Continuity conditions for spline curves
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The conditions for continuity of direction and curvature at a knot in a vector-valued spline are
derived. A method of normalising tangent vector magnitudes at knots is suggested. Many examples
are displayed of closed spline curves constructed to pass through a series of knots, continuous in
slope and curvature, with the segments normalised. Some of the figures represent shoe components;
all the figures generated are acceptable, whether or not the defining knots are evenly spaced.
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1. Background to the problem

This paper is concerned with the problem of constructing a
smooth aesthetically pleasing curve to pass through an ordered
set of point vectors. A general solution is obtained for vectors
in N-space, although the aesthetic criterion is only meaningful
in the cases N = 2 and N = 3.

The technique has applications in the field of computer-aided
design where it may be necessary to create a curve (for example
the profile of a high heel) which is pleasing to the eye. The
designer is not attempting to approximate to a curve already
specified and so there is no question of minimising some ‘error’
function.

Another case where it is useful to be able to construct a
smooth curve through a sequence of points is exemplified in
Fig. 1, which represents the outline of an insole. The eye is
capable of imagining a smooth curve through these 22 points,
and a draughtsman might draw one with the aid of a set of
French curves. We seek to generate such a curve by means of an
algorithm which can be thought of as an N-dimensional
French curve. With such an algorithm available, it is not
necessary to specify the whole of the insole outline; it suffices
to specify the 22 point vectors of Fig. 1.

Two cases in particular are considered:

(@) A smooth closed curve passing through the vectors
P,P, Ps,... ,P,P,
(b) A smooth open curve passing through the vectors
Py, P,P,,....P,,
with given directions for the tangent vectors at
P, P,.

The defining vectors Py, Py, ... are known as ‘knots’. In
general the knots are not coplanar, and the curve is 3-dimen-
sional. In the special case where all the knots are coplanar, the
smooth curve will lie completely in the same plane, and the
problem reduces to a 2-dimensional one.

The method of solution adopted is to derive a vector-valued
spline curve made up of n segments, each segment linking two
consecutive knots. A general account of the theory of splines is
given by Ahlberg et al. (1967). The requirement that the spline
should be smooth is interpreted to mean that:

(a) The direction of the tangent vector should be continuous
at the knots.

(b) The curvature vector should be continuous at the knots
(in magnitude as well as direction).

These two conditions are generally sufficient to ensure that
the curve appears smooth at a knot, in the sense that the eye
cannot detect the position of the knot on the resulting com-
posite curve. Whereas a discontinuity in tangent direction is
obvious as a corner, and a discontinuity in the curvature
vector can be detected by a practised eye, it seems that a
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discontinuity in the torsion or the rate of change of curvature
of a curve is not visible.

The simplest form of splme segment which permits these
requirements to be satisfied is- the parametric cubic, and iy
practice a parametric cubic turns out to be adequate for mosE,
applications.

Ferguson (1964) has described one way in which these cong
tinuity conditions can be realised—but the Ferguson condltlon&
generate curves which are aesthetically unacceptable unless thes
knot vectors are approximately equally spaced. The FergusorE
method is to take the parametric intervals between knots asn
uniform, and to demand that the tangent vectors be contmuouq&g
(in magnitude as well as in direction) at the knots. When thé
knot vectors are unequally spaced, the result is that the curveB
tends to cut corners where the knot vectors are widely spaced,
and to develop unwanted loops and overshoots where the knots
vectors are closely spaced. These defects can be overcome to3
some extent by taking the parametric interval between knots asy
proportional to chord length, but the results are still unsatls-g
factory if any one segment of the curve turns through a largé
angle.

The present paper derives a method for generating an accept-m
able solution, whether or not the knot sections are equally~
spaced. The method depends on intrinsic properties of the curvell’
(unit tangent vector, curvature vector) and not on the particular?
parametrisation adopted.
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2. Tangent and curvature vectors of a parametric curve
Let P be a vector-valued function such that P(u) is a pomg
vector tracing out a space curve as u is varied, and let s(u)g
represent the cumulative arc length measured along the curveb
dP/ds is the unit tangent vector

dP |ds >
dPlds = = [— = P'[s’
/ duf du / %
where primes denote differentiation w.r.t. u. Therefore §
sl p— IPII
dP/ds = P'[|P’|
The curvature vector is
+ + +
+
+ + +
+ +
+ +
+
+ +
+ + ‘ +
., o+ 7 *
Fig. 1 Insole shape defined by 22 points
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d*P|ds* = kn,
where « is the curvature and » the unit normal.

