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The manipulation of matrices and the solution of linear algebraic equations are the most fre-
quently encountered tasks in scientific computing. Because linear functions are best understood,
problems in computer science, statistics, engineering, mathematics, and optimisation tend to be

formulated as sequences of linear systems.

For the ‘low-level’ user who has to solve problems in liner algebra (i.e, one who has no need
to learn FORTRAN, PL/I, or Algol), an approach which is most practical is to provide a pro-
gramming system for linear algebra that will automatically give a reliable solution to the problem
at hand. This paper gives a brief description of a number of such systems, including an example

program written for each.
(Received October 1972)

The manipulation of matrices and solution of linear algebraic
equations are the most frequently encountered tasks in scientific
computing. Because linear functions are best understood,
problems in computer science, statistics, engineering, mathe-
matics, and optimisation tend to be formulated as sequences of
linear systems. A survey of the computational problems of
linear algebra and their sources is given in Forsythe [1.2].

The ‘state of art’ in matrix computation is fairly advanced:
there are many well-tested and well-documented algorithms in
the literature for solving standard matrix problems [1.0].
However, their use involves learning a higher level language
(e.g. FORTRAN, PL/I, Algol) and understanding numerical
mathematics, which is by no means an optimal solution for
‘low-level’ users, whose primary interest and training are in
other areas. Such users would appreciate a programming
system for linear algebra that would automatically provide a
reliable solution to the problem at hand. This alternative can
be developed using a language-oriented system or using an
operation-oriented system. The latter requires special pur-
pose software and hardware. For the ‘low-level’ user, whose
computing equipment and geographical location varies widely,
the former approach seems the most practical and is the one
with which this survey will be concerned. For a survey of
operation-oriented interactive systems we refer the reader to
[1.4].

The capabilities desired in a programming system for linear
algebra can appear as a subset of commands in a general
problem-oriented language or form the basis of a small,
special-purpose language. Systems with languages of the former
class are: MAP, NAPSS, POSE, and APL/360. Systems with
languages of the latter class are: MARI, ASP, Burley’s System,
MM, MATLAN, and MATRIX. A brief description of each
of these systems, including an example problem written in the
respective language, follows.

Characteristics common to each of the systems surveyed are
listed here for convenience rather than being repeated in each
description:

1. Arrays are treated as units of information and can be
manipulated directly.

2. The systems accept real, square arrays.

3. Operators for basic matrix arithmetic are provided, with
the exception of APL/360 which does not include a primi-
tive for the inverse.

4. Each operator in the language is realised by a call on a
procedure.

5. Arrays are internally checked for dimension compatibility
where applicable.

Problem-oriented languages with subsets for linear algebra
1. MAP [2.0, 2.1]

MAP (Mathematlcal Analysis Program) is a conversat10na$
system in use since 1964 on the MIT Compatlble TlmecD
Sharing System CTSS/7094. The MAP language is a combma
ation of short English phrases and arithmetic equat10n§
written with infix notation. Functional notation is used to:
describe multivalued variables, making the language besﬁ
suited for manipulations of functions of one variable. The
design of the language places heavy emphasis on man- computeg
interaction. The number of data points permitted for spec1ﬁ6
problems is quite restricted, and the absence of logical opero
ators and looping facilities forces frequent interaction betweem
the user and the system. 0

In addition to typical operational functions such as squarer
root and exponential, complex procedures can be called upom
directly. Among these are procedures for basic matrix arlthi
metic, mcludmg matrix inversion, and linear least square
analysis using a maximum of five fitting functions.

Stored programs written in either MAP or MAD can bg
called as subroutines, and statements in any other programs
ming language which can call on MAD subroutines may be
intermixed with MAP programming statements. An examp]m
program using MAP to solve 4 = (XTX)~* XTY would look!

|umoQ

like: g
=

Step 1 3
The M terms of the approximating function must be definedg
Let M = 5: 23
FI(X) = z

F5(X) = X; S

~

where Y; = A, F1(X) + A,F2(X) + ... + AsF5(X).

Step 2

Data must be read into arrays XDATA and YDATA, and
YDATA (X), F1(X), . . ., F5(X) defined for the values of X
found in XDATA.

