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An algorithm is presented for verifying whether systems of parallel processes behave in the way
expected of them. The basis of the algorithm is the combination of state transitions of individual
processes into state transitions of the complete system. The algorithm is realised in a program whose
input is a simple formalised description of each process and whose output gives details of the
behaviour of the system as a whole. By way of illustration the algorithm is used to validate a solu-

tion to the readers and writers problem.
(Received February 1973)

1. Introduction

A good deal of attention has recently been paid, (e.g. Hansen,
1972; Habermann, 1972; Gilbert and Chandler, 1972), to the
proof of correctness of systems of parallel processes. The
focussing of attention has been caused by the aesthetic appeal
of the problem and by its practical application in the construc-
tion of logically correct operating systems.

Habermann’s work is confined to systems in which processes
are synchronised by semaphores (Dijkstra, 1965). He estab-
lishes a relation which is invariant under P- or V-operations on
semaphores, and uses it to deduce properties of the system
under consideration. This approach is attractive, but is limited
by the fact that a separate proof must be constructed for every
system and by the difficulty of applying the technique to large
systems.

Gilbert and Chandler’s approach is to infer the behaviour of
the system as a whole from the specification of each of its
constituent processes. The technique is to formulate state
transition rules for each process, and then to combine these
rules to obtain transition rules for the complete system. The
attractiveness of the method lies in the possibility of automating
the procedures by which transition rules are combined and by
which the composite states of the complete system are examined.
However, limitations arise from the way in which the state
transition rules must be specified: explicit rules must be given
for all transformations which alter the value of a state variable,
so that variables with a potentially infinite set of values (e.g.
semaphores, whose values can be arbitrarily large) require an
infinite set of transition rules. In practice one ‘knows’ that
variables will take on no more than a small subset of their
possible values, but this is to assume the very properties of the
system which one is trying to prove.

The algorithm presented in this paper is a generalisation of
Gilbert and Chandler’s technique which overcomes these
deficiencies. Individual state transitions are expressed implicitly,
so that the number of transition rules is always finite and gener-
ally small. This ensures that the computation and analysis of
the composite states of the entire system can be performed in an
acceptable period of time. Details of program size and com-
putation time for the analysis of a typical system are given in
Section 4.

2. Basis of the algorithm

The algorithm is based on the combination of state transition
rules for individual processes, specified in isolation, into state
transition rules for the system of processes as a whole. The two
important features of the algorithm are

1. The way in which the individual transition rules are
specified.

2. The way in which the transition rules are combined.
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The first of these features is described in Section 2.1, the second
in Section 2.2.

2.1. Partial transformations and partial rules
We postulate a system consisting of a number of processes
P, P,, ..., P,whichact on a set of data variables W, W,, .. .,
W,. A particular set of values of the data variables is represented
by a k-tuple w = (wy, w,, ..., w,), and W = {w} is the set of
all such possible k-tuples.
The points in the progress of a process P; between which it
tests or modifies the value of a data variable are categorised as
states of P;. Thus a process moves from one state to another by
testing or modifying the value of a variable (e.g. by operating
on a semaphore). We assume a finite number of states for each
process, and denote the state set of P; by S; = {81, Sizs « + -
§ iny } .

The transition of P; from one state to the next is specified by

defining a partial transformation

fi:Six W2 S;.
That is, a partial transformation is a partial function of the
current state and the data variables which yields the next state
of the process. The partiality of the function is due to the fact
that a transition out of a particular state will in general be
possible only when the data variables have certain values.

A ‘side-effect’ of a partial transformation is the possible
alteration in the value of some of the variables. If, for example,
one of the variables is a semaphore, and a partial transform-
ation depends on a P-operation on it, then the side effect isa
possible decrement of its value. Hence we say that the partial
transformation f; is accompanied by the variable transformation

gi:Six WL W.
Thus g; shows the effect on the data variables corresponding to
a change of state of process P;.