We wish to express this vector as a function of P, not involving
s.

d (P d (P
d?Plds* = = = = =
Ja (IP 1) i (m)/ d

rpap
(1 - - ) e @

If A4 is any vector

= |4
and by differentiation
A.A" = |A| d|A|/du

therefore writing P’ for A, the expression (1) becomes

&P P PP, o

ds*  P'.P' (P'.P’)?

This can be written more neatly as
d2

kn= -7 = P’ x (P" x P)/[(P’'.P")]?
(2) is the expression we need for the curvature vector involving
only the derivatives of P with respect to u.

3. Continuity conditions
Suppose a spline curve has a knot at u = u, and is represented
by
P=Piu) (u<u)
P = Pyu) (u=>up)
subject to the continuity condition P,(uy) = P,(u,).
For continuity of slope, the direction of the tangent vector
must be continuous, but not necessarily its magnitude.

Pj(uy) = hP[(u,) where h is a positive scalar

(€)

For continuity of curvature, the curvature vector kn must be
continuous and, therefore, from equation (2) at the point
u= uo:

Py _(P{P)P| _ P; _ (P;.PPP]
P;.P; (P;.P))* P,;.P;, (P,;.P)*

Substitute P, = AP, and multiply by (P;.P,)

pr_ (PL.POP! Py K(P{.P)P]

Y TPILP] R h*(P|.P))
2pr pr _ pr pn
WP1 — Py = [#*P;.P] — P,.P; P! @
PP/
The right-hand side of (4) is a scalar multiple of PJ, say kP].
Then
h*P? — Py = kP] )

Equation (4) becomes an identity when h*P} — kP is sub-
stituted for P. Thus there are no restrictions on the value of k
in equation (5), which is an arbitrary scalar.

3.1. Summary of continuity conditions
Condition for continuity of tangent direction at u = u,:

P'(uf) = hP'(uy) h>0 A3)
Condition for continuity of curvature vector at u = u:
P"(u}). = W*P"(uy) — kP'(uy) k arbitrary ©)

Ferguson (1964) specifies # = 1 and k = 0 as conditions for
continuity of slope and curvature ; we see that they are sufficient
but not necessary and are, in fact, unduly restrictive.

Sabin (1969) recognises that & is arbitrary, but does not con-
sider the case & # 1 in the context of curvature continuity.
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4. Normalisation of a cubic spline segment
We now turn from considering continuity at the knots of a
spline to the condition for ‘fairness’ between the knots, and
we confine our attention to cubic splines, in which P(u) is a
cubic polynomial in u.
Generally,

Pu) =

where Ry, R,, R, and Rj; are vector coeflicients.

If the segment runs from the point A4 (position vector P,) to
the point B (position vector Pg) while u runs from O to 1, then
Py =Ry
PB=R0+R1+R2+R3
If further we write P ] for the value of dP/du at the point 4, and

P, for dP/du at the point B,

P,=R
P;=R; + 2R, + 3R,
Equation (6) can be written as
P@u) =P, + uP; + u*(3(Pg — P,) — 2P, — P}) +
w(P,+ Py —2(Ps—Py) (1)

Thus the cubic spline segment is uniquely determined by the &
point vectors P, and Py and the tangent vectors P, and Pj at =

the two ends (see Fig. 2).

R, + uR, + u’R, + u’R, ©)

4.1. The magnitudes of tangent vectors

The directions of the vectors P and P are the directions of the
tangents at 4 and B respectlvely of the curve P(u). It is not
intuitively obvious what geometrical significance is to be
attached to the magnitudes of the tangent vectors at A and B.
Forrest (1968) has studied this question. If we fix P, and P,,
and the directions of the tangent vectors P, and Py, then
equation (7) represents a two-parameter famlly of curves.
Fig. 3 illustrates some members of this family for the 2-
dimensional case when P and P are coplanar, each makmg
an angle of 45° with P,, - P, erte W for |Pgy — P,|, the=

distance between 4 and B.
For curve:
@) 1P, and | P4 are small compared with W
(i) |P,] and |P4| are comparable with W
(iii) |P 4| and |P;| are large compared with W

(iv) |P/| is large and |P}| is small compared with W.
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We note that the larger | P | is, the longer the arc persists in 1ts<Q

initial direction before curving away towards B. This is to be
expected, because |P'| = ds/du, and a large value for |P’ |
implies that the arc length is large for a small increment in .
Intuitively, curve (ii) looks the smoothest or ‘fairest’ curve,
where the spline segment 4 B is close to a circular arc. (A circular =.
arc cannot be represented exactly by a parametric cubic; and 3
a parametric quadratic is always a parabola).

