Memoryless subsystems
J. S. Fenton

University of Cambridge Computer Laboratory, Corn Exchange Street, Cambridge CB2 3QG

A memoryless subsystem is incapable of communicating unauthorised information about data input
to the outside world. Such systems are important in the study of protection systems, but are difficult
to implement. This paper derives a model of such a system and further gives a proof of its

correctness.
(Received January 1973)

A memoryless subsystem is a program or procedure on a
computer utility which is guaranteed to have kept no record of
data supplied when it has completed its task. An oft quoted
example of such a subsystem is an Income Tax program
(Graham & Denning, 1972); to function it must have access to
confidential data such as the customer’s income and expen-
diture, but must not keep a record for anyone else to see later.

The usual approach to this problem is to encapsulate the tax
program in an environment entirely controlled by the customer.
This is often achieved by the use of stand-alone computer time
where the machine is wiped clean at the end. This fails to solve
the problem when the tax program requires protection; in this
case the tax program and the customer’s program are in a state
of mutual suspicion.

It now becomes necessary to consider a computer system that
allows the interaction of mutually suspicious subsystems. The
fact that the suspicion is mutual and not total is important ; two
subsystems that are totally suspicious will never interact. This
mutual suspicion indicates some level of trust; this is assumed
to be invested in a set of shared supervisory procedures.

On an appropriate system it would be possible for the
customer’s program to encapsulate the tax program and inspect
any output produced. In general this approach fails since there
is no algorithm for deciding whether intormation is contained
in an output stream; the tax program may use means such as
the position of the date or the number of spaces on a line to
convey information. Also the tax program may wish to send
charging information and similar output to its author without
customer intervention. It is a consequence of the problem that
the charge may not depend on, for example, the customer’s
income.
~ A restatement of the general problem is as follows: a computer
user wishes to run a proprietary subsystem which requires him
to supply confidential or private data. The subsystem cannot be
inspected and appears to the user as a black box. For input it
requires several streams of data, some containing private and
some non-private information. As output it generates several
streams, some allowed to contain private information to be
returned to the customer and some containing non-private
information to be returned to the author (See Fig. 1).

The problem is to provide hardware support so that, despite
the execution of an arbitary program over which the customer
has no control, the normal output can in no way depend on
private input.

It seems unlikely that a solution to this sort of problem can be
provided by protection mechanisms currently studied
(Needham, 1972). Such protection systems are concerned with
the addresses available to a process irrespective of the contents
of these addresses. The tax problem is concerned with the
protection of data, irrespective of where it is stored. One might
regard these ideas as orthogonal.

The solution is presented in terms of an abstract machine.
This enables a proof of the correctness of the model to be given,

Volume 17 Number 2

something that is rarely possible for protection systems on
practical machines.

An abstract computer model

The use of simplified computer models has previously beero
restricted to the study of computability. There have been manys
alternatives equivalent (computationally) to Turing’s originap
machine but the model chosen because of its resemblance tdy
practical computers is that devised by Minsky (1967). Minsky-
established that a sufficient computer needs only two (infinite}s

registers, a zero register and three instructions. =
©
1. a a:=a+1 2
2.a(n) ifa=0thengotonelsea:=a—1fi 8
3. halt stop and display output registers 2
3

Other instructions can be defined in terms of these. For examples:

if z is the zero register 2
0 3

is an unconditional jump to n, denoted as go(rn). Similarly theg\
subroutine S
n: a (m) El

go(n) 2

always exits with @ = @. This is denoted as a°. With thesey
instructions one can write a program to simulate a universal®
Turing machine, thus establishing the computational power of;;
the model. Note that output is not available until the processof’

halts. £
o
Data marks N
A data mark is a field of information associated with the basig
(2]
S
private private _.
input output ©
>
S
N
o
N
~
THE TAX
PROGRAM
r_\on-private non-private
input output
Fig. 1
143

unit of storage in a computer utility (e.g. a word, a byte, etc.).
For the purpose of this document it will suffice to consider a
two-valued data mark where the values are denoted as null and
priv.

