Discussion and Correspondence
Handling records with a variable structure in COBOL

J. M. Triance

Computation Department, University of Manchester Institute of Science and Technology,

Sackville Street, Manchester

In many data processing applications records are encountered where the fields vary in length and
position within the record. In the case of Utility Programs this variation can occur from one run to
another and in the case of input data it can occur from one record to another in the same file.
Normal COBOL data definition is incapable of handling this type of data but it can be handled
effectively by means of the DEPENDING ON option of the OCCURS clause. But the proposed
Standard in COBOL will have an adverse effect on this invaluable facility.

(Received May 1973)

1. Introduction

The DEPENDING ON option of the OCCURS clause is
primarily intended for transferring variable length records to
and from magnetic storage devices. For this purpose the option
proves to be effective enough.

This option can, however, be just as useful for processing
variable length data within the core of a computer. The straight-
forward use is shown in Fig. 1 where it would be assumed that
the Procedure Division coding specified would move just six
‘ITEM’s’ to FIXED-REC. In fact, many COBOL compilers
currently ignore the contents of NO-OF-ITEMS and move all
10 ‘ITEM’s’ even though, logically speaking, the last four aren’t
there.

WORKING-STORAGE SECTION.
77 NO-OF-ITEMS PIC 99.

1 VAR-REC.
3 ITEM PIC X(56) OCCURS 1 TO 10
DEPENDING ON
NO-OF-ITEMS.

1 FIXED-REC PIC X(50).
PROCEDURE DIVISION.

MOVE 6 TO NO-OF-ITEMS.
MOVE VAR-REC TO FIXED-REC.

Fig. 1

However, the proposals in CIB 16 (1973) (Tabling Handling—
Substantive Change 4) require the actual record length to be
used rather than the maximum length. This is both sensible and
useful.

However, the full power of the DEPENDING ON option is
used for handling records whose fields continually vary in length
or position within the record. This situation arises frequently
in data processing applications and the problem is normally
overcome by restricting the facilities offered by a program or
by long-winded and cumbersome coding. The use of the
DEPENDING ON option in two such situations will now be
demonstrated.

2. Inserting a page number in a heading (First situation)

In a utility program which lists files one of the parameters is the
position in the heading where a page number is to appear.
(The Utility controls the end-of-page condition and page
numbering.) In Fig. 2 it is assumed that PAGE-NO-POSITION
contains this parameter and PAGE-COUNT contains the
current page-number. Then the specified Procedure Division
coding will insert the page number in the required position.

Volume 17 Number 1

For example, if the required position is 110, then the page
number will appear in columns 110 to 112 inclusive of theo
HEADING record.

WORKING-STORAGE SECTION.

77 PAGE-NO-POSITION PIC 999.
77 PAGE-COUNT PIC 999.
1 HEADING.
3 FIRST-PART.
5 LEADING-CHARS PIC X OCCURS
Oto117
DEPENDING
ON PAGE-NO-;
POSITION.
3 PAGE-NO PIC ZZ9.

PROCEDURE DIVISION.
SUBTRACT 1 FROM PAGE-NO-POSITION.

MOVE PAGE-COUNT TO PAGE-NO.
Fig. 2

CLy/E6/1/. L/6|O!J,J€/|U[LUOO/LUOO'dr‘IO olwapeoe//:sdjy Woly papeojumo

3. Handling variable input data (Second situation)
In a particular COBOL program the input records each consmth
of the name of a company followed by the names of all 1tsr\>
subsidiaries. Because the names vary in length from three to<
ninety-nine characters each name is preceded by two charactersg
which indicate the length of the field. A typical record is shown2
in Fig. 3. This consists of a firm with two subsidiaries.

Lengths of names

o I T

20z Idy 61 UO

Daca 18 SMITHS ELECTRONICS 75 JACKSONS & CO 21 SMT'I'HS (NORTHERN) LTD

I[llﬂllllllllllllllll Liatpritinyg
Character 1 1 f 1 T T f
Position 1 10 20 30 40 .50 58
Fig. 3

This type of record is defined as INPUT-FIRMS in Fig. 4.
Initially FIRST-PART-LENGTH contains zero which means
that FIRST-PART has length zero. This NAME-LENGTH
refers to the first two characters of the record which, in our
example (Fig. 3), contain 18. The length of the field NAME-
OF-FIRM depends on NAME-LENGTH and so is 18

93

characters. Thus NAME-OF-FIRM refers to characters 3 to
20 inclusive of the record and so it can be used to access the
name of the firm. To access the next name the following coding
must be executed:

NAME-LENGTH TO FIRST-PART-LENGTH.
2 TO FIRST-PART-LENGTH.

ADD
ADD

FIRST-PART will then be twenty characters long so that
NAME-LENGTH now refers to characters 21 and 22 of the
record (contents 13) and by referring to NAME-OF-FIRM in
the Procedure Division the second name (JACKSONS & CO)
can be accessed.