In Fig. 4, P, and P are shown each making an angle 6 with
the line AB, and AQB is a circular arc also making an angle 6

Fig. 2 Spline segment linking 4 and B with given tangent vectors
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Fig. 3 Effect of varying tangent magnitudés at A and B

with the chord AB. If a symmetrical cubic spline segment
(equation (7) with |P| = |Pjy]) is to pass through Q, it is easy
to show that

P}l =[P4l = 2W[(1 + cos ) ®

This is curve (ii) of Fig. 3; it is a reasonable approximation to
the circular arc AQB, and lies outside it, except where it
touches at A, Q and B.

Fig. 5 is a generalisation of Fig. 4 in which P, makes an angle
0, and P a smaller angle 0 with AB.
The “fair’ curve is one which curves away rapidly from A and
therefore |P | ought to be less than |Pj|.

A simple generalisation of equation (8) is:

|P4l = 2W/[1 + acos O + (1 — o) cos 6] ©)

|Pjl = 2W/[1 + acos O, + (1 — o) cos O]

where a is some constant between 0-5 and 1.

The formulae reduce to (8) in the symmetrical case 0, = 0p;
furthermore the quantities W, 0, and 0y are all well-defined
also in the 3-dimensional case when P/ and P are not coplanar.

In a previous paper (Manning, 1972) the value « = 1 was
suggested, but this has the disadvantage that a tangent vector
becomes infinite when either 6, or 0 approaches 180°.

To decide on the most appropriate value for a, series of plane
curves were plotted for various combinations of 6, 05 and a.
The most acceptable curves (admittedly a subjective judgement)
were generated for values of o close to 2/3. Accordingly the
formulae (9) have been adopted for defining the magnitudes of
P, and Pj, with a = 2/3.

The tangent vectors (and the spline segments) are now said to
be normalised.

5. Curve fitting—closed curve
Suppose we are given a series of n knots

PP, ...,P,_,,P,

and we wish to construct a smooth closed curve linking them,

the composite curve being made from n cubic spline segments.
For convenience we define

Py =P, P,y =P
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(i.e. indices are to be computed modulo 7).

Let T be the unit tangent vector at the point P;, and let /; and
r; be the magnitudes of the tangent vectors to the left and right
of P; respectively (Fig. 6). _

By differentiating equation (7) twice and putting u = 1 we
obtain the following expression for P” at the point P;™:

"‘6(}’l - Pi—'l) + 2ri_1Ti_1 + 4liTi
Similarly P” at the point P;* is:
6(Piyq — P) — 4r,T; — 214 1Ty

Substituting these expressions for P} and P respectively in
equation (5), and noting that # must be replaced by r;/l;, the
ratio of the magnitudes of the tangent vectors either side of the
knot P, we obtain the condition for curvature continuity at P; as

K.T; = 3{r’(P; — Pi—y) + I}(Pixy — P)} —

g wo.J; papeojumoq

sdp

rioat?Tioy — i1 Thuy G=1,...,n (10)
where K; is another arbitrary scalar.
The normalising conditions are (¢f. equation (9))
Lo 2(Piss — P
i+1 = P —P)
L+ GT,+1T ). _+1__}
{ Gt 3Te) 17, = P))
. 2(Piry = P
' (Pisy — P-)} :
1 + (3T; Ty). - “ELG=1,...,n) (1)
{ GTis 3103, =)
If all vectors are 3-dimensional, these are 5n equations in 5n
unknowns
Lyoouloroyecotu-, Ky oo 5 Ky Ty oo 5 Ty

olwepes)/

o

(Note that T is a unit tangent and has only two independen
components.)
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Fig. 6 Section of spline showing continuity of tangent vector direction,
but not magnitude, at knot P;

183



Thus the restrictions are just sufficient in number to define the
composite curve.

Formally, equations (10) and (11) apply to vectors in N-
dimensional space. Since, however, a cubic spline segment lies
in a 3-space, cubic splines are not suitable for constructing
curves in N-space, when N > 3.

