Correspondence :

To the Editor
The Computer Journal

Sir
1 have been in trouble with our typing service who complain that my
spelling of ALGORITHM is incorrect. It appears that the Oxford
Dictionary quotes ALGORISM, derived from the name of an Arab
mathematician, and refers to the —ITHM ending as a modern
mis-spelling.
Are we all out of step?
Yours faithfully,

H. A. MARRIOTT
Management Services Manager
Private Communications Division
Standard Telephones and Cables Limited
Maidstone Road
Sidcup
Kent DA14 SHT
13 July 1973

To the Editor
The Computer Journal

Sir
Observations on a decision rule for binary programming

Wyman (1973) has recently formulated a quantitative rule for
deciding between the use of a heuristic and a Balasian-type optimis-
ing algorithm for the solution of a particular class of 0-1 linear
programs. While the decision rule may have some merit if one is
faced with choosing between existing implementations of the
particular heuristic and the particular optimising algorithm
mentioned in the paper for the IBM 360/67 used in the study, it
seems to me to be of little general applicability because:

1. In many cases, the algorithms will not be in the same state of
availability in which case considerations other than the cost of
computer time become important, e.g. the choice may be between
in-house development of a code for the heuristic and hiring an
existing code for the optimising algorithm. In regard to this point,
my own Algol code for Senju and Toyoda’s heuristic occupies some
150 statements including input-output whereas my Algol code
(Proll, 1971) for a Balasian-type algorithm with no surrogate
constraint feature but with a heuristic start procedure occupies
approximately 370 statements and has a considerably more com-
plicated structure. Development costs for the two codes could thus
be expected to be very different. The significance of this could
depend on whether the problem to be solved is of a one-off or re-
current nature and whether the chosen technique has other potential
uses.

2. The timing predictions which form one component of the
decision rule are both machine and implementation dependent.
Assuming both algorithms to be implemented in a high level
language, the timing predictions for the heuristic and optimising
algorithm may be affected to a different degree by the efficiency of the
object code generated by the compiler. Consequently the cost of and
time involved in establishing the prediction equations may need to
be considered if one is contemplating using this rule.

3. Wyman’s predictors are based on a series of experiments in
which each constraint in a particular problem has the same degree
of slackness. It is hardly to be expected that this will be the case in
practice but no indication of the effect of variations of slackness in
the constraints has been given. For Petersen’s problems 3, 4 and 5
(Petersen, 1967) which have factor values within the ranges used in
the study, the following results were obtained:

Range of Zo/Zu Zo|Zu

Problem B C Slackness Predicted Actual
P3 10 70-8 67-0-769 0-793 0-777
P4 10 571 50-9-72-4 0-681 0-707
P5 10 70-7 60-9-85-8 0-781 0-800

Whilst the differences between actual and predicted values in these
cases are not so great as to make one discard the given predictor,
further testing of the regression model is surely necessary.

4, The decision rule is critically dependent upon the predicted ratio

Volume 17 Number 2

Zo/Zy and, as Wyman remarks, the regression model ‘has limited
validity for levels of factors B and C beyond the scope of this study.’
To reinforce this remark, I quote the following results for Petersen’s
problems 6 and 7 and the two problems given in Senju and Toyoda’s
paper (Senju and Toyoda, 1968).

Zy|Zu Zy|Zy
Problem A B C Predicted Actual
P6 5 39 67-1 0-805 0-721
P7 5 50 62-8 0-787 0-735
ST1 30 60 367 0-574 0-820-0-888*
ST2 30 60 61-5 0-794 0-921-0-955*

*Z, unknown, range calculated from lower and upper bounds on Z,.
A rule of the type proposed by Wyman seems also to undervalue
Balasian-type optimisers since it assumes that the only information
gained from such an algorithm is a verified optimal solution. In gen-
eral Balasian algorithms yield a sequence of feasible solutions of in-
creasing value and can easily be adapted to find the k best solutions
of the 0-1 linear program. It is also well known that optimal or near
optimal solutions are obtained relatively quickly and that much of
the time taken by such algorithms is in trying to verify the opti-U
mality of a previously obtained solution (Proll, 1971). Thus it seems2
to me that a more relevant comparison between the two techniques>.
might involve the time taken by the Balasian algorithm to obtain a§_
value at least as great as that obtained by the heuristic. 2
Finally, in the last section of his paper, Wyman remarks that it
would be useful to have a heuristic for the general 0-1 linear program%
which could be imbedded in the optimising algorithm. Such a device=
has been constructed (Byrne & Proll, 1969) and has indeed been?
found to accelerate the progress of the algorithm. 3
Yours faithfully,
L. G. ProL
Operational Research Unit
Centre for Computer Studies
University of Leeds
Leeds LS2 9JT
14 August 1973