Step 3
The following interaction then occurs (user type-in is
underlined):

LEAST SQUARE
| CAN FIT EQUATIONS OF THE FORM V(Y) = XA * FA(X) +
XB * FB(X) + XC * FC(X) + XD * FD(X) + XE * FE(X)WITH
A MAXIMUM OF 5 UNKNOWNS, XA, XB, ETC., AND 100
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DATA POINTS. WHAT IS THE NAME OF THE VARIABLE
COMPARABLE TO V(Y)?

YDATA(X)

HOW MANY FUNCTIONS, FA(X), FB(X), ETC., WILL BE
REQUIRED TO FIT THE DATA? 5

PLEASE PRINT ON THE NEXT LINE THE NAMES OF THE 5
FUNCTIONS REQUIRED.

F1(X) F2(X) F3(X) F4(X) F5(X)

2. NAPSS [3.0, 3.1, 3.2, 3.3, 3.4, 3.5, 3.6, 3.7]

NAPSS (Numerical Analysis Problem Solving System) is
currently being developed as an interactive system at Purdue
University’s Computer Sciences Centre. The system is made up
of four parts: a compiler, an interpreter, an editor, and a set of
numerical procedures grouped in modules called
‘polyalgorithms’. A polyalgorithm is a group of algorithms,
each suited to solving a particular type of problem within the
general problem class and the logical structure necessary to
determine which should be applied to the problem at hand.
With the exception of a few self-contained routines, the system
is written in FORTRAN.

The NAPSS language is syntactically a procedural language
with a block structure similar to PL/I. Arithmetic expressions
in NAPSS permit the direct manipulation of arrays, scalars,
and functions with the basic operators. Automatic solution of
numerical problems is accomplished through use of the SOLVE
statement, which calls the proper polyalgorithm. The power of
the language comes from the use of the polyalgorithms, the
ability to define new algorithms to override those selected by
the system, and the control of errors in the solution.

Among the polyalgorithms implemented at various levels,
there are two of interest to this survey:

2.1. Linear equation solver

For small systems (<15 x 15), the Forsythe-Moler LU
decomposition with iterative improvement is selected; for
large systems (>80 x 80), the successive overrelaxation (SOR)
method is tried. If an intermediate system is band or diagonal,
SOR is tried ; otherwise it is handled as a small system. The user
may specify the desired level of accuracy or the number of
iterations to be used.

2.2. Approximation

The user specifies a desired accuracy level, and each of seven
methods of approximation is tried until the accuracy level is
obtained. The error curve and some analysis of the approxi-
mation obtained is provided.

Plans for the implementation of NAPSS include its use in a
time-sharing environment at on-line remote consoles including
graphical capabilities as well as its use for batch jobs.

The following program, see Smith [1.6], displays how a user
might solve the least squares problem. Assuming the data have
already been read into the one-dimensional arrays X and Y, we
have:

FOR 1< 1,2, 3,4 DO
Q[l] < SUM (Y[KIX[K]1 (1 — 1)), FOR K <1 TO 5)
FORJ<«1,1+1,...,4DO

R[I, J] < SUM (X[K]1 @( + J — 2), FOR K1 TO 5)
IF I+ J THEN R[J, I = R[I, J];:;

SOLVE R * A = Q FOR A;

TABLE (A)

END

In this example the solution vector, A, will be found by the
built-in procedure for solving simultaneous linear equations.

3. POSE [4.0, 4.1]
POSE (Processing, Organising, and Solving Equations),
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developed in 1967, is currently running in a limited version on
an IBM 360 and being implemented for an IBM 1800. The
POSE system consists of a language and a preprocessor to
translate the POSE program into an executable FORTRAN
program which is then compiled and executed.

The language provides the user with procedural and declar-
ative capabilities. FORTRAN conventions are used to form
algebraic problem statements, and POSE statements may be
freely intermixed with FORTRAN and/or assembly language
statements. The declarative capabilities invoke generators for
solving mathematical problems including matrix arithmetic,
matrix inversion, solution for a system of linear equations, and
basic statistical computations. Each' generator is implemented
as a single general-purpose algorithm for the stated problem.
The form of the declaration statement is reminiscent of a
FORTRAN subroutine call.

Although the system is not interactive, input may be via
typewriter as well as punched card.

