Evaluation of compiler diagnostics

L. Presser and J. Benson

Department of Electrical Engineering and Computer Science, University of California,

Santa Barbara, California, 93106, USA*

This brief paper presents a technique for the evaluation (specification) of translator diagnostics. The
approach is based on the definition of a weighted error range and synthetic modules that exercise
the language constructs of interest. As an illustration three different FORTRAN translators,
available on the IBM System 360 computers, are evaluated. These are the WATFIV, G, and H
translators. The results obtained substantiate the fact that WATFIYV is superior to the other two

systems as far as diagnostic power is concerned.

(Received February 1973)

Today’s computer management is faced with increasing flexi-
bility in the configuration of computer systems. Particularly
so in view of the present trend towards separate pricing of
hardware and software facilities. Specifically, anyone selecting
a translator (e.g. compiler, interpreter) for a popular program-
ming language such as FORTRAN, is offered a number of
alternative packages. In choosing a translator many different
characteristics have to be considered in detail (Lucas and
Presser, 1973). One of the most important characteristics is the
diagnostic information provided and the degree of error
recovery effected by the translator. Generally, this has been, at
best, evaluated (specified) in a vague manner. The purpose of
this short paper is to present a simple and practical approach
to the evaluation of translator diagnostics.

Methed
The approach (Presser, 1968) consists of defining a weighted
error range, such as that shown in Table 1, and a synthetic
module that exercises the language constructs of interest. A
synthetic module (Lucas and Presser, 1973) is a program
written to model the characteristics of the anticipated job
stream. Once defined, the synthetic module, which in this case
contains errors, is run through each of the translators under
consideration. Based on the results obtained and the weighted
error range defined, each translator is assigned a total score;
the higher the score the better the performance. The overall
quality of the diagnostic messages is also taken into consider-
ation by adjustments to the total scores.

Finally, it is necessary to distinguish between translation and
execution time diagnostics and error recovery.

Example

To illustrate the technique we present a relative comparison of
the results obtained when the diagnostic power of the
WATFIV!, FORTRAN G? and FORTRAN H?® compilers
are exercised. These three compilers are implemented on IBM’s
System 360; the first one is available from the University of
Waterloo and the other two from IBM. The optional DEBUG
facility available with FORTRAN G is not considered in the
discussion that follows.

Translation time diagnostics

In the recent article (1971) Knuth reported statistics that in-
dicate that the most popular FORTRAN language constructs
are: ASSIGNMENT, IF, GO TO, and DO. Therefore, based
on Knuth’s work and on our own experience, it is reasonable to
restrict our analysis to these four statements. Hence, four
synthetic error submodules were coded. Each submodule was

utilised to evaluate the response of the translators to common
errors in each of the four FORTRAN statement types
mentioned above. The set of ‘common’ errors present in a
submodule consisted of the union of the errors associated with o
the statement in question, that each of the three translators is é
capable of detecting (Cress, Dirksen and Graham, 1970; 5
IBM, 1970), plus a few others. The type of errors present in the Q
four modules are listed in Tables 2, 3, 4 and 5. The modules were =
run on the three compilers and their performance evaluated S S
using the rating scale detailed in Table 1. The overall quality =
of the diagnostic messages was also taken into consideration. %
The results are presented in Table 6. The percentages shown &
were calculated by scoring each error, totalling the scores, 5
adjusting for overall features and then normalising.

We can observe that in each case the diagnostic performance &
of WATFIV is superior to that of the G and H compilers. This S
substantiates what is generally well known (Siegel, 1971). 3 3
However, it is of interest to note that FORTRAN H does 2 3
almost as good a job as WATFIV on the IF statement, while &
FORTRAN G does a very poor analysis on a DO statement.
Also, it is of some value to compare the G and H scores.

no"olwa

Execution time diagnostics

To exercise the diagnostic power of these systems durmg
execution time another synthetic error module was prepared. ©
The selection of the errors present in this synthetic module was &
influenced by the type of execution errors observed in a sample] o
of programs from an undergraduate programming class. The &
module tested the three systems for their reactions to the<
following execution time errors:

(a) Overflow

(b) Integer input too large

(c) Incorrect input type

(d) Computed GO TO out of range
(e) Array reference out of range

/LL/GIO!UEMUTLU

202 Iudy 61 uo }sanb

Table 1 Weighted error range

+5 Detects and corrects specific error

+4 Detects specific error and specific location

+3 Detects general error and specific location or specific
error and general location

+2 Detects general error and general location

+1 Detects general error

0 No error detected
—1 Misleading or redundant error information
—2 Wrong (error) information

*This work was supported in part by the National Science Foundation, Grant GJ-31949.