References
Byrng, J. L., and ProL, L. G. (1969). Initialising Geoffrion’s}
implicit enumeration algorithm for the zero-one linear program<_
ming problem, The Computer Journal, Vol. 12, pp. 381-384.
PererseN, C. C. (1967). Computational experience with variantss
of the Balas algorithm applied to the selection of R and D projectsg
Man. Sci. A13, pp. 736-750.]
ProLL, L. G.(1971). Further evidence for the analysis of algorit $
for the zero-one programming problem, CACM, Vol. 14, pp. 46-47¢;
SEnJU, S., and Tovopa, Y. (1968). An approach to linear prog
gramming with 0-1 variables, Man. Sci. B15, pp. 196-207. P
Wyman, F. P. (1973). Binary programming: A decision rule fog
selecting optimal vs. heuristic techniques, The Computer Journal?.
Vol. 16, pp. 135-140. S

/lulwoo/wod dno-olwSpeoe;/

LL/®

vV 61 U

Mr. Wyman replies: 2
In general, the observations made by L. R. Proll of my recent article:
are quite interesting but I feel that his remarks do not merit characters
isation of the decision rule as being ‘of little general applicability”®
The objective of my paper was to suggest a method of systematically
comparing heuristic to optimising techniques, and not really to
uphold either technique used for illustration as being ultimate in
any sense. The fact that variations in results can occur due to
inefficiencies of programming, compiling, and accuracy of timing
measurement would seem to be rather self-evident.

The extensive evaluation implied by my paper is obviously not to
be recommended for a single application of 0-1 programming, but
rather for a situation of extensive repetitive application as in weekly
truck-routing, vessel-scheduling, airline crew assignment, project
selection, etc. Computer timing is indeed a delicate question. Never-
theless, the basic fact that timings of 0-1 codes are exponentially
related to problem size (number of variables) means optimisation
timings will eventually exceed heuristic timings regardless of machine
implementation, coding, surrogate constraints, etc.

Dr. Proll is correct in indicating that the degree of slack is never the
same for each constraint in reality. I felt that consideration of this

187

factor would have hopelessly overburdened an already extensive
task of experimentation. I can only invite Dr. Proll and others to
illuminate the effect of variable slackness by conducting additional
investigations. My intuitive prediction would be that variation in
slackness would decrease the number of ‘effective’ constraints since
the most severe constraints should dominate the path to optimisation.
Unfortunately the three problems of Petersen presented by Proll do
not provide conclusive evidence one way or the other as to the effect
of variability of slackness.

As stated in the paper the specific regression results are recom-
mended only for problems in the range of the factors B and C as
studied. Rather obviously, regression should be performed over the
ranges of importance to a specific user if larger problems are involved.
The examples shown by Dr. Proll do indeed exhibit a divergence of
Zo/Zy predicted from the Z,/Z, actual. Nevertheless a broader,
systematically generated sample would give us a better idea as to
whether the divergence exhibited is specific to the problems reported
or more general in nature.

Quite frequently, problems in integer programming do not allow
meaningful ‘intermediate’ feasible solutions. This is the case in
problems with equal ¢; values in certain formulations of line balanc-
ing, multi-project scheduling, set covering, and trim loss problems.
"Thus Balasian techniques do not always yield ‘a sequence of feasible
solutions of increasing value’. Nevertheless this is indeed sometimes
the case as Proll points out. There have been several techniques
proposed (and used) for initialising branch-and-bound codes
including the ‘quick-trick’ and linear programming starts of
Geoffrion and Salkin-Spielberg, the heuristics of Holcomb, Lemke-
Spielberg as well as the Byrne and Proll procedure. It would be of

particular interest to see a systematic comparison of all these tech-

niques with regard to their ability to find a feasible solution quickly.
However, I strongly suspect they would nearly always outperform
the original Balasian search for feasibility since it was not designed
for special efficiency. It would also be interesting to see a comparison
of the techniques’ capacity to reduce final optimisation times. Other
promising avenues of research include applying 0-1 heuristic tech-
niques to general integer programming (e.g. the Senju-Toyoda
heuristic in Kochberger, McCarl, Wyman (1973) and the Byrne-
Proll heuristic in Bedenbender (1972)), and the efficiency of alterna-
tive Balasian codes on specific problem classes (Patterson, 1973).
The main point of my paper is really that a feasible solution is
frequently identical to an optimal solution at least in the eyes of a
manager, if not in point of fact. Hence there are circumstances
where the use of heuristics needs no apology and in fact may be
economically superior to the use of optimising algorithms.