A POSE program for computing the eigenvalues of the matrix
A = B 'CB would look like:

5.0 CALCULATION SEQUENCE
EXECUTE S.1
READ DATA
EXECUTE S.2
PRINT RPT. 1(E(1), EQ), E3), E(4), E(5))
PROBLEM END

$1 FUNCTION
RANGE OF X = 1.0(1.0)5.0
RANGE OF Y = 1.0(1.0)5.0
CX,Y) = X*X + Y*Y
DIMENSION C(5, 5)

$.2 MATRIX

A = INV(B) *C *B
E = EIGENVALUES(A)
DATA CASE 1
MATRIX B(5, 5)

N
>
w
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4. APL/360 [5.0, 5.1, 5.2] ; 2
K. E. Iverson’s language, APL, has been implemented as ar;
interactive system for IBM System/360 computers since 19682
The system consists of two parts: a supervisor and the APILZ
interpreter. Included in the supervisor are routines for garbage;
collection and dynamic storage allocation. The object language;
of the interpreter is 360 machine-code, making the systent,
entirely machine-dependent. Although the APL processor iéﬁ
interpretive, it provides fast response and execution.

The language is characterised by an extensive set of primitivess
which apply uniformly to all data structures (i.e. scalarsy
vectors, and rectangular arrays), and which may be combined
in typical mathematical infix notation to form expressions. In
addition to the usual arithmetic, logical, and control operators,
a variety of operators for array manipulation are available,
including the particularly powerful reduction-type operators
which are extensions of the scalar dyadic primitives. Another
convenient notation is the use of composite symbols comprised
of two operators to indicate inner and outer products. As a
result, array operations can be stated quite concisely. The
complex processes of linear algebra, however, must still be
coded by the user.

An appropriate APL program for solving a least squares
problem is shown below, see Hellerman [5.0]. The Gauss-
Seidel method is used for solving the resulting system of linear
algebraic equations. Assume the matrix X and the vector Y
have been previously input. We have the following:

ud
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M) N<QO
(INPUT NUMBER OF OBSERVATIONS N)
(2) XT « 0X
(STORE TRANSPOSE OF X IN XT)
B Z<XT+ .xX
(STORE THE PRODUCT OF X AND ITS TRANS-
POSE IN Z)
@D VeXT+ .xY
(STORE THE PRODUCT OF XT AND Y IN V)
(5) A<ZGSPV
(CALL THE PROCEDURE GSP)
6 O«4
(OUTPUT REGRESSION COEFFICIENTYS)
VX<« AGSPB;J; R
(PROCEDURE DEFINITION)
1) X«
(STORE ZEROS IN THE VECTOR X)
2)J<0
(INITIALIZE ROW INDEX J)
B)J<J+1
(ADVANCE ROW INDEX)
4 R[J]«<B[J] —A[J;]+ . x X
(CALCULATE COMPONENT - OF RESIDUAL
VECTOR)
5) X[J] « X[J] + RJ] + A[J,J]
(UPDATE COMPONENTS OF SOLUTION VECTOR)
©6) - (J# N)3
(TEST FOR LAST ROW; IF NOT, BRANCH TO LINE
3)
(M) = (AE > | R) # 1)/2
(TEST SIZE OF RESIDENTIAL, IF LARGE, BRANCH
TO LINE 2)

Special purpose languages for linear algebra

1. MARI [6.0]

MARI is a matrix computation program implemented in 1965
for the IBM 7030. It is under control of the 7030 MCP and
requires a knowledge of assembly-language programming.

The language consists of sixteen single-address pseudo
instructions whose operands are matrices. An implied operand
is required for binary operations. These instructions are
executed by branching to the appropriate subroutine. The most
common matrix operations are allowed: matrix arithmetic,
matrix inversion, solution of a system of linear equations
using the inverse, solution of the eigen-problem for real
symmetric matrices, and I/O. A program written in MARI can
have machine instructions intermixed freely with it. All
instructions are executed sequentially in an interpretive mode.

MARI features automatic dynamic storage allocation of main
and auxiliary memory. In addition, the system economises on
storage and computation time by selecting algorithms and
mapping matrices according to the following user-specified
types: null, scalar, diagonal, symmetric, and general.