Version 1, level 2, Aug. 1970.
2 evel 18.
3September 1969 release.

Volume 17 Number 2

121

Table 2 ASSIGNMENT statement errors tested

Variable name too long

Integer constant too large

Undimensioned array reference

Incorrect number of subscripts

Invalid delimiter

Non-numeric character in numeric constant
Exponent too large

Complex constant not composed of reals
Operator terminates expression

Comma in real constant

Invalid variable name

Non-subscripted array item

Complex constant with different length reals
Complex exponent

Complex base with non-integer exponent
Logical variable base

Missing operand

Extra parenthesis

Too few parentheses

Missing operator after parenthesis

Logical operator with period missing
Invalid character in columns 1-5

Real constant greater than 16 digits

Two decimal points in constant

Constant greater than 7 digits with exponent
Number on left of equal sign

Multiple assignment

NOT used as a binary operator

Relational operator with logical operand
Relational operator with complex operand
Mixed mode (logical with arithmetic)
Logical subscript

Zero subscript

Negative subscript

Illegal sequence of operators

Table 3 IF statement errors tested

Complex expression in arithmetic IF
Undefined label in arithmetic IF

Unlabelled statement following arithmetic IF
Invalid statement following logical IF
Duplicate statement labels

Illegal statement label in arithmetic IF
Logical IF following a logical IF

Equal sign in logical IF

Statement label greater than 99999 in arithmetic IF
Arithmetic expression in logical IF

Format statement label in arithmetic IF

(f) Incorrect argument for SINE

(g) Incorrect argument for ALOG

(h) Incorrect argument for SQRT

The scores obtained when this module was executed, and the
weighted error range displayed in Table 1 utilised, were:

WATFIV G H(HO)
70% 25% 25%
We observe anew that the performance of WATFIV is superior
to that of the G and H systems!

In general, when the WATFIV system encounters an error it
stops execution. The G and H systems, on the other hand,
perform some standard corrective action and continue with
execution. We consider this latter course of action preferable.

References

Table 4 GO TO statement errors tested

Self transfer

Transfer to a FORMAT

Assigned GO TO index assigned by an arithmetic statement
Assigned GO TO index used in an arithmetic statement
Index of computed GO TO undefined

Non-integer GO TO index

Missing comma in assigned GO TO

Illegal statement label

Non-existent statement label

Missing parenthesis

Invalid delimiter

Non-integer computed GO TO variable

Non-integer variable in assigned GO TO

Invalid assigned variable in ASSIGN statement

Invalid delimiter in ASSIGN statement

Invalid delimiter in GO TO statement

Table 5 DO statement errors tested

DO statement is the object of a DO
Illegal transfer into DO range
Object of DO precedes DO
Improperly nested DO’s

Parameter redefined within the loop
Non-integer DO parameter

Equal initial and final values

Do parameter redefined in an input list
Initial value negative

Invalid delimiter

Subscripted DO variable
Subscripted test value

Subscripted increment value

Table 6 Translation time diagnostic performance

WATFIV G H(HO)*
ASSIGNMENT 66% 55% 47%
IF 73%, 58% 69%
GO TO 72% 51% 42%
DO 65% 12% 45%

a/LelLiel/L L/8|O!UE/|U[LUOO woo dnoolwepeoe//:sdyy woly pepeojumoq

*The FORTRAN H compiler allows one of three levels of optimisation;
to be specified: HO, H1, H2; the lowest level is HO. N

8.

Thus, the G and H scores were adjusted slightly to give crcdiér
for their strategy. ®

| UO 1S9

Summary
We have presented here a simple and practical method for th
evaluation (specification) of the diagnostic power of translatoi2
systems, which is a problem of interest. The approach is baseds
on the definition of a weighted error range and synthetic®
modules that exercise the language constructs of interest. The
results depend directly on the weights assigned to the various
levels in the error range and on the types of errors included in
the synthetic modules. These decisions should be made in the
context of the specific translators to be evaluated as well as
their intended use. To illustrate the method three popular
FORTRAN translators available on the IBM System 360 were
evaluated. The results indicate that, indeed, WATFIV offers
very good error analysis facilities.

Finally, it should be noted that it is possible to employ a
similar strategy in the evaluation of the diagnostic power of
other sections of an operating system.

Cress, P., DIRKSEN, P., and GRAHAM, J. W. (1970). FORTRAN 1V with WATFOR and WATFIV, Prentice-Hall, Englewood Cliffs, New

Jersey, 1970.