6. Computational algorithm

A solution of equations (10) and (11) can be arrived at iter-

atively by the following algorithm:

1. Choose reasonable initial values for the unit tangents T;
(e.g. set T, parallel to P;., — P;_,).

2. Calculate the tangent magnitudes /; and r; using equation
(11).

3. Insert these values of /;, r;, T; in the right-hand side of
equation (10) and so calculate new values for the unit
tangents T;.

4. Replace T; by T..

5. Repeat stages 2 and 3 and 4 until the process converges
(see Section 8).

There is one difficulty which concerns the constants K;. We
are not interested in the magnitude of K; but we do need to
know its sign to derive the ‘correct’ sense for the unit tangent
T. If the vectors T;_,,T;, Tiyy, Pivy — P, P, — P;_, all
make small angles with one another (as in Fig. 6), then K; > 0
as can be seen from equation (10) in conjunction with the
normalising equation (11). If we are trying to fit a fair curve
without unnecessary loops, curlicues and other violent changes
of direction, it is possible to define K; as a positive scalar.
Alternatively, we can define K| such as to make T;. T; > 0, thus
ensuring that the direction of T; does not change by more than
90° with each iteration.

Usually, both methods lead to the same result, but there are
exceptions, as will be seen, where they lead to different results.

Fig. 7 Smooth curve through four points at the corners of a
rectangle

Fig. 8 Quasi-ellipse defined by six knots

Fig. 9 Oblate circle, not resembling an ellipse

Fig. 10 Oval through 5 knots

Fig. 11 Insole through 22 knots
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Fig. 12 Curve defined by 5 knots
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Fig. 13 Projections of space curve defined by four knots
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Fig. 14 Projections of ‘tennis-ball’ seam
7 7
8 6 8
T2 472 B B B
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Fig. 15 Ambiguous case—Two splines through the same eight knots,
both with continuity of slope and curvature

7. Applications

The equations (10) and (11) generally define a smooth curve
through a set of points in two or three dimensions. Continuity
of curvature is assured, and therefore the method does not
require the points to be even approximately evenly spaced;
for example Fig. 7 shows the curve defined by four knots at
the corners of a rectangle; the result approximates to a circle. If
we require an ellipse passing through the same four knots,
two extra knots must be added at the ends of the major axis,
as in Fig. 8. If instead two knots are added at the ends of the
minor axis (Fig. 9) the resulting curve bears no resemblance to
an ellipse. Evidently, if the general shape of the curve is
known, then the defining points must be more closely spaced
in regions of high curvature. The figures tend to be character-
ised by bold, sweeping curves, as in the oval (Fig. 10) defined
by five knots. Fig. 11 is the result of applying the algorithm to
the insole shape (Fig. 1).

Fig. 12 is an example of a lune defined by five knots.

Atleast four knots are needed to define a twisted 3-dimensional
curve. Fig. 13(a) and (b) show two projections of a curve

through the points o
2

A (a,0, b) 5

C (—a, b, 0) . 3 3

E (a,0, —b) with b/a = 55/24 %

G (—a, —b,0) g

The figure has the same general character as the shape of &
seam on a tennis ball (and the ratio b/a = 55/24 was chosen
after measuring an actual tennis ball), but it does not lie on the;
spherical surface x> + y? + z> = a* + b* = r%. If we wish te
construct a curve which truly approximates to a tennis balE.
seam, we need to add four more points lying on the equatorp

B (0,r/V2,r/\/2) 8

D (0,r//2, —r//2) =

F (0, —r/\/2, —1/J/2) 3

H (0, —r/J/2,1[\/2). =

Q

Fig. 14(a) and (b) show the xy and yz projections of this figures
[¢]

whose maximum distance from the spherical surface is 0-003r2

8LIZILY

8. Existence and uniqueness of solutions
The examples in Section 7 demonstrate that the algorithm o&
Section 6 frequently converges to a solution.

There may be cases, however, in which the algorithm does nogg
converge, but none has yet been found. Furthermore, th&
equations (10) and (11) need not have a unique solution—&
trivial example is furnished when there are only two knots Py,
and P, in which case the equations are satisfied by a figurg

Fig. 16 Graded set of insoles

20z Iudy 61
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consisting of two quasi-semicircles, but the figure could lie in
any plane containing P, and P,.