To protect information it would be logical to attach data
marks to information and force the data mark to remain with
that information wherever it may be stored. For reasons that
will become clear later (see General Purpose Registers below)
this cannot be done and a storage location has a fixed data
mark. Thus, if @ is a storage location, a is the data mark of a
and is constant. Then

a = null or priv

Information extracted from a storage register has the data
mark of that register attached. Information can only be stored
in a register if the data mark of the register a and the data mark
of the information b agree in the sense that

M(a,b) = F,,(a,b)
where F,, is an operation dependent function and M is the
interaction matrix:
M | null priv
null | null priv

priv | priv priv

There are practical motivations for this approach. In a seg-
mented machine it is usual to require that all words in a segment
have the same protection status. It is also wasteful in memory
to reserve one bit per word for a data mark if this is unneces-
sary. However, the real reason for this approach is that
variable data marks do not appear to solve the problem com-
pletely as is demonstrated by an example below.

Information flow in the Minsky machine

In a Minsky machine all operations are on a single register
and accordingly the definition of data marks in terms of binary
operations may seem inappropriate. But consider the following
program for the Minsky machine to add a to b.

a(m)
b

go(n)

1 n:

3
4 m:

It can be thought of in the following intuitive manner. Line 1
extracts a piece of information about the contents of @ and line
2 stores that information in b. This is repeated untll all the in-
formation in @ has gone.

However, between line 1 and line 2 one could insert an
arbitrarily complex piece of program. Yet throughout the whole
of that program the bit of information removed from a could
be added to b at any point, or duplicated in other registers at
will. Thus, at line 2 the piece of information removed from a
exists in the position of the program pointer (i.e. the instruction
counter in a conventional machine).

Thus the position in the program contains a quantity of
information and this must be marked like any other piece of
information in the machine. Thus, if p is the program pointer
then p is its data mark. An operation on register a depends on
M(a, p).

However, suppose register a has a = priv then an a—(n)
operation by the above argument must mark p = priv. But
there is now no mechanism to unset the mark (i.e. set p = null)
and all subsequent operations must be priv type. This is a
consequence of the program pointer ‘remembering’ the infor-
mation indefinitely. Thus to unset p it is necessary to destroy
all information in the program pointer.

There is only one place where the information extracted by a
test could be lost and that is by returning to the instruction

14

directly after the conditional. This leads to the concept of a
linked conditional test instruction a*(n). This is an a—(n)
instruction which, if the test succeeds, stacks a link (containing
p and p) and jumps to n. There is a ‘return’ instruction that
unstacks p and p thus resetting the processor mark.

It should now be possible for the program to test privileged
information without loss of security. At some points it may
go into a priv routine where all operations are restricted to
priv data; at some point it must ‘return’. The null path (the
path through the program while p = null) then followed cannot
depend on what happened in the routine since this only affected
priv data and thus cannot depend on whether the routine was
entered or not. Thus it should be possible to perform general
computations and guarantee that priv information cannot be
moved to a null register.

The modified machine is constructed by adding the a*(n) and
‘return’ instructions to the Minsky machine repertoire. Addi-
tionally, every register on the machine is assigned a fixed data
mark. The only variable mark is p. Using the concepts of infor-
mation flow in a program as described above it is possible to
derive the following instruction set, where x is any register

x' ifx = M(x,p) then x := x + 1 fi

x—(n) if x = 0 then (if p = M(x, p) then goto ~ fi)
else (if x = M(x,p) then x := x — 1 fi) fi
x*(n) if x = @ then (stack(p, p); p := M (X, p); goto n)

else (if x = M(x, p) then x := x — 1) f
Return p, p := unstack()
Halt if p = null then halt fi

Note that the Return instruction is assumed to have no effect
if the stack is empty. Obviously the user must not be able to
access the stack directly.