A change of state of P;, together with the corresponding
changes in the values of the data variables, is completely
specified by combining the appropriate partial transformation
with the accompanying variable transformation in a partial

transition
Ti:S; x WS, x W

Ti(s;, W) = (fi(si» W), 8(51, W) -

The set of all (s;, w) for which T; is defined gives a set of
partial rules for P; of the form

(si, W) - (fi(si’ W), gi(sb “)) .

Each partial rule is an instance of a partial transition.

Since each partial rule operates on a state of only one process,
the set of partial rules for each process can be written down in
isolation, with no regard to the behaviour of any other process.

where
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The set of partial rules is in fact a formalised program executed
by the process.

For example, suppose the system contains a cyclic process Q
which passes through a critical section (Dijkstra, 1965)
protected by a mutual exclusion semaphore sem. Then the
program obeyed by Q may be written

L: P(sem);
critical section
V(sem);
goto L;
and we may conveniently identify two states of Q: namely,
state 0 when Q is outside the critical section, and state 1 when
it is inside the critical section. The partial transformation on
state O is a function conditional on the value of sem, and the
corresponding variable transformation is a possible decrement
of sem. The partial transformation on state 1 is an unconditional
transition to state 0, with associated variable transformation
an increment of sem.
Hence the partial rules for Q, assuming that sem is the only
data variable, are

(0)(serm) — (fo(0, sem))(24(0, sem))
(D(sem) — (fo(1, sem))(go(1, sem))

Jo(0, sem) = if sem = O then O else 1
Jo(1,sem) = 0

80(0, sem) = if sem = O then O else sem — 1
8o(1, sem) = sem + 1

where

Functions similar to f, and g,. which are derived from
operations on semaphores, occur so frequently in practice that
they are accorded special names and built into the programmed
form of the algorithm as described in Section 3.

2.2. Composite states and composite transformations
Given the set of processes {P;} each with state set S;, it is
possible to define a state set S = S; x S, x ... x S, for the
set of processes as a whole. The composite state at any instant
of the entire system of processes and data variables is an
element of the set S x W; that is, it is of the form

(S1s 82y« v oy S (Wi, Way o o oy Wp) .«

The composite state may be changed by the change of state
of any individual process together with any corresponding
change to the data variables. Specifically, the composite state
is changed according to the relation

T:Sx W->Sx W
defined by

(s, w) -
such that
D) Vy#i,s5=s;
@) 5, = filsn W)
3) W = gisi, W)

Condition (1) implies that only one process P; may change
state at a time; conditions (2) and (3) imply that the change
of state of P; and the corresponding changes to the data vari-
ables are produced by the application of one of the partial
rules for P;.

It will be noted that condition (1) disallows the possibility of
several processes changing state at the same instant. The
relaxation of this restriction is discussed in Section 5. It can
however, be remarked that the condition is not unrepresen-
tative of many real-life situations; in particular it applies
when:

(s w') if, and only if, i(1 < i < n)

(a) all processes share a single processor, or
(b) processes running on several processors communicate via
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variables (e.g. semaphores or status bits) to which access
is restricted by hardware to a single process at a time.

A change of composite state (s, w) — (s w') is called a
composite transformation. The non-determinacy of the system
is reflected in the fact that T'is a relation rather than a function,
so that a composite state may have more than one successor
under 7.

Given an initial composite state it is possible to apply system-
atically the partial rules of all processes to generate a state
graph whose arcs are the possible composite transformations
and whose nodes are the attainable composite states. Propertles
of the system are deduced by analysing the state graph; in
particular:

(a) the finiteness of the graph is a necessary condition for the
system to be well formed.

(b) the existence of ‘cul-de-sac’ nodes indicates the existence
of potential deadlock states.

(¢) the attainability of any composite state is indicated by the
existence of the corresponding node.

