calculating the velocity of each procedure from the same start-
ing point and for the same period ¢, would provide the best
comparison. Interest lies in a fast program, however, so each
procedure has its velocity calculated over consecutive test
periods.

., h, with
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v, calculated in [O, ]
v, calculated in [z, 2¢]

v;, calculated in [(n — 1)t, nt]

The final vector of one method provides the starting vector for
the next. Now, providing ¢ is small, each v; can be regarded as
the true v; in [0, nt]. Hence the comparisonof v;,i = 1,2, ..., n
is valid.

max
Vip = — v},
i

m i=1,2,. .1<m<n.
M, is now used to optimise the function for a further length of
time known as a run period. [nt, nt + At].
Vm is re-calculated in [(n — Dt + At,nt + At] and is now no
longer necessarily a maximum.
Vi i=1,2,. .m—1, m+1.

over successive 1ntervals

[nt + At,(n + Dt + At], [(n + Dt + At, (n + 2)t + At],
L[@n — 2)t 4 At,(2n — 1)t + At]

,n, are now calculated

and a new V,, found.

The iteration continues until optimisation results are obtained 5
within the required specification.

The combined method requires a procedure to evaluate the
function at any point in an unconstrained region and an initial
starting vector from which optimisation proceeds.

It is a peculiarity of the Simplex method that if the initial
Simplex is too large, then the first function evaluations are
wasted in slowly contracting the Simplex; with no improve-
ment in the approximation to the optimum. After this initial
contraction, when an acceptable Simplex has been found the
method is generally efficient.

In the combined method, as the Simplex procedure is used for
short periods of time ¢, this peculiarity often results in the
procedure never improving the approximate optimum. This
gives the test velocity of the Simplex procedure as zero. Even
with a good step size initially, on re-entries (with the same
initial step size) the new simplicities will eventually become
and remain too large. Hence, the method has a limited useful-
ness for any one step size.

To overcome this difficulty the step size is reduced, using a
multiplier of —%, whenever a Simplex is initially too large. The
Simplex is then re-formed using the modified step size and
re-tested for acceptability. This reduction continues until an
acceptable size is obtained and this value replaces the initial
step size for subsequent entries to this procedure.

It should be noted that this alteration does not affect the
program once an acceptable Simplex is found or if the initial
Simplex is satisfactory.

Basically, the modification means that the step size is con-
tracted at a much faster rate than in the original method, and

in the combined method the Simplex procedure is never left = S

before some improvement is achieved and hence a zero velocity 3
is never obtained.

3. Test functions

All the functions used have previously been employed in other
papers concerned with optimisation. These functions' were
chosen for the characteristic difficulties that each presents to the
optimisation technique.

Function 1
Rosenbrock’s valley function (Powell, 1965)

Funct (x,, x,) = 100(x, — x2)? + (1 — x;)*

starting point (— 1.2, 1), minimum at (1, 1).

Function 2
Helical valley function (Fletcher, 1969)

Funct (x;, x5, X3) = 100[(x; — 100)* + (r — 1)*] + x3
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Table 1 Results

FUNCTION INDIVIDUAL METHODS COMBINED METHOD
ROSENBROCK sIMPLEX (*Unmodified) POWELL
X F X F X F X F
Rosenbrock 1073 140 1073 125 1073 138 1074 124
10710 152 1077 145 107¢ 220
Helical valley 1074 160 1074 130 1074 140 1073 219
10710 187 10710 199 1076 149
Powell 4-D 1073 105 1073 73 1073 102 1073 155
1073 154 1073 109 1073 138 1073 226
Chebychev 2-D 1077 43 1077 58 1077 22 0 34
10~12 103 10712 95 107° 25
*10™3 *170 .
Chebychev 4-D 1073 61 1075 73 1073 46 1073 25
1078 121 10°8 121 10-¢ 52 1074 64
10~ 181 10-1t 164 10°3 180
*10~¢ *182 -
Chebychev 6-D 10773 127 *1073 *228 1073 113 1073 220 g
10-8 235 *10~8 *346 10°8 330 E
10~ 1! 415 *10~10 *399 2
1073 138 g
1078 258 3
10713 382 2
Chebychev 9-D  107* 273 1073 135 1073 109 1073 147 g
107 524 1074 350 107* 190 1072 305 <
*1073 *157 2
X = order of distance from optimum in terms of function value. F = number of function evaluations. §
o
where _ Graph 1 Graph 2 S
x; = rcos 2nb, x, = rsin 2n0 ]
ie. 2% ¢ 2'\\ 3
2710 = arctan (x,/x,), x > 0 0- £ \ %
= 7 + arctan (x,/x;), x <0 3 £ e =l
and 3 =2 2= RS g
r=(x} +x3)t § -4 L 5
starting point (— 1, 0, 0,), minimum at (1, 0, 0,). : ) < -
= =
Function 3 M [ S &
Powell’s function of four variables (Nelder and Mead, 1965) % 10 ) g
Funct (x;, X5, X3, X3) = (x; + 10x,)* + 5(x3 — x,)* + . ; N
(2 = 2x3)* + 10(x; — x,) TR do e % 100 ke o 2o 40 80 80 100 %
starting point (3, —1, 0, 1) minimum at (0, 0, 0, 0). Function evaluations Pinction evaluations &
Function 4 Rosenbrocx's furciion g
Chebyquad function (Fletcher, 1965). ' 3- 3 Grapn 4 ©
This function, given in the above reference along with an ¢ ¢ {:,f
ALGOL program for its evaluation, is of a type which is more  § 4 T 4 N
regular than the others and often occurs in practice. The num- : : - N
ber of variables (n) involved in the function is easily changed. S 07 S N - =
This function was tested with 2, 4, 6 and 9 variables using the % o \
convenient initial approximation for a starting vector of % =4 E ™ s
x; =if(n + 1),i =1, ..., n. The minimisation is valid for all n. : —84 B \
(o] [e]
4. Results 5 -1z 5124
The results are shown in Table 1 and in the fourteen graphs, i .