Requirements of a solution

Examining the concept of a data mark it becomes clear that a
necessary and sufficient condition for the tax program to
become ‘memoryless’ is that no bit of information marked priv
can be copied into another register and marked null. When this
is true a system is said to be secure. A ‘bit’ is taken to mean the
smallest amount of information; for example the fact that the
contents of register a is greater than the contents of register b.

The inability to move information about without losing priv
marks is called ‘retaining the mark’. In its most general sense
it means that any (sequence of) operations cannot change the
marks of data other than as described by the matrix M.

An important consequence of the universality of the model is
that only binary values need be considered. It is possible
(Minsky, 1967) to write subroutines P(a) and H(a) that give
the parity and half of a respectively so thata = P(a) + 2. H(a).
Since it is possible to code any word in this manner then if it is
pos51ble to copy a binary value without retaining the mark then
it is possxble to copy a whole word by binary encoding and S
copying a bit at a time.

In the particular case under consideration the only important
data is priv data; an operation retains the mark if it does not
transfer information from a priv state to a null state. This leads
to the following theorem.

Theorem 1
The system is secure if and only if the null path of the program
cannot depend on any priv information.

For suppose the null path can depend on priv information.
This implies that the program can follow two distinct branches
depending on priv information and thus a binary value may be
copied. By the above remarks any word may be copied and the
system is not secure.

Conversely, if the system is not secure priv information can be

The Computer Journal

0z Iudy 61 U0 1senB Aq | L¥SZS/EYL/Z/ . L/BIoIE/|UlWoo/ W00 dno"olWapEdE/:SA)Y WOl POpeojumod

I\)

copied to a null word. Since the model is a universal computer,

its path can depend on the copied information and thus on
priv information.

Q.ed.

The protected model

To provide any protection at all it is necessary to restrict the
capabilities of the Minsky machine and it is clearly the case
that the ordinary Minsky machine can perform data trans-
formations that the protected model cannot. However, the
residual machine must still be a universal computer on some
subset of its registers or it will have become too degraded to be
of use.

That the machine is a universal computer can be verified quite
simply. One can define two submachines M,,;, and M,,;, which
are the protected model restricted to the null registers only and
the priv registers and z only respectively. Then both these
machines are universal machines provided that both contain at
least two registers (excluding z). This follows from examining
the instructions &’ and a—(n) verifying that they form a Minsky
machine on the relevant subset of registers while p is in the
correct mode.

The following theorems prove that the protected Minsky
model is secure up to a maximum limit and that a more
secure system does not exist.

Theorem 2

While p = priv there is no way of altering a register x for
which x = null.

.The pl:OOf is by exhaustion of all possibilities. The ‘Return’
instruction does not alter any registers. Thus only the x’, x ~(n)
and x*(n) instructions need be considered.

’

X By definition this instruction reads
if x = M(x,p) then x := x + 1 fi
but, by hypothesis
M(x,p) = M (uull, priv)
= priv
X
so the instruction has no effect

x(n) From the definition there are two possible cases
@x=90
but M(x, p) = priv = p so that the program jumps
to n. However, x is not changed
x>0
As for the x’ instruction
M, p) #x
so the instruction has no effect
x*(n) As for the x ~(n) instruction there are two possible cases
@x=20
This jumps to n irrespective of x and p. But x is not
changed.
B)yx>0
0ed Again x # M (X, p) so the instruction has no effect.
.ed.

The symmetric converse of this theorem is untrue. For if
p = mull and y is a register with y = priv the instruction y’
alters the contents of y for

M(y, p) = M(priv, null)
= priv
=Yy
However, the corresponding theorem is:

Theorem 3
If p = null no change of path (i.e. jump) can take place that

Volume 17 Number 2

depends on priv information without setting p = priv.

Again, the proof is by exhaustion. Only the two instructions
that cause a conditional jump need be considered. The only
case when a jump can occur is when the register is zero.