3. Implementation
A successful implementation of the algorithm depends largel
on the ease with which composite states and partial rules can
be expressed. To facilitate expression, standard names, listed
below, are assigned to commonly occurring partial and variable
transformations. Variable values or states which are not reE
evant to a partial rule are denoted by x. (Thus x, occurring as Q
variable value means ‘any non-specified value’, and as a stat@
means ‘any non-specified state’). Variable transformatlons arg
split into their component parts (one component per varlableﬁ
and all null components are denoted by N. Implicit parameters
of partial transformations, or of components of varlable
transformations, (i.e. the state or variable being transformed);
are omitted from statements of partial rules. Other parameters
are written as subscripts to the transformation names (see the
example below). States of individual processes are generall%
numbered 0, 1, 2, .

The standard transformation names are:

1. PV: a variable transformation corresponding to a P3
operatlon on a semaphore (this is the first instance of g@
in the example of Section 2.1).

2. PS: a partial transformation of a state dependent on g
P-operation on a semaphore (the first instance of f, if
the example) Parameters are the index number of th&
semaphore in the set of variables and the transformed sta@
if the P-operation is successful. ﬁ

3. V: a variable transformation correspondmg to a V-opeP
ation on a semaphore (the second instance of g, in th@
example).

4. TV: a variable transformation corresponding to a test og
the value of the variable. Parameters are the value against
which to test for equality, the new value if the test succeeds,
and the new value if the test fails.

5. TS: a partial transformation dependent on the testing of
the value of some variable. Parameters are as for TV, plus
the index number of the variable to be tested.

6. D: a transformation which decrements the state number
or variable to which it is applied.
7. I: as D, but increment instead of decrement.
8. N: a null transformation (identity function).
To illustrate this notation we take the example of two cyclic
processes P, and P, each passing through a critical section
protected by a single semaphore. The code obeyed by P, and

P,, and the states entered, are the same as for process Q in
Section 2.1. The partial rules for each process are identical, viz.:
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Fig. 1 A: composite transformation from rule (1) of P,
B: composite transformation from rule (2) of P,
C: composite transformation from rule (1) of P,
D: composite transformation from rule (2) of P,

(0)(x) = (PSy,)(PV) M
(D) = O)(¥) @

The reader will note the comparatively simple form of these
rules, which are the same as those given earlier for process Q.
The subscripts of the transformation PS refer to the index
number of the semaphore in the set of data variables (it is in
fact the only data variable) and transformed state if the
P-operation is successful.

Application of the partial rules to the initial composite state
(0, 0)(1), in which both processes are outside their critical
sections and the value of the semaphores is 1, yields the state
graph shown in Fig. 1.

Analysis of the graph reassuringly shows that there are no
deadlock states and that the processes are never simultaneously
in their critical sections (composite state (1, 1)(x)).

4. An example of system validation

The algorithm has been implemented as a program written in
POP-2 (Burstall, Collins and Popplestone, 1971), and has been
used to validate several systems of parallel processes. In
particular it has been used in a current research project on
operating system design and to check student solutions to
problems in parallel programming. The program includes as
built-in functions all the commonly occurring transformations
listed in Section 3 and also allows the user to define other
transformations of his own.

To illustrate the action of the program we give as an example
the validation of a recent solution to the readers and writers
problem (Courtois, Heymans, and Parnas, 1971). The problem
is that of a set of ‘readers’ and a set of ‘writers’ who are acces-
sing a common database. Access is to be controlled so that
only one writer may write at a time, and no writers may write
while a reader is reading. Any number of readers may read
simultaneously.

The solution to the problem, with labels inserted to indicate
the delineation of states, is
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Readers Writers
state0 : P(mutex);

statel : readcount := readcount + 1;

state2 : if readcount = 1 then

state3 : P(w);

state4 : V(mutex); state0 : P(w);

state5 : perform reading statel : perform writing
P(mutex); V(w);

state6 : readcount := readcount — 1;

: if readcount = 0 then
state8 : V(w);
: V(mutex);

state7

state9

The data variables are the semaphores mutex and w and the
variable readcount. They will be referred to in that order in
partial rules and composite states.