A more interesting example of non-uniqueness is shown in
Fig. 15(a) and (b). Both figures pass through the same eight
(coplanar) knots, and both satisfy equations (10) and (11).
Whereas Fig. 15(a) includes a closed loop, Fig. 15(b) contains
an inlet. This type of ambiguity arises from the ambiguity over
the sign of the constant K;, briefly mentioned at the end of
Section 6. Fig. 15(a) was derived by constraining the constants
K; to be positive, whereas 15(b) was derived by the second
technique mentioned, of choosing the sign of K; so as to
minimise the change of slope at each iteration. The value of K,
is negative for Fig. 15(b). The ambiguity is not a fault in the
method, it is a consequence of the inadequacy of the data:
the eight knots are insufficient to define where the curve is
supposed to go.
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as an elastica, then Fig. 15(b), which has two points of inflexion,
has more strain energy than Fig. 15(a), which has no points of
inflexion.

A typical example of the practical use of the method is dis-
played in Fig. 16, which represents a graded set of insole
patterns. The grading formula is not a proportional enlarge-
ment; Fig. 16 was obtained by applying a grading formula to
the 22 defining knots and refitting a spline curve for each size.

9. Open curves
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minor:
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Book review

Structured programming, by O.-J. Dahl, E. W. Dijkstra and C.A.R.
Hoare, 1972; 220 pages. (Academic Press Inc. (London) Ltd.,
£4-20)

The three monographs in this book explore how a structural view-
point may help in mastering the intellectual processes which mediate
between conceiving and producing a program, thereby simplifying
the tasks of designing, validating and modifying programs. The main
topics of program structuring, data structuring and their relationship
are discussed at a level demanding no more than familiarity with an
ALGOL-like language. Although principally directed at program-
mers and of especial value to programming pedagogues, no-one
connected with computing should fail to benefit from reading it.
Dijkstra’s contribution makes his famous ‘Notes on Structured
Programming’ generally available for the first time. The major
concern is reflection in a program’s structure of its operational
meaning and the imposition on it of a hierarchical structure of
‘virtual’ machines to facilitate due consideration of alternative
programs and proofs of correctness. Lack of space precludes justice
to this monograph, ranging as it does from elements of proving
program correctness to substitution of the conceptual peculiarity of
recursion for the irrelevant efficiency considerations of those suffer-
ing from archaic architecture (which is also mentioned). The
examples, three of them developed in detail, add considerable weight
to the arguments but emphasis on large programs irrespective of
individual abilities is perhaps unfortunate. One might assume that
structured programming is only of especial use when dealing with
such programs. If we define a large program to be one whose size
causes the particular programmer involved conceptual difficulty, then
the general significance of this monograph will be better appreciated.
Hoare deals with the application of similar considerations to data
structuring, starting with the viewpoint that an axiomatisation of
program requirements can serve as an aid to design, comprehension
and correctness proofs. Regrettably, the static version of type is then
presented as though it were the only possibility. Since there are
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typeless and dynamic-type programmers who claim advantage in the%
opportunity to refine their type intentions during coding, an examin-o
ation of the conceptual pros and cons of different notions of typeg
would have been more appropriate. The monograph proceeds tog
discuss unstructured data and five general kinds of structured data3
as well as recursive and sparse data structures. In each case a lucidg
description of the data type and its associated operations is followed3
by a discussion of representations. The axiomatic viewpoint only%
returns to prominence in the final section which is a very readable%.
axiomatised summary of the preceding material. Although the primea
intention is to offer abstract data structures as an aid to program
design, this monograph would usefully serve as a basis for a courseN
on data structures. It is particularly pleasing that representations areoo
discussed without the need to MIX in confusing machlne-levelm
programming.
The final section of the book is Hoare’s refinement (‘restructuring’ ")00
of lectures by Dahl relating SIMULA structuring mechanisms too
<
some concepts which they can model. Whereas the first two mono-o
graphs are essentially language 1ndependent this one is more in them
nature of an introduction to a SIMULA view of program and data
structures. A comparison in terms of conceptual power and clarityi
between label values and SIMULA ‘processes’, to take an example©
at random, would have been more directly pertinent to the apparent%>
aims of this book.
Finally I exhort anyone about to read this book not to dismiss asO
‘obvious’ principles which are eminently sensible—only a conscious™
application of those principles will yield tangible results! The book
serves a most useful purpose in the enunciation and explication of
such principles for programming. It must surely become a classic
of the computing literature and should be read, and preferably
taken to heart, by any programmer claiming a status above that of
‘coder’. Moreover, the need to concentrate on structure extends
over every area of computer science.
Curirr LLoYD (Swansea)
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