of a software error or hardware failure. Clearly, anything could
happen if pointers and other items became available in ways not
envisaged.

In the light of the argument that has been developed above,
there are two alternatives open to us. One is to prevent the
passage to a subordinate process of ENTER capabilities, or,
what amounts to the same thing, to prevent them being used if
they are so passed. If this is done, the writer of a subsystem has
available to him the same protection mechanisms that were
available to the writer of the main system. He can be given
access to procedures that exist as part of the main system—that
is to blocks of code—but he cannot be given access to protected
procedures as such. He must construct for himself any protected
procedures that he needs, using, if convenient, any already
existing code to which he has access. This system is the one
being adopted in the Cambridge CAP computer.

The alternative is to arrange that the information needed for
restarting an interrupted process is communicated by the
interrupt-servicing routine to the coordinator responsible for
that process in such a form that it cannot be improperly used.
The most straightforward way of implementing this idea would

References

FABRY, R. S. (1968). ‘Preliminary description of a supervisor for a computer organised around capabilities’. Quart. Prog. Rep., No. 18

Sect. ITIA ; Inst. Comp. Res., Chicago.

NeepHAM, R. M. (1972). “Protection systems and protection implementations’, AFIPS Conference Proceedings, Vol. 41, p. 571.
‘A hardware architecture for implementing protection rings’, CACM, p. 157.
WiLkES, M. V. (1972). Time-sharing computer systems. Second Edition. Macdonald, London; American Elsevier, New York.

SCHROEDER, M. D., and SALTZER, J. H. (1972).

be for the interrupt-servicing routine to construct a protected
procedure which, on entry, would restart the interrupted
process. What would be passed to the coordinator responsible
would be an ENTER capability for this procedure. If this
were done, there would be no reason to restrict the passage of
ENTER capabilities across boundaries of domains of
coordination.

Although the passing of ENTER capabilities to a lower
domain of coordination might be permissible, whether or not
to do so would be entirely at the discretion of the user con-
cerned and it is possible that he would make use of the facility
sparingly. Problems might, in particular, be anticipated in the
case of ENTER capabilities for protected procedures giving
access to information that could not safely be accessed by more
than one process at a time. This is the familiar situation in
which some form of lock-out is conventionally employed.
There is a danger that the information might become per-
manently locked out as a result of lack of attention to proper
programming discipline on the part of a programmer operating
in a lower domain of coordination.

pepeojumoq

Book reviews

A SNOBOL 4 Primer, by R. E. Griswold and T. Madge. Griswold,
1973; 184 pages. (Prentice-Hall International)

Most readers will have heard of the string manipulation language
SNOBOL; it is probably the most widely used general-purpose
language for text handling, and is often used in teaching and
research for such purposes as algebraic manipulation. Its most
significant contribution to the development of programming is the
introduction of abstract patterns as data types. The manual written
by the inventors, and implementors, of the system is still the prime
documentation for it. This is written in a clear, yet informal style,
and gracefully includes a host of complicated additions to the
language which have accumulated over the years.

The present book is intended as an introduction to SNOBOL for
novices; one of the authors is one of the main designers of the
language, so it is not surprising to find that its style and presentation
are very similar to the previous manual. It is claimed that the book
could form an introduction to computing for a complete beginner.
In fact the introduction to the notion of an algorithm, and to the
broader aspects of machines, such as storage, is extremely brief; in
my opinion it would be baffling to a complete beginner, but would be
suitable for students who have had a brief introduction to computing.
The book gives a clear exposition of the main features of SNOBOL
4; it is, in fact, an exposition of a simplified and purified SNOBOL.
It might be described as all the features that are safe use.

In summary the book could serve three roles: it is a good textbook,

it is a good manual for most users, and it might serve as a basis fora _

standardised version of SNOBOL that does not rely on the original
macro-implementation.
J. J. FLORENTIN (London)

120

Communication Nets, by L. Kleinrock, 1973; 209 pages. (Constabl
Publishers, £1-50)

1e/|ulu®oo/woo dno-olwspese)/:sdyy wouy

It is always somewhat difficult to review a book one has been recoms
mending and using for many years. This book by L. Kleinrockx
comes in that category. When this book first came out, it was uniquey
and essential reading for anyone who wished to analyse compute%
networks. The subject matter is well summarised by listing the

chapters which are: §
Chapter 1—Introduction N
Chapter 2—Summary of results o
Chapter 3—The problems of an exact mathematical solution to the

general communication net ‘%
Chapter 4—Some new results from multiple channel systems @
Chapter 5—Waiting times for certain queue disciplines S
Chapter 6—Random routing procedures 2
Chapter 7—Simulation of communication nets >

Chapter 8—Conclusion 3
The book is still very important in that it develops this subject in a3
consistent manner which makes it suitable as a textbook for third®
year undergraduate or graduate students. However, there has been
considerable recent work on the subject and the book does not give
an up-to-date rounded view in the same way as the recent book
‘Computer Communications Networks’, in which Kleinrock also has
an important article, which summarises many of his recent results.
The book is certainly an important item in a reference library, but
it must be complemented by more recent publications, particularly

those of Professor Kleinrock himself.
PetER T. KIRSTEIN (London)

The Computer Journal