122

The Computer Journal

IBM System/360 Operating System FORTRAN 1V (G and H) Programmer’s Guide, Third Edition, International Business Machines Corp.,

June 1970.
KnNutH, D. (1971).

An Empirical Study of FORTRAN Programs, Software Practice and Experience, Vol. 1.

Lucas, H. C. Jr., and PRESSER, L. (1973). A Method of Software Evaluation: The Case of Programming Language Translators. The

Computer Journal, Vol. 16, No. 3.
PRESSER, L. (1968).

The Structure, Specification and Evaluation of Translators and Translator Writing Systems, Ph.D. dissertation, Report

68-51, Department of Engineering, University of California, Los Angeles, October 1968.

SIEGEL, S. (1971). WATFOR .

. Speedy Fortran Debugger, DATAMATION, November 15, 1971.

Book reviews

Standard FORTRAN Programming Manual, by R. Bornat, 1972;
152 pages + indexes + appendices. (NCC, £4'75 hard cover,
£3-50 paperback)

This manual is intended to show FORTRAN programmers how to
write programs in Standard FORTRAN and ‘to bridge the gap
between the few who understand Standard FORTRAN and the
many who do not’. The first edition was reviewed in references 1, 2

Digital Interface Design, by D. Zissos and F. G. Duncan, 1973;
174 pages. (Oxford University Press, £4-00)

The idea behind this book is a good one: to treat interfacing to a
computer in a generalised systematic way. To some extent the authors
achieve this but not as successfully as they might have done if the
book had not also been based on a lecture course. The truly valuable
part of the text lies in the introductory part of each chapter. It is the

and 3.

To prepare the second edition the publishers have simply applied,
not totally successfully, the amendments in the three-page errata list
to the first edition and have added as appendices a reproduction of
the American National Standard for FORTRAN (X3.9-1966) and
the first set of clarifications to the Standard. These additions are
welcome and it is perhaps ungracious to mention that the copy of the
Standard is one without line numbers, making the clarifications
harder to identify, and that the second set of clarifications (reference
4) has inexplicably been omitted.

Apart from the errata no more than a handful of minor changes
have been made to the text which is therefore subject to the same
praise and criticism as before. The manual is unique in the literature:
the author Richard Bornat, has probed thoroughly and makes many
nice points which will have escaped all but the most devoted readers
of the Standard. Nevertheless there are still a few factual errors and a
number of dubious explanations and fact and opinion are not
separated as clearly as one would wish. Regarded as a personal
treatise, and with this caveat, the book is highly recommended.
Appearing now with the silver and black ménage & trois symbol it
still, in this reviewer’s opinion, falls short of the standards that ought
to be required of one of the NCC’s Computers and the Professional
series.

amplification and detailed analysis that follows which is of dublousv
value. é

The first chapter, for instance, starts well by defining the natures
of the interface and its functional components. The chapter contmuesa
with an account of Logic Design by Zissos’ method which covers thlsQ
wide and complex sub]ect too briefly to be of use for more thans
lecture notes. It is in this chapter, too, that the authors chose tog
write binary numbers with the m.s.d. on the right Zissos successfully=
makes a virtue of disregarding conventions in his recent excellentfi
book on Logic Design but here it is apt to confuse.

The second chapter on the ‘Components of a Digital Computer,a
starts well with the generalised introduction. The rest of the chapterg
consists of a quite long description of the internal logic of a kind of’;'
21D core store. Possibly this is a useful exercise in logic design but 1tg
has little relevance to a book on interfacing.]

There are chapters on Machine Code Programming, and whatB
should be an important part of the book, Programmed and Autono-3
mous Data Transfers. These regrettably conform to the first two§
chapters—good beginnings but little else. In aid of generalisation 113
is perhaps a good idea to invent a machine code and a hypotheticak:
small computer, but it seems hardly necessary. o

In summary, about a fifth of the book is good work appropr:ate tO\l
the title. The remainder is largely a series of contrived exercises 1rf3
logic design, suited to the tutorial work of a compressed course, but';z

References hardly to an authoritative work on an important subject.

1. Computer Bulletin (1971) Vol. 15, p. 47.

2. Computer Bulletin (1971) Vol. 15, p. 245.

3. Computing Reviews (1972) Vol. 13, p. 79.

4. American National Standards Institute Sub-committee X3J3
(1971), Clarification of Fortran Standards—Second Report.
CACM, Vol. 14, pp. 628-642.

w
]
g
£
&
=
g
5

D. T. MuxworTHY (Edinburgh)

20z Indy 61 uo 1senb Aq 8,7%ecs/

Volume 17 Number 2 123