using the following conventions:

Log.

Odd number graphs
Even number graphs

Graphs based on

Swann and Rosenbrock
Simplex
Powell
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separate methods
combined method

Graph notation

"0

40 80 120 160 200

T T T T T
D> 40 80 120 160 200

Function evaluations

Function evaluations

Helical valley function

5. Discussion of results

The Simplex method, modified by the author to deal with
large initial step sizes, was found to give considerable improve-
ment in both the individual and combined programs. Graphs
9, 11 and 13 show this for the individual program, the origi-

17



Graph 5 Graph 6
]
o 70
3 >
T-x 24 o 24 "‘\
> NN ] ...
- ~
S 04 S 0
-~ =]
3 s
S -2 L2
el 4y
- o
=4 = -4
o = —_nan
3 64 N 64
-8 T T T T T T - T T T T T T -T
0 20 40 60 80 100 120 O 20 40 60 80 100 120 140
Function evaluations Function evaluations
Powell's 4-D function
0y. Graph 7 07 Grapn 3
—a4\} =4
L)} <
3 =
= 3 3 _3
3 797 g -7
1
5 -12 S -12 :
a e i
216 5 164 :
‘_3 E ) ;
<. =204 t -204 i
o 1) !
= = I
= =244 = =244
]
N 1
_28 T ) T LI T 1 _2R T A T —
0 20 40 60 30 100 "120 o) 20 40 60 80
Function evaluations Function evaluations
Creonyshev Z-D
Graph 10
-+ N
A A
s -6 -64 T
g g -.;
g g [
S -8 3-8 ~.
510 =104 o
& a S
44 =124 =124
=12 \ s 12
= [}
5 -14 v B-14d
1
|
-16 T T 1 -16 T T T T -1
0 40 80 120 160 180 0 40 80 120 160 200

Function evaluations Function evaluations

Chebyshev 6-D

nal method giving curve A and the modified one giving curve
B. The table of results also gives unmodified results distin-
guished with an asterisk.

The test functions optimised did not indicate any one method
as being outstandingly suitable in their solution. Indeed, it was
generally found that the three methods used to optimise a
particular function gave very close results. Only in graphs 7 and
13 does one method stand out. This method is Powell’s and in
general is the better, making good progress in graphs 3, 7, 9,
11, 13.

A reason for the combined program’s slowness is that it has
been deliberately made simple, as initially it was felt that the
transference of too much data would slow down the method.
The results, however, show that the entry into a different
optimisation procedure drastically decelerates the process.
This is because search directions, gradients, simplexes, or in
general a knowledge of the local landscape are lost or not
known on transference. Consequently this information has to be
laboriously calculated from the ‘setting up’ section of the new
procedure. To overcome this it is felt that as many global
variables as possible should be used and minor modifications
of procedures undertaken to allow for this. Also, it is likely that

78

-2 - Graph 11 -2 Graph 12

[} g 1
=
o ‘S -4 N
> > e
o ] T
g S 61
» »
o o
§ § -8 4
o Y
Y H=104

=
5 H-124

T

T T T Rl T ¥ T L L]
120 160 200 240 O 40 80 120 160 200 240
Function evaluations

T T
-0 40 80
Function evaluations

3

Chebyshev 6-D

-3 Graph 13 _W—\ Graph 14
g 2 =44
3 S
g g _sd e
|w)
8 8 g
- -+ =64 =
+ + =3
15 0 o
g 5§ -7 8
& e ]
S 5 -8 g
5 5 =
-0 4 ér
T T T T 1 -10 T T T 1 §
0 100 200 300 400 500 0 100 200 300 400 o
Function evaluations Function evaluationg