Let y be a register with y = @ and y = priv. There are two
cases corresponding to the two conditional instructions.

1. y~(n) Now if p = null then
M(y, p) = M((priv, null)
= priv
#P
So by definition this does not jump
2. y*(n) This always jumps when y = 0 irrespective of p and y
However, if p = null
p:= M(y,p)
:= M (priv, null)
1= priv
Q.ed.

The theorems are of interest in relation to the concept of5
information flow mentioned above. Theorem 2 states that the2
machine does not allow information to flow from priv to m

although the reverse is true. Theorem 3 states that the machmel
does not allow priv information to be extracted while the.‘l
processor state is null. These results are exactly what one woul@
expect from the heuristic argument.

e//:sdpy

Theorem 4
If p = priv then the only way in which p can be reset to nul@
is by a Return instruction.

olws

Again, inspection of the instruction set reveals that only th@
a*(n) and Return instructions alter p. Now if p = priv then alb
a*(n) instruction with a = @ will set p by

p=M(@,2)
= priv
for either value of a. Thus p cannot be reset to null except by
Return.

/v 112/ 112108 e/ ulwoo/wo:

Q.ed.
Theorem 5
Suppose the machine started with p = null and that it ha§

halted. Then the system is secure.

q LS

For the program’s mull path cannot depend on any pri¥
information. While in priv state, it cannot change any n
reglster by Theorem 2. While in null state it cannot sense any-
priv information without moving into pnv state by Theorem 33
But, by hypothesis, it has halted and is in null state; hence it
must have ‘returned’ by Theorem 4. After a return it mu
continue executing the program immediately after the a*(nI‘,
instruction and thus continue along the null path. But, smcﬁ
no null registers have been changed this must be 1ndependent
of entry into the priv routine. Hence the model is secure by
Theorem 1.

Q.ed.

The halting problem
The hypothesis of Theorem 5 requires that the program halts.
However, the author can arrange that his program does not
halt under certain priv conditions; for example, if a = priv
a*(n) n: go(n)

will loop indefinitely only if a = 0.

In practice this has a serious effect. The system can be
considered as in Fig. 2.

If the author can sit waiting for output (this is not available
until the machine halts) he may be able to observe the non-

145

Customer
priv priv null
output input input
proceéssor
executing
program
Program
null null
nput output
Author
Fig. 2

halting of his program. This assumes that the author can
estimate, ignoring the possibility of programming errors, a
maximum bound on the program’s computation time. In this
way he could extract one bit of information.

Unfortunately, if the priv machine is to have universal com-
puting power then it is impossible to improve on this. For the
program is an arbitrary algorithm supplied by the author. If
the hardware design could provide more security then it could
determine whether the program will halt. But this contradicts
the halting theorem for universal machines.

A simplification
A simplification of the model is possible in this particular case
and may be of use in a practical design. Effectively the machine
exists in two states, priv and null; it should be possible to
provide a direct switch between them.

If the a*(n) instruction was replaced by an enter(z) instruction
(that saved p, jumped to n and set p = priv) and the return
instruction retained to restore p and set p = null then the code

enter(n) n:a-(m)
Return
m:
is identical to the effect of a*(m). The enter(n) instruction is
equivalent to an a*(n) where a = @ and a = priv.

Thus these instructions are equivalent and can be defined in
terms of one another. The simpler link instruction was not
adopted because it is a special case, taking advantage of the
bi-valued matrix M. The a*(n) instruction can be extended for
any multi-valued matrix M and its properties are defined
entirely by M. It therefore provides a general solution that
should be applicable to other cases.

The general purpose register problem

The majority of practical computers have some general regis-
ters. From the use of fixed data marks it might seem that these
registers would have to be pre-allocated to priv or null data.
This would mean, for example, that programs would have to
be re-written to act on priv and null data, an unsatisfactory
state of affairs.