To illustrate the use of the MARI language consider the
problem of solving a system of simultaneous linear equations
Ax = f. We assume that the arrays 4 and f are in the pool and
the directory words are reserved.

LINK; B; MXOP (begin interpretive mode)
MXLI, A (load inverse of matrix A)
MXST, Al (store result in Al)
MXR*, F (right multiply by vector F)
MXST, X (store result as vector X)
MXEND

2. ASP [1.0]

ASP (Automatic Synthesis Program) was designed as a language
to facilitate finding numerical solutions to problems in linear
systems theory, particularly in the areas of control, statistical
filtering, and optimisation. It has been used mainly as an

analytic design tool where extreme precision was not required,
and for educational purposes.

The ASP translator, developed at Ames Research Centre in
California, in 1965, is written in FAP for IBM 7090-7094
installations. It consists of about 30 independent subroutines
(input/output, logical, data handling, and mathematical) and
an executive routine used to control their sequencing. The
mathematical subroutines include computation of the expo-
nential of a matrix, solution of discrete- and continuous-time
riccati equations, and matrix arithmetic. Within the latter
group are routines for inverse, pseudo-inverse, trace, maximum
matrix norm, and matrix decomposition. The algorithms used
to implement most mathematical subroutines are derived from
the calculus of variations.

Both I/O and the instruction word are in fixed-field format,
and presume previous familiarity with FORTRAN. Instruc-
tions consist of a subroutine name followed by a list of para-
meters, i.€.

{subroutine name), {parameter list)

The number of matrix identifiers in a single program is limited
to 120, and the size of each matrix must not exceed 16 x 16.9

An appropriate sequence of statements for solving a simuls
taneous set of linear equations Ax = f and printing the resulg

follows: )
o

BEGIN 3
LOAD A,F (read the arrays A and F) 3
INVRS A, Al (invert A and store inverse in Al) %
MULT Al F, X (store the product A=L.Finarray X) 2
RINT A, Al, X (print A, its inverse, the solution vectory
END g

S

3. Burley’s System [8.0] g
Burley’s system, designed mainly for econometricians, provides

facilities to carry out processes of linear algebra together with
I/0, branching, looping, and procedure definitions. The systerg
was implemented in 1967 in assembly language on a Titag
computer at Cambridge and consists of an interpreter and 2
language. =1

Instructions in the language have the form of a quadruple Gf
integers (x;, X5, X3, X4), as in a 3-address assembly-language
instruction, where x, is the operator and x,, x3, x, aré
operands. The absence of an operand is indicated by a zerd
punch. Burley’s repetoire of commands contains 50 uniqu§
operators, including solutions for eigenvalues and eigens
vectors. Each specifies the type of operation to be performed and
the type of data to be manipulated. Although the algorithms
employed are not discussed, they appear to be simple on&%
(for instance, the system Ax = fis solved using A -1f). o

The data structures scalar, vector, and matrix appear in the
system. Each has available ten fixed-length locations in stor&
represented by an integer in the range 0-9. A sequence &
operations can be stored as a vector, then executed as a subs
routine. Similarly, loops can be stored as vectors, thus préz
viding the user with two very useful facilities.

Burley illustrates his language by the following program to
solve the least squares problem:

T REGRESSION ROUTINE (TITLE)

0 0 0 0 (INPUT MATR X INTO MO)

10 9 0 0 (INPUT VECTOR Y INTO VO)

8 0 0 1 (TRANSPOSE OF X IS PLACED IN M1)
3 1 0 2 (XTXISPLACED IN M2)

5 2 0 3 ((XTX)~IS PLACED IN M3)

33 0 0 1 (XYISPLACED IN V1)

33 3 1 2 ((XTX)* XY IS PLACED IN V2)

T REGRESSION COEFFICIENTS (HEADING TO BE
PRINTED)
19 2 0 9 (OUTPUTS VECTOR 2—B COEFFICIENTS)
If we wish to compute expected values and error terms, we
follow with
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33 ¢ 2 3 (XB, PREDICTED VALUE IN V3)

12 @ 3 4 (ACTUAL-PREDICTED VALUE IN V4)

T PREDICTED VALUES (HEADING TO BE PRINTED)

T ERROR TERMS (HEADING TO BE PRINTED)

19 3 @ @ (OUTPUTS V3, CONTAINING PREDICTED
VALUES)

19 4 0 @ (OUTPUTS V4, ERROR TERMS)

1 0 0 0 (TERMINATES RUN)

4. MM [9.0]

Matrix Manipulator is a conversational language for control-
theoretical computations, implemented in 1967 for the SDS
940 Time-Sharing System at Harvard University Computation
Laboratory. It is designed as a simple research and educational
tool, requiring no previous programming knowledge on the
part of the user and expecting no stringent requirements
regarding accuracy and efficiency of the numerical methods used
to solve the stated problems.