References

BEDENBENDER, R. J. (1972). General Integer Programming: A
Heuristic Algorithm. Unpublished MBA Paper, Pennsylvania
State University.

Horcoms, B. D. (1968). Zero-One Integer Programming with
Heuristics, IBM contributed program (360D-15.2.011).

KOCHBERGER, G. A., McCARL, B. A., and WyMmaN, F. P. (1973). A
Heuristic for General Integer Programming, Decision Sciences,
(forthcoming).

Lemke, C. E., and SPIELBERG, K. (1968). DZIPI1, Direct Search
Zero-One Integer Programming 1, IBM contributed program
(360-D-15.2.001).

PATTERSON, J. H. (1973). Zero-One Integer Programming: A Study
in Computational Efficiency and a State of the Art Survey,
Unpublished Manuscript, Pennsylvania State University.

SALKIN, H. M., and SPIELBERG, K. (1969). DZLP, Adaptive Binary
Programming, IBM contributed program (360L-15.001).

To the Editor
The Computer Journal

Sir
1 was interested to read in the August issue of the Journal the two
papers on mixing interpretive and machine code. As you mention,
the generation of mixed code is a relatively new topic and my
experience with a project in this area may help to supplement the
:available information. The project concerned the development of a
POP-2 compiler on a CDC 6000 Series machine.

As POP-2 is an interactive language it requires the compiler to
co-exist with user programs; thus the system area consisting of

188

compiler and run-time functions and structures is mixed with the
user area consisting of user defined functions and data structures.
The design philosophy of POP-2, being centred on the unit of the
function, allows a ‘POP-2 abstract machine’ to be defined by a
minimum of 10 operation codes. These codes consist of stack and
jump instructions. In the original implementation of POP-2 the
operation codes were machine instructions or machine extracodes,
and thus the compiler generated only machine code. However, for
these same codes to be implemented satisfactorily on other machines
usually requires that the compiler produces interpretive code.
This requirement was almost a necessity on the CDC 6000 machine
where it was found that a typical abstract machine code took 2 to 4
CDC words (each of 60 bits) to execute, as opposed to the half word
occupied by an equivalent code to be interpreted. The use of inter-
pretive code introduces a factor of about 4 into CPU usage but as this
is not an all-important factor in the implementation of an interactive
language it was clear that only interpretive code should be produced
by the POP-2 compiler.

However, the relationship between the system and user areas is
closer than at might first appear. The functions in the system area
have a similar structure to the functions defined by the user and as
almost all of them can be written in POP-2 they could assume an
identical structure and be similarly interpreted. Thus in practice the
line between system and user is arbitrary and the question arises a€
to whether system functions should be in machine code or inter=
pretive code. The method chosen to implement POP-2 on the CD(g
allows a choice to be made. 3

The solution to the problem of transition areas is that adopted bys’
most POP-2 compilers. As the basic unit of execution is the function3?
this is also taken as the unit for use of code type, and all entries ta=
and exits from the interpreter are made in small pieces of machm@
code on function entry and exit. This approach means that there ara»
no overheads (greater than usual) for running only machine codem
Calling a machine code function from an interpretive code functio:
causes an extra address to be placed on the stack. This address (thé
return link) is an address in the interpreter itself and thus exit fron
the machine code function automatically enters the interpreters
While this approach is obvious and elegant it may not be selectw@
enough. g

The generation of mixed system code followed a similar approaclB
to that of Dakin and Poole with one significant difference. Using &
macro-processor (ML/1) a number of macros were created whic}ﬁ'_
defined a high level system language remarkably similar in man:%
respects to POP-2 and named MLPOP. The result of the text—\
translation process was a low level language (christened L3) Whlcho
in many respects was similar to an extended POP-2 abstract machmee0
The L3 operations were simple enough to be defined as macros bg
the CDC macro assembler, and the choice could be made to generaté;
machine code or interpretive code. Thus while the system portability
is maintained at the high level, the code type selection and generatw@
is kept at a low level.

The relationship between the user and the system area has alreadyg
been pointed out and it is interesting to see how this relationship 1¥’—
maintained at all levels as illustrated in the diagram.

user — POP-2 — ‘abstract machine code’

¢ §
system - MLPOP ——— L3

20z Iudy 6 uo

With the significance of the development of microprogrammable™
computers pointed out by Dawson this relationship at the abstract
machine level suggests that POP-2 will be an ideal candidate for the
benefits of microprogramming.
Yours faithfully

K. J. MacCaLLuM
43 Woodland Gardens
Isleworth
Middlesex
24 September 1973

To the Editor
The Computer Journal
Sir

As a member residing in the US, I get no favours. The August issue
has reached me on October 10. For this I have no complaint ; for your

The Computer Journal