A seemingly more sensible approach to the problem would be
to allow variable data marks; that is the data mark of a result
is determined by the data marks of the operands, i.e.

a:=b+c
a:=M®,c)

This would give rise to the following instruction set

146

a a:=a+1;a:=M(@,p)

a~(n) if a= @ then (if p = M(a, p) then goto n fi)
else(@:=a—1;a:= M@, p)i

a*(n) if a = 0 then (stack(p, p); p := M(a, p); g0to n)
else(@:=a—1;a:= M(a,p)fi

Return p, p := unstack()

Halt if p = null then halt i

Using this instruction set it is possible to demonstrate that the
model is not secure. Consider the following program where
register a contains @ or 1 and a = priv. Registers b and c are
free with both b and ¢ set to null. Initially p = null.

1 b°

2 c°

3 a*(n)

4 c*(m)
10 n: ¢
11 Return
12 m: b
13 Return

Examination of the above program will show that there are
only two control paths through the program represented by the
following two tables:

l.a=90
path p a a b b c c
1 5° pul @ priv. O pul ? ?
2 ¢ pull @ priv. 0 pull ¢ nul
3 a*(n) null QO priv. 0 null 0 null
n: 10 ¢ priv. @ priv. O mull 1 priv
11 R priv. 0 priv Q0 null 1 priv
4 c*(m) null @ priv. QO null @ priv
The exit condition is 5 = @; b = null
2.a=1
. path p a a b b c ¢
1 5° npul 1 priv. 0 null ??
2 ° nul 1 priv. O pull @ mnul
3 a*(n) null @ priv. 0 null 0 null
4 c*(m) null @ priv. 0 null 0 null
m: 12 b null @ priv 1 nul @ nul
13 R null 0 priv 1 null ¢ null

Here the exit conditionis b = 1, b = null.

Thus the program has copied a to b and removed the mark.
So the system is not secure. This counter-example does not work
in the case of fixed data marks for if ¢ = null always, then the ¢’
instruction at n (line 10) would have no effect, so that the test
at line 4 would always succeed leaving b = 1 in both cases.

It is not clear from the above example whether the failure is
due to variable data marks or the instruction set chosen.
However, Theorem 2 does not hold for variable data marks
since it is now possible to alter a null register from priv state,
although the result is marked priv. Hence, in the current frame-
work, variable data marks are unsatisfactory.

Computation limitation
The section on halting suggests that total security is impossible.
But consider the machine augmented with two counters i,
and i,. Every instruction has the effect of decrementing either
i, if p = mull or i, if p = priv. When i, is zero a ‘return’ is
forced and when i, is zero the machine halts. Attempts to set
p = priv will fail if i, = 0. Priv and null modes ‘tick’
independently.

If a halt is forced it must occur while p = null since i, is only
decremented in this case. However, now the customer can be
certain that the program will halt within time ¢ where

t=i, +i,

The Computer Journal

20z udy 61 U0 188Nn6 AQ | L¥SGZS/E Y L/2/L L /B10n4e/|ufoo/Wwod"dno-oiepED.//:SARY W) PaPEo|umoQ

and so this system is totally secure by Theorem 5.

On casual inspection this may seem to contradict the remarks
on halting. However, the modified priv machine is not universal
and thus the halting theorem no longer applies. (The extra
security comes from the customer having a bound on the
computation time which was previously known only to the
author). In practice this does not matter since the values of
i, and i, can be set so that the program has sufficient time to
complete its task.

These registers correspond to clocks in real machines. Note
that the value of i, must only be accessible while the processor
is marked priv or priv information can be extracted. Nor must

References

the computation time be accessible externally.

Acknowledgements

I would like to thank Dr. R. M. Needham for his constant help
and encouragement throughout the development of these ideas.
I am also grateful to many members of the Computer Labor-
atory for comments and discussions, in particular Professor
M. V. Wilkes for reading and commenting on the paper, Dr.
J. K. M. Moody for checking the theorems and Mr. W. D.
Manville for several useful comments including a discussion
on the general register problem.