The MM processor is written in FORTRAN 11, stored as a
library file, and is under direct control of the FORTRAN
Operating System.

The allowable data structures are matrices and scalars,
defined by two-character names. No more than 60 matrices,
each 10 x 10 or less, may occur in a single program. Of these,
no more than six may be stored on file for later use.

Twenty commands, classified as defining commands which
specify variable name and dimension, and executable com-
mands which control I/O and specify matrix operations, are
provided. The command form is straightforward: a variable
name (or names) separated by commas, followed by the
command designator, i.e.

(identifier), (identifiery, (op code) | (identifier), {op code)
The standard arithmetic operations including INVERSE,
DETERMINANT, and DIAGONAL SUM are available, as
well as the command EIGENVALUE, which computes all the
eigenvalues and eigenvectors for the specified matrix. Each
command is implemented by a single algorithm. When solutions
cannot be computed because of such problems as singularities
or matrix incompatibility, an error message appears and the
system awaits further instructions.

An appropriate program for solving Ax = f using the MM
Language follows:

<MATRICES

A=55 (array A has the dimension 5 x 5)
F=51, (vector F has five rows)

ALL (end of declarations)

<START

<A, READ (read elements of matrix A rowwise)
data by row (data are input at this stage)

<A, INVERT (invert matrix A)

<F, READ (read elements of F)

<A, F, MULTIPLY (postmultiply A inverse by F)
<.., PRINT (print the product)
<STOP

5. MATLAN [10.0]

MATLAN, the System/360 Matrix Language, features an
extensive set of operators for matrix arithmetic, matrix
manipulations, I/O, and debugging. A MATLAN program
consists of a series of statements in the form of a reserved-word-
operator (<8 characters) followed by a list of operands, which
may be real or complex, single or double precision.

Attributes may be assigned to matrices to facilitate the
efficient use of storage and computing time. Matrices are
mapped into storage as either sparse or general arrays. The
attributes available to determine selection of the most appro-
priate algorithm are: symmetric, symmetric and positive
definite, positive, integer, ternary, and Boolean.

The MATLAN translator, written in a combination of 360
FORTRAN IV and 360 Assembly Language, translates
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MATLAN instructions into FORTRAN code, which is ther
executed. The algorithms used in MATLAN are in FORTRAN
and available in the IBM scientific package. Each algorithm
has two versions: a core algorithm and a segmenting algorithm.

MATLAN is under control of the OS/360 supervisor and
operates in batch mode.

Below is a sample program written in MATLAN which reads
a number of symmetric matrices, forms each inverse, and
prints the inverse.

MAIN .

HEADING ‘MATRIX INVERSION’

READ | (read number of
matrices)

LOOP LABLE, J, 1,1 (do the following
statements |
times)

READ (A, SYM) (read lower part
of the sym-
metric matrix A)

ATTRIB A, SYM = SYM (assign A the
symmetry
property)

INV A, AINVER (invert A and
storein AINVER)

WRITE AINVER (write A1)

LABLE LOOPEND (end of loop)

END

6. MATRIX [11.0]

MATRIX is a conversational matrix operations system
implemented for the Burroughs B5500 time-sharing system
(1968) as a subset of NUMERALS (Numerical Analysis
System), a collection of compatible ALGOL procedures in the
area of numerical mathematics. Each of these procedures
contains a single algorithm, most taken from the current
literature and representing the state of the art at the time of
implementation. MATRIX is currently being implemented for
the B6700 system.

