factor would have hopelessly overburdened an already extensive
task of experimentation. I can only invite Dr. Proll and others to
illuminate the effect of variable slackness by conducting additional
investigations. My intuitive prediction would be that variation in
slackness would decrease the number of ‘effective’ constraints since
the most severe constraints should dominate the path to optimisation.
Unfortunately the three problems of Petersen presented by Proll do
not provide conclusive evidence one way or the other as to the effect
of variability of slackness.

As stated in the paper the specific regression results are recom-
mended only for problems in the range of the factors B and C as
studied. Rather obviously, regression should be performed over the
ranges of importance to a specific user if larger problems are involved.
The examples shown by Dr. Proll do indeed exhibit a divergence of
Zo/Zy predicted from the Z,/Z, actual. Nevertheless a broader,
systematically generated sample would give us a better idea as to
whether the divergence exhibited is specific to the problems reported
or more general in nature.

Quite frequently, problems in integer programming do not allow
meaningful ‘intermediate’ feasible solutions. This is the case in
problems with equal ¢; values in certain formulations of line balanc-
ing, multi-project scheduling, set covering, and trim loss problems.
"Thus Balasian techniques do not always yield ‘a sequence of feasible
solutions of increasing value’. Nevertheless this is indeed sometimes
the case as Proll points out. There have been several techniques
proposed (and used) for initialising branch-and-bound codes
including the ‘quick-trick’ and linear programming starts of
Geoffrion and Salkin-Spielberg, the heuristics of Holcomb, Lemke-
Spielberg as well as the Byrne and Proll procedure. It would be of

particular interest to see a systematic comparison of all these tech-

niques with regard to their ability to find a feasible solution quickly.
However, I strongly suspect they would nearly always outperform
the original Balasian search for feasibility since it was not designed
for special efficiency. It would also be interesting to see a comparison
of the techniques’ capacity to reduce final optimisation times. Other
promising avenues of research include applying 0-1 heuristic tech-
niques to general integer programming (e.g. the Senju-Toyoda
heuristic in Kochberger, McCarl, Wyman (1973) and the Byrne-
Proll heuristic in Bedenbender (1972)), and the efficiency of alterna-
tive Balasian codes on specific problem classes (Patterson, 1973).
The main point of my paper is really that a feasible solution is
frequently identical to an optimal solution at least in the eyes of a
manager, if not in point of fact. Hence there are circumstances
where the use of heuristics needs no apology and in fact may be
economically superior to the use of optimising algorithms.

References

BEDENBENDER, R. J. (1972). General Integer Programming: A
Heuristic Algorithm. Unpublished MBA Paper, Pennsylvania
State University.

Horcoms, B. D. (1968). Zero-One Integer Programming with
Heuristics, IBM contributed program (360D-15.2.011).

KOCHBERGER, G. A., McCARL, B. A., and WyMmaN, F. P. (1973). A
Heuristic for General Integer Programming, Decision Sciences,
(forthcoming).

Lemke, C. E., and SPIELBERG, K. (1968). DZIPI1, Direct Search
Zero-One Integer Programming 1, IBM contributed program
(360-D-15.2.001).

PATTERSON, J. H. (1973). Zero-One Integer Programming: A Study
in Computational Efficiency and a State of the Art Survey,
Unpublished Manuscript, Pennsylvania State University.

SALKIN, H. M., and SPIELBERG, K. (1969). DZLP, Adaptive Binary
Programming, IBM contributed program (360L-15.001).

To the Editor
The Computer Journal

Sir
1 was interested to read in the August issue of the Journal the two
papers on mixing interpretive and machine code. As you mention,
the generation of mixed code is a relatively new topic and my
experience with a project in this area may help to supplement the
:available information. The project concerned the development of a
POP-2 compiler on a CDC 6000 Series machine.