GraHAM, G. S., and DENNING, P. J. (1972). Protection—Principles and Practice, AFIPS conference publications, Vol. 42, p. 417.
MinsKY, M. L. (1967). Computation; Finite and Infinite Machines, Prentice-Hall.
NeepHAM, R. M. (1972). Protection Systems and Protection Implementations, AFIPS conference publications, Vol. 41, p. 571.

Book reviews

Computer programs for computational assistance in the study of
linear control theory, by J. L. Melsa and S. K. Jones, 1973;
198 pages. (McGraw Hill, £1-95, Second edition)

The stated goal of the book is to provide a set of computer codes
which solve many of the computational problems of linear control
theory. The book achieves this objective, at least so far as is possible
in 198 pages. The volume provides a valuable basic set of routines
for control system design and would be very useful to anyone wishing
to try these methods in practice.

Programs are contained in the book for the following problems:
time response computation, sensitivity analysis, modal control,
observer design, series compensation, solution of Riccati equations,
decoupling, frequency response, root locus and partial fraction
expansions. The second edition of the book contains a number of
useful additional features which were not in the earlier version. Five
new design programs have been added and there is a new chapter
containing worked solutions to some typical design problems.

The routines all appear to work according to specification and there
are few remaining program errors. The input and output data format
has been carefully explained and there should be no difficulty getting
the programs to work even for someone with limited computer
knowledge. For anyone wishing to modify or improve the programs,
it is unfortunate that few comments have been included and that
there are no flowcharts. However, this extra information would have
undoubtably increased the cost of the book without helping the
average reader.

The main limitation of the programs is that they are restricted to
low order systems. This is largely a consequence of the fact that,
in every case where a choice existed, the authors favoured a simple
algorithm rather than a complicated one with superior numerical
properties. However, the programs will undoubtedly provide
satisfactory solutions in simple cases and in more complex situations
the programs at least provide a useful first step before resorting to
the more specialised techniques.

The book is highly recommended to both teachers of control theory
and practising engineers. At £1-95 the book is extremely good value

for money.
G. C. GoopwiN (London)

Volume 17 Number 2

Short notice

Computer Applications and Facilities for Science and Technology il
the Asian and Pacific Region X

Epeojumoq

wo..

This is the fourth in a series of directories published by the Regist
of Scientific and Technical Services, Jamieson ACT, Australiag
whose aim is to encourage cooperation between scientific and techg
nical groups working in agriculture, forestry, fisheries, engineeringy
mining, industry, computing and other fields associated witlg
development in the countries agreeing to be included in thé&
directories. 2
The directory is in three parts, the first containing information on
computer installations, the second on computer users, and the third
being two indexes: a subject index to part 2 and an organisationa}
index to all the groups listed. 3
The countries taking part are Australia, China (Taiwan), Japan;
Korea, Malaysia, New Zealand, The Philippines and Thailand:
Organisations are listed alphabetically within subdivisions of
Government, University and private sector, under the country.
Interesting facts emerge on perusing this directory, such as that th&
biggest staffs are employed by the Victoria University of Wellington;:
New Zealand, with 700 professionals providing a computing service:
and training to students and graduates, the Taiwan Sugar Corpory
ation, with 3,301 professionals in a total of 6,984 to provide a generak
computing service and data acquisition, and the Taiwan Ministry
Communications, with a staff of 10,230 of which 8,318 are profess
sional, giving a computing service and administrative training. &
At the other end of the scale, the Australian Government ha$
several departments run with two professional staff out of a total
of two, some university departments in Australia, New Zealand and
Japan have only two staff, and an engineers computer bureau if
Wellington has a staff of only two professionals to provide a complete:
computing service for engineers. §
The directory, priced at A$10.00, is compiled and published by the:
Registry of Scientific and Technical Services and distributed by the
Queensland University Press, St Lucia, Queensland, and the
Australian Government Publishing Service, Canberra, Australia.

LL/

147