MATRIX, written as an ALGOL 60 program, contains 16.
operators, each of which calls on a single NUMERALS
procedure in the area of linear algebra. Included are three
options for finding the inverse of a matrix: INVERT, SYMIN-
VERT, and IMPROVINVERSE. The first two operators are
for inverting general and symmetric matrices, respectively,
and the third for computing the inverse with iterative improve-
ment. The SOLVE operator uses Crout reduction with row
pivoting to solve systems of linear equations. Either of two
operators, JACOBI or GIVENS, can be used to solve the
eigenproblem for real, symmetric matrices. The desired
accuracy of the eigenvalues computed by the JACOBI
operator must be specified. When GIVENS is used, an estimate
of the accuracy of each eigenvalue (minus round-off) is provided.
The system accepts only real square arrays of order <1023.
The following example illustrates the structure of the
MATRIX package. User type-in is preceded by a question
mark.

SHORT FORM DESIRED? SHORT FORM ALLOWS ONLY
TERMINAL INPUT-OUTPUT AND SUPPRESSES MOST
EXPLANATIONS

1YES

ENTER PROGRAM NAME

IINVERT

ENTER ORDER OF MATRIX

3

ORDER = 3

ENTER MATRIX A

ROW 1

1, .5, .3333,

ROW 2

7.5, .3333, .25,
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ROW 3

2.3333, .25, .2,

Cl-IIEANGES AND/OR DISPLAY DESIRED?

2YES

ENTER COMMANDS

?Do,0*
1.0000000000 0. 5000000000 0.3333333000
0. 5000000000 0.3333333000 0.2500000000
(0.3333333000 0.2500000000 0.2000000000

IEND*

EXPLANATION OF INPUT PARAMETERS DESIRED?
?YES

TOLERANCE IS USED TO TEST FOR SINGULARITY OF
THE MATRIX. IF THE MAXIMUM ELEMENT IN A
COLUMN OF THE REDUCED MATRIX IS LESS THAN
TOLERANCE, THE MATRIX WILL BE DECLARED
SINGULAR. IF A 0 IS ENTERED FOR TOLERANCE, IT
WILL BE SET BY THE PROGRAM

ENTER TOLERANCE.
0
TOLERANCE = 1.5@ — 10
A INVERSE

ROW 1

o 9.00006119990  —36.0003203928 30.0002999924
ROW 2

—36.0003203929  192.0016607520 —180.0015479500

ROW 3

30.0002999925 —180.0015479500
WANT TO RUN AGAIN?
INO

180.0014399490

7. LINEAL [12.0, 12.1]
The LINEAL system is currently being developed at the

University of Delaware as an interpretive system for the
B6700. The system is designed to provide the ‘low-level’ user
with a simple yet powerful tool for automatically solving the
common computational problems of linear algebra.

The LINEAL language has been kept small for reasons of
simplicity and speed. Problems are stated in mathematical
infix notation, frequently using reserved-word operators for
readability. Facilities for format-free I/O, matrix arithmetic,
element manipulation, and control are provided. Provision for
extension is included via the ‘define declaration’.

The major strength of the language lies in its automatic
problem-solving capability. The assignment of attributes to
matrices facilitates efficient selection of algorithms to accom-
plish this task, as well as efficient storage management. The
Solve Statement, an extension of the ideas used in the NAPSS
Solve Statement, provides quantitative error information in
addition to solutions for linear algebraic systems and for the
general eigenproblem. The user has the option to let the system
automatically select the numerical algorithm for a particular
problem or to designate it himself; similarly, he may define the
degree of precision desired or let the system set it by defaulg
The burden of selecting the most appropriate numerical method
is assumed by the LEQ-module and the EIGEN-module. The
strategy of each is summarised below: ®

wouly pe

7.1. LEQ module
The module strategy is based on selecting the algorithm thé
seems most appropriate with respect to system size, coefficierit
matrix type, and desired accuracy. For dense square systems &f
reasonable size (< 60) a direct method is applied. If the accu%