The partial rules are

Writers

©)Cx, x, x) —»
(PS;,1)(N, PV, N)

M(x, x, x) >

Readers
(0)(x9 X, X) - (PSI,I)(PV9 N, N)

M)(x, x, x) - 2Q)(N, N, I)

@(x, x, x) > (TS5,4,3,4)(NV, N, N)
(3)(x, x, x) = (PS; 4)(N, PV, N)
4)(x, x, x) = (5)(V, N, N)

(5)(x9 X, X) - (PSI,G)(PV’ N) N)
(6)(x, x, x) = (7)(N, N, D)

(M)(x, x, x) = (TS3,0,8,0)(N, N, N)
(8)(x, x, x) = (O)N, V, N)

9)(x, x, x) = (0)V, N, N)
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TS;,1,3,4 means ‘if variable number 3 is equal to 1 then trans-

form to state 3, otherwise transform to state 4.

The system is validated for two readers and two writers, on the

assumption that if it works in this case it will work in all cases.

Part of the console record is given in Fig. 2, which is largely

olwapeoe/:sdny woJj papeo)

ulwoo/woo dno

=

selfexplanatory. The following remarks indicate how theZ
validation proceeds and should be read in conjunction with G

Fig. 2. 3
N
=
2

TYPE "H" FOR HELP WITH BUILT-IN STATE TRANSFORMATIONSQY

OTERWISE TYPE "N". : N g

DO YOU WANT TO DEFINE ANOTHER FUNCTION ? : N

HOY MANY PROCESSES ? ¢ 4
HOW MANY DATA VARIABLES ? ¢ 3
ESTIMATED NOe OF ATTAINABLE COMPOSITE

STATES 2 : 100

HOW MANY PARTIAL RULES FOR PROCESS 1 2?2 : 1@
HOJ MANY PARTIAL RULES FOR PROCESS 2 ? : 10
HOW MANY PARTIAL RULES FOR PROCESS 3 ? : 2
HOYW MANY PARTIAL RULES FOR PROCESS 4 ? : 2

PARTIAL RULES FOR PROCESS 1
LHS OF RULE 1

STATE 2?2 : @

VARIABLES ? ¢ X X X

STATE TRANSFORMATION ? : PS
SEM ? ¢ 1

NEW STATE ? : 1

VARIABLE TRANSFORMATIONS

T1 7?22 PV
T2 ?2: N
T3 ?:N

LHS OF RULE 2

STATE 7 ¢ 1

VARIABLES ? ¢ X X X

STATE TRANSFORMATION ? : 2
VARIABLE TRANSFORMATIONS

T1?2 N
T2 ?2: N
T3 21

LHS OF RULE 3

STATE 2 ¢ 2

VARIABLES ? ¢ X X X

STATE TRANSFORMATION ? ¢ TS
WHICH VARIABLE ? ¢ 3
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WHAT VALUE ? : 1

SUCCESS STATE 2?2 : 3
FAIL STATE ? : 4
VARIABLE TRANSFORMATIONS

T1?2:N
T2 2?23 N
T3 ?2:N

PARTIAL RULES FOR PROCESS 2
SAME AS A PREVIOUS PROCESS ?
WHICH ? ¢ 1

PARTIAL RULES FOR PROCESS 3

SAME AS A PREVIOUS PROCESS 2 ¢ N

LHS OF RULE 1

STATE 2 ¢ @

VARIABLES ? ¢ X X X

STATE TRANSFORMATION ? ¢ PS
SEM ? ¢ 2

NEW STATE ? ¢ 1

VARIABLE TRANSFORMATIONS
TP ?2:¢N

The first two of these are forbidden by the constraints of the
problem, and the program confirms that no such states are
attained. The third is a state we wish to occur, and it can be seen
that the solution does indeed allow states of this form.