As POP-2 is an interactive language it requires the compiler to
co-exist with user programs; thus the system area consisting of

188

compiler and run-time functions and structures is mixed with the
user area consisting of user defined functions and data structures.
The design philosophy of POP-2, being centred on the unit of the
function, allows a ‘POP-2 abstract machine’ to be defined by a
minimum of 10 operation codes. These codes consist of stack and
jump instructions. In the original implementation of POP-2 the
operation codes were machine instructions or machine extracodes,
and thus the compiler generated only machine code. However, for
these same codes to be implemented satisfactorily on other machines
usually requires that the compiler produces interpretive code.
This requirement was almost a necessity on the CDC 6000 machine
where it was found that a typical abstract machine code took 2 to 4
CDC words (each of 60 bits) to execute, as opposed to the half word
occupied by an equivalent code to be interpreted. The use of inter-
pretive code introduces a factor of about 4 into CPU usage but as this
is not an all-important factor in the implementation of an interactive
language it was clear that only interpretive code should be produced
by the POP-2 compiler.

However, the relationship between the system and user areas is
closer than at might first appear. The functions in the system area
have a similar structure to the functions defined by the user and as
almost all of them can be written in POP-2 they could assume an
identical structure and be similarly interpreted. Thus in practice the
line between system and user is arbitrary and the question arises a€
to whether system functions should be in machine code or inter=
pretive code. The method chosen to implement POP-2 on the CD(g
allows a choice to be made. 3

The solution to the problem of transition areas is that adopted bys’
most POP-2 compilers. As the basic unit of execution is the function3?
this is also taken as the unit for use of code type, and all entries ta=
and exits from the interpreter are made in small pieces of machm@
code on function entry and exit. This approach means that there ara»
no overheads (greater than usual) for running only machine codem
Calling a machine code function from an interpretive code functio:
causes an extra address to be placed on the stack. This address (thé
return link) is an address in the interpreter itself and thus exit fron
the machine code function automatically enters the interpreters
While this approach is obvious and elegant it may not be selectw@
enough. g

The generation of mixed system code followed a similar approaclB
to that of Dakin and Poole with one significant difference. Using &
macro-processor (ML/1) a number of macros were created whic}ﬁ'_
defined a high level system language remarkably similar in man:%
respects to POP-2 and named MLPOP. The result of the text—\
translation process was a low level language (christened L3) Whlcho
in many respects was similar to an extended POP-2 abstract machmee0
The L3 operations were simple enough to be defined as macros bﬁ
the CDC macro assembler, and the choice could be made to generaté;
machine code or interpretive code. Thus while the system portability?
is maintained at the high level, the code type selection and generatlori
is kept at a low level.

The relationship between the user and the system area has alreadyg
been pointed out and it is interesting to see how this relationship 1¥’—
maintained at all levels as illustrated in the diagram.

user — POP-2 — ‘abstract machine code’

¢ §
system - MLPOP ——— L3

20z Iudy 6 uo

With the significance of the development of microprogrammable™
computers pointed out by Dawson this relationship at the abstract
machine level suggests that POP-2 will be an ideal candidate for the
benefits of microprogramming.
Yours faithfully

K. J. MacCaLLuM
43 Woodland Gardens
Isleworth
Middlesex
24 September 1973

To the Editor
The Computer Journal
Sir

As a member residing in the US, I get no favours. The August issue
has reached me on October 10. For this I have no complaint ; for your

The Computer Journal



editorial note (in that issue) regarding mixed interpretive and machine
code—it happens that I do.

As a brother editor, I feel that we are often handicapped by too
little application of our tool to our own profession. I have toyed
with the idea of making an experiment, in such an uncomplicated
field as algorithms for computation of square root, where in a
bibliography of papers on the subject would be annotated (preferably
by the author) by a summary of what the germ of the contribution
was, and what its advantage was over previous methods. Thus the
aspiring author of yet another paper on square root computation
would have this document with which to assess his own temerity in
coming out with a further contribution.

Obviously no such bibliography exists for the interpretive mode of
computation. Even Jean Sammet’s book does not provide such
information for programming languages. One of your authors
references a paper in 1967; the authors of the other paper quote
five from 1970 on, four of which were by the author or his associate.

Perhaps this led you to term it a new idea. In fact, this mixed mode
existed in the PRINT I system for the IBM 705, which software
system was delivered to the field in the summer of 1956 (for emphasis,
this was 17 years ago). Floating point computation, flow, and
formatting were done interpretively for the reasons of economy
stated in your first paper. I/O and such were in machine code, as
generated by the assembly language AUTOCODE.

The combination was most effective, thus supporting the arguments
of your authors. In fact, it competed well against 704 FORTRAN,