Chebyshev 9-D

LUO:)'an‘O!

the old values of variables (still available in the procedure’ss.
storage area, when specified as ‘own’ variables in ALGOL)o
more closely represent those required than an arbitrary startingé
system. Hence by by-passing the setting—up stage of theS
procedures and using old values still present in the machme,c|>
the amount of computation would be reduced whilst i 1ncreasmg\,
the rate of optimisation. 3
Other slightly more sophisticated modifications in the change-
over system which would provide the new procedure w1th—‘
accurate directions, step-sizes, etc. would undoubtedly require’s
extra changeover time, but if done wisely this could be neghg—o1
ible when compared with the time saved through the procedure@
having a flying start. ﬂ>
One aspect mentioned in this paper has not been tested byo
the functions given in Section 3. It is thought that a combined_.
method would prove to be a more general technique, in that 1t§
could optimise functions when some or all of the individualZ.
methods could not find a solution. This type of situation occurso
in Box’s paper (1966) where he shows that some optimisation’®
methods fail when started at certain points of specific functions,
but succeed from others. In such cases, then, even though all
methods fail individually from a given starting vector, by
solving with a combined program one in effect changes the
starting vector each time a procedure is re-entered and hence
from one of these points one would expect to find the true

optimum.

6. Conclusions
The combined method was found to be generally not as good
as the individual methods. The universality of a combined
method has yet to be proven. At this stage, therefore, the
combined method seems to have no future since no efficient
changeover process is available, resulting in loss of information.
The individual methods, however, can be used independently
and efficient programs have been formed for these with modi-
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fications as outlined in the text. The 1mprovement to the
Simplex method is the most significant.
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Appendix
Optimisation techniques usually have to complete several
hundred evaluations of the function under investigation before
the optimum is achieved. Even when the calculations are done
on a modern high speed computer, this work still takes
considerable time and costs a lot of money. Consequently the
length of time that a program takes to compute is of great
importance.

The argument has been that an optimisation program,
investigating a fairly large function, has its run time dominated
by the time it takes to calculate the large number of function
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Book review 2

High Level Programming Languages—the way ahead. Proceedings
of a BCS conference, 1973; 140 pages. (NCC, £5-00)

This publication is based on the recorded proceedings of a British
Computer Society conference of the same title held at the University
of York in October 1972. The conference itself was an enjoyable
occasion, and some of this enjoyment comes across when transferred
to cold print.

Sandwiched between brief opening and closing remarks by Dr.
D. F. Hartley, the papers are concerned with ‘The Way Behind’ by
C. A. R. Hoare, ‘Objectives for a General Purpose Language’ by
E. H. Sibley, ‘FORTRAN’ by B. H. Shearing, ‘ALGOL 68’ by
P. M. Woodward, ‘PL/I’ by D. Beech, ‘SSIMULA’ by G. M. Birtwistle,
‘APL’ and ‘POP-2’ by D. W. Barton, ‘System Programming
Requirements’ by I. C. Pyle and ‘Future Prospects’ by B. L. Neff.

A major disappointment is the absence of Commander (now
Captain) Grace Hopper’s stimulating paper on COBOL, which is
reduced to merely a one-page summary of nine points from her talk,
as unfortunately the ‘edited paper was not available at the time of
going to press’. Personally I find it hard to imagine anything less
stimulating than COBOL, or anyone much more stimulating than
Captain Hopper. The combination of the two has a strange savour
that this summary cannot begin to capture.

Each paper is followed by an edited version of the discussion that
followed it at the conference, and there is also a report of the main
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discussion session that was so ably conducted by T. W. Olle, wtﬁh
Commander Hopper, D. Beech, B. H. Shearing and P. M. Woodward
as panellists. The editing of these discussions has been well done¥o
produce a meaningful result, not the garbage that often appears‘gn
conference reports.

The text is in typescript, with certain characters added in marr:u-
script. Nowadays, when devices are available that enable type-
writers to type a wide range of characters, there seems little excn.ﬁe
for these excursions into manuscript; but at least the accuracy ®f
both the typing and the manuscript insertions, while not perfest,
is considerably better than one often sees. (Beech and Woodwar
each have their names mis-spelled on at least one occasion. In a
computing context ‘Woodware’ is at least a good joke.)

The way ahead ? Judging from the papers presented here it is hard
to see how the title could logically be awarded to any of them but
ALGOL 68, although some of its apparent stature relative to the
others may be due merely to Dr. Woodward’s admirable presen-
tation. In practice the language that triumphs is much more likely
to depend on ‘computer politics’ than upon intrinsic merits.

Perhaps it is symbolic that the front cover design shows
FORTRAN, POP-2, SIMULA, APL, ALGOL 68 and PL/I all
setting off in different directions—none of them corresponding to the
way ahead.

1. D. HILL (London)
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