3
o
Table 1 Comparison of features S
8
—3
PROBLEM-ORIENTED LANGUAGE WITH SPECIAL-PURPOSE LANGUAGES FOR LINEAR ALGEBRA g
SUBSETS FOR LINEAR ALGEBRA s
LANGUAGE PROPERTIES MAP NAPSS POSE APL/360 MARI ASP BURLEY’S MM MATLAN MATRIX LINEAL &
[©]
Location MIT Purdue Aerosp. IBM IBM Ames Res. Cambridge Harvard IBM Burroughs Univ. of Dék
Corp. Ctr. o)
Machine CTSS/ CDC6500 1BM360/ IBM360 IBM7030 IBM Titan SDS940 IBM360 B5500/ B6700 E
7094 IBM1800 7090-7094 B6700 3
Date of Implementation 1964 1966 1967 1968 1965 1965 1967 1967 1968 1968/71 1971 [
Operating Mode IP,IA IP,IA/ C,B IP,IA IP,B C B IP, B IP,IA C,B IP,IA  IP,IA/C, B!
s =2
Communic. Simplicity X x x x x x N
Array = Single Unit of =
Information X x X X x X X x x X X 7]
Format-free I/O X x X x X x X x X o
Independent of Other >
Prog. Language X X X X X X X X ©
Minimal Machine-depen. X X X X >
Optimal Mapping of 5
Arrays by Type X X X X N
Dynamic Allocation X X X X X x Q
Auto. Garbage Collec. X x X X IS
Intermixable with MAD FORTRAN AL. FORTRAN FORTRAN
Another Prog. Lang. A.L., ML ALGOL
CRITERIA FOR PROCEDURES
Storage Minimization X X X X X
Best Solution X X
Ability to Override
Int. Proc. X X
TYPE OF OPERATIONS
Matrix Arithmetic X X x x x x x x X X X
Element Manipulation L x L L X x
General Eigenproblem L L L L L L X
Solution to Systems of
Lin. Equations X X X X x
Control X x X x X X x x
Provisions for Exten. X X X X x X X
Quant. Error Analysis  x X x X
FORMAL DESCRIPTION
Syntax x x X
Semantics X x
IP: = Interpretive C: = Compiled A.L.: = Assembly Language x : = Included in language IA: = Interactive B: = Batch

M.L.: = Machine Language L: = Limited
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acy specified is not achieved, the SOR method is used with the
solution vector obtained previously as an initial guess. On
the other hand, if the square system is sparse or large, the SOR
method is initially employed. If it fails, an estimate of the
spectral radius is computed. If it is greater than unity, the least
squares method is tried. Otherwise, the SOR method is repeated
using AT A as the coefficient matrix. The module tries the least
squares approach for nonsquare coefficient matrices.

7.2. EIGEN-module

As in the LEQ-module, the strategy is based upon the type and
size of the matrices and the degree of accuracy specified.
In addition, the method applied depends upon the number of
eigenvalues and/or eigenvectors required and the form in which
the problem is stated.

The general eigenproblem is stated in the form ABx = Ax or
Ax = JABx. If B is the identity matrix and only dominant
eigenvalues and/or eigenvectors are required, the iterative
method is applied. Otherwise (still assuming B = 1), if 4 is
symmetric either the Jacobi or Householder methods are
applied, the former if the matrix is small and the degree of
accuracy is not very high; if 4 is not symmetric, the modified
Jacobi for nonsymmetric matrices is applied. When both A4
and B are general, symmetric matrices, a reduction procedure
is employed. If the reduction is successful, the strategy des-
cribed above for the standard symmetric case is followed and
the proper eigenvectors are appropriately recomputed. Other-
wise, the nonsymmetric procedure is applied.

Since LINEAL is designed both for educational purposes and
applications involving the use of large-order matrices, future
plans include the use of the system in both conversational and
batch modes, and as a program generator producing either
USASI FORTRAN IV or ALGOL 60 programs.
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The following program illustrates the use of LINEAL to
solve the general eigenproblem of the form ABx = Ax, where
A and B are large, sparse matrices. Execution of the Solve
Statement includes immediate labelled output of the results of
the specified computation, including information regarding the
method of solution and resulting accuracy.

declare N, I, J;

read N, 1, J;

declare sparse (/) A(N, N): sparse (J) B(N, N);
read 4, B;

solve eigenproblem A*B;

end.

Conclusion

This survey reveals considerable range in purpose and scope
among existing language-oriented systems for solving problems
in linear algebra. Common to all these systems are facilities
to handle real square arrays as units of information, internal
checking for dimension compatability, and operators for basic
matrix arithmetic. MAP, ASP, MM, and MATLAN represent
one end of the range, restricting their facilities to the most
fundamental operations required of such a system. At the other
end of the range, the complex problem-solving capabilities of
LINEAL and NAPSS coupled with their provisions for quanti-
tative error information offer the user a highly automated,
sophisticated tool for the solution of this class of problems.
The two languages are distinguished by their design objectives:
NAPSS is designed to reduce the amount of analysis required
to solve a wide variety of numerical problems and hence limits
the analysis techniques used for each problem class; on the
other hand, LINEAL is designed to provide in-depth analysis
to the single class of numerical problems in linear algebra.
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Book reviews

Software for Control, conference publication 102, 1973; 168 pages.
(Institution of Electrical Engineers, £7-00)

This is an interesting and also perhaps slightly specialist topic for
those interested in computers. However, process control remains
one of the pioneering areas of computer application and one of
undoubted industrial significance.

There are several excellent papers here emanating from industrially-
based groups who have had a long experience of the use of computers
for control purposes and have been prepared to contribute the
benefit of their experience. These accounts are most valuable and
reveal certainly that they have come to feel the way has not been
entirely smoothed but that in the end the influence of this effort on
their mode of operations has been quite considerable. They would
probably now agree that taken overall the investigation was justified;
presumably those who do not agree are keeping mum!

Unlike the more settled realms of scientific and commercialapplica-
tions where languages of staid maturity such as FORTRAN and
COBOL have existed for many years, this area of on-line control (or
perhaps one should say instantaneous on-line control for sake of
distinction) has never reached a steady state of affairs. Thus it is that
this conference’s publication is particularly timely and reveals that
the time cannot be long removed when the current ferment of discus-
sion and development in the field will need to give rise to some
practical recommendations for a degree of standardisation. There is
a clear indication among the papers of a school of thought which
feels that CORAL 66 is the language to standardise upon; at least
five papers make mention of it. A school of thought with more
advanced ideas is discernible among advocates of RTL/2. Two of the
papers are specifically concerned with this ; one outlining some aspects
of specification and the other dealing with application of the
language.

Today with the plummetting cost of basic electronics the economic
horizon for control applications of computing devices is descending
rapidly and a much broader range of applications are now acceptable
economically speaking. This must ensure an increasing audience
for this interesting volume which while being quite valuable to those
in the trade, must surely be rated as compulsory reading for those
contemplating taking the plunge. For these people the message comes
through clearly: that the way is long, but the rewards are worthy of
consideration.

J. H. Westcott (London)

A Guide to Teaching about Computers in Secondary Schools, by D.
Spencer, 1973; 152 pages, (Abacus Computer Corporatt
Ormond Beach Florida, $12.95)
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My initial reaction to this book was that it would have to be extr@-
ordinary good to justify a price of $12.95 for 152 pages. I also feare?
that it would be loose and woolly in the style of so many ‘Ways of
teaching about . ..” books. As a result of having read it from covet
to cover I am more enthusiastic about it. The author has clearly
spent many years in the classroom. His feet are firmly on the groun@
and whilst his ideas and philosophies derive from the Ameri
educational system, many of them are equally applicable over herée2
Indeed much of the content of the book would be useful to ﬁrg
and second year teachers whether or not they are teaching computing
science. Of course, most of the resource material and journall
mentioned by the author are American, but I know from person:
experience that quite a lot of this is worth ordering from the State‘%
It can be applied very usefully in this country.

The book is divided into three parts. Part 1 considers comput@
science in the secondary school curriculum. Alas, the author only
allocates 36 pages to this section—many of his ideas justify an expan=>
sion in more detail. Part 2: Methods of teaching computer science
contains much advice which is relevant to all teachers in its fir§g
four chapters. Alas, Part 3, on the School administrative uses of thg
computer, whilst listing some useful applications, is far too brief to
be of practical value to the teacher who is involved in designing
administrative systems using a computer.

To summarise then, this book really is expensive, but it does con-
tain a lot of valuable information and advice for new teachers, it
should certainly find a place in college and university libraries and
1 hope that many Heads of Departments in schools would consider
that they were investing their money wisely to have one to thrust into
the hands of the slightly nervous probationer teacher.

W. R. Broperick (Romford)
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