Thus by ensuring that FIRST-PART-LENGTH contains the
number of characters in the record which have already been
processed, each name in the record can be accessed in turn.

WORKING-STORAGE SECTION.

77 FIRST-PART-LENGTH PIC 999 VALUE 0.
1 INPUT-FIRMS.

3 FIRST-PART.

5 FIRST-PART-CHAR PIC X OCCURS

0 to 500
DEPENDING
ON FIRST-
PART-
LENGTH.

3 NAME-LENGTH PIC 99.
3 NAME-OF-FIRM.
5 CHAR-OF-FIRM PIC X OCCURS

3to0 99
DEPENDING
ON NAME-

LENGTH.
Fig. 4

This approach is equally applicable to any data where:
(i) the fields vary in length, or
(i) there are many different types of field not all of which are
present in any particular record.
In the latter case a code number can be used to identify the
different types of field and a table in the program could indicate
the length of each of them.

References

COBOL Information Bulletin Number 16 (CIB 16). (1973).
AMERICAN NATIONAL STANDARD COBOL—FIPS Pub. 21. (1968).

The Computer Journal, Vol. 16, No. 1, p. 81.
American National Standards Institute.
CODASYL COBOL Journal of Development—Canadian Government Specifications Board (1970).

4. Potential drawbacks

1. Documentation. Although the above coding is valid ANS
COBOL (1968) it is slightly artificial and therefore is not as
self-documenting as COBOL is intended to be. This problem
can, however, be overcome by the careful choice of data-names
and the use of comments.

2. Availability. The techniques described above can all be
implemented on the IBM 360 ANS COBOL compiler but some
other compilers do not handle the coding as required. The new
COBOL Standard should however clarify this situation.

3. Core Usage. The approach used in Fig. 4 can be wasteful on
core space since the compiler must assume that all the variable
parts of the record are liable to assume their maximum size
simultaneously. Thus 601 characters would be reserved for the
‘INPUT-FIRMS’ record even though the record might never
be more than 505 characters long.

To avoid this wastage a method of specifying the maximum
record size would be required—a facility not currently available
in COBOL. One possible solution would be to allow the
PICTURE clause to be used at a group level for this purpose;

and in Fig. 4 write §
5
01 INPUT-FIRMS PIC X(501). f%’
Q.
However, in many cases the core wastage is of little
consequence. 3
g

5. Implications of proposed COBOL standard
The facility used in Figs. 2 and 4 will no longer be permitted u?%
the proposed standard CIB 16 (1973) (Table Handlmg——rl
Substantive Change 3). This states that any item which var1es3
in length must be at the end of the record which is not the casec
with ‘FIRST-PART"’ in Figs. 2 and 4.

Admittedly this restriction is proposed by CODASYL’
Programming Language Committee (1972). But they providey
an alternative method of handling variable length ﬁeldsﬁ_
namely the PICTURE character ‘L’, which is not included in the<
proposed standard.

Thus it seems reasonable that the facility demonstrated abovez
should only be withdrawn from Standard COBOL when th?d
alternative proposed by CODASYL has been accepted. If, or13
the other hand, the proposed Standard is accepted as it stands;:
ANS COBOL programmers will be faced with twin problems»
of more coding and less powerful programs.

[o1E

To the Editor
The Computer Journal

Sir
Cyclic redundancy checking by program

Higginson and Kirstein (1973) give new methods for computmg a
cyclic redundancy check (CRC) which give a considerable gain in
speed over other methods when applied to the polynomtal
x16 + x1% + x2 4+ 1 used by IBM data communication systems. It is
therefore of interest to attempt to apply their methods to the poly-
nomial x1¢ + x'2 + x% + 1 which is recommended by CCITT (1968)
and which will be used by the Post Office in its Experimental Packet
Switched Service (1972).

Although the two polynomials are deceptively similar in appearance
the factored form of each reveals a considerable difference in com-
plexity namely:

94

202 Iudy 61 uo 1s9nb Aq Z6Y

IBM: (x+DE®+x+1)
CCITT: (x+ DM + x4+ xB+ x2+x*+x¥+x2+x+1)

The x + 1 term corresponds to an overall parity check which ensures
that the total parity over message and CRC is even. Because of the
complexity of the second term in the CCITT case it is not surprising
to find that it is more difficult to apply the methods of Higginson
and Kirstein to it.

Higginson and Kirstein obtain their speed gain by operating on 16
bits of the message in one process, the ‘byte-pair’ method. Applied
to the CCITT polynomial this gives for Rs+ (compare equation 11
of Higginson and Kirstein).

Rivi= (Mi + R) (1 + x2 + x*%) + (M + Ri)o—7 (x* + x1%)
+ (Mi + Ri)o-11 x8 + (M; + Ri)o—ux
+ (Mi + Ri)o-s (1 + x°) + (Mi + Ri)g—y x*° @

Here the notation (M; + Ri)a—b signifies

The Computer Journal

1
i

{