Thus the solution is validated in the sense that:

1. the number of attainable states is finite

2. there are no deadlock states

3. forbidden states are not attained, whereas desired states
are attained.

It should be noted that the decomposition into states given
above, which was designed for maximum clarity, is not the only
one possible. For example, state 1 for readers can be eliminated
by defining a new transformation from state O to state 2 which
combines the separate transformations PS and I. This has the
effect of reducing the number of partial rules and composite
states and hence reducing the computation time required for
the validation.

The program, running on a PDP-10 with a mean store access

T27?: PV . ; :

T32:N time of 1.1 microseconds, takes 8 seconds to compile and 21
LHS OF RULE 2 seconds to perform the validation shown in Fig. 2. The size of
3:\2}:355; ; X x x the program is 3K, plus 10K for the POP-2 system, and thg
STATE TRANSFORMATION 2 ¢ @ data area for this run is 1.3K. 6
VARIABLE TRANSFORMATIONS 2
T1?2:N 2
T22:V 5. Conclusion =
T3?2:N P

PARTIAL RULES FOR PROCESS 4 The author feel§ that the algorithm desc_ribed in this paper qa@
SAME AS A PREVIOUS PROCESS 2 : Y be a useful tool in the construction of logically correct operatingz
WHICH ? : 3 systems and real-time control programs. A crucial factor which?
fﬁI’i?gEcDo;PES¥TE STATE 2 3 8 6 2 61 1 B gould limit _its usefulness is the rate at which corpputation tim%?

increases with the number of processes and variables. Currenf;

evidence suggests that the transformation functions in practicés
gg;nfgc? ggg;gz COMPOSITE TRANSITIONS 15 88 are so partial that the number of states and the complexity of’
NONE the state graph are kept within reasonable bounds. Furtheg
research is being undertaken in this area and will be reported; -
in a subsequent paper.

NO. OF ATTAINABLE COMPOSITE STATES 1S S50

HOW MANY STATES OF INTEREST ? : 3
TYPE THEM ONE AT A TIME

t XX11XXX The restriction that only one process may change state at @
NONE ATTAINED time is, as mentioned in Section 2.2, representative of manys
;Joglzx A‘}Tixgz)l; X real-life situations. The restriction may be successively relaxedj,
£ 55X XX XX by allowing simultaneous changes of state which: Q
PRINTING oy AL B AINABLE STATES - (i) involve only disjoint subsets of the variables. N

, (ii) have the same effect on common variables. =
PRINTING OF ALL EFFECTIVE TRANSITIONS 2 : N (iii) have different effects on common variables. &

The last of these relaxations corresponds to the existence o§

‘race conditions’ between processes, and lends another degree OG
indeterminacy, and hence a larger number of successor stategr
Fig. 2 to the system. The effects of making the relaxations are
currently being investigated.

It may be remarked that depending upon how the ‘state’ of & g
process is defined, the algorithm may be used to validate
systems at any level of design; invocation of parts of the
system which have been validated at a low level can be regarded.
as single state transitions at a higher level. S

The algorithm should also be applicable to other fields, sucﬁ
as logic design, where state composition is a major activity.

ANY MORE WITH.THIS SYSTEM ? ¢ N
END OF STATE COMPOSITION

The estimated number of attainable composite states is used
by the program as a check on the size of the state graph. If
more states than this are generated the user is advised that the
system may be ill-formed, and asked if he wishes to revise the
estimate. The initial composite state is (0, 0, 0, 0)(1, 1, 0), i.e.
no readers or writers active and both semaphores set to 1.
States of interest supplied to the program are:

@) (x, x, 1, 1)(x, x, x) : 2 writers active simultaneously

@ii) (5, x, 1, x)(x, x, x) : A reader and a writer active simul- 6, Acknowledgements
taneously I am grateful to my colleagues Dr. J. M. Brady and Dr. J. G.
(iii) (5, 5, x, x)(x, x, x) : 2 readers active simultaneously Laski for their helpful comments on a first draft of this paper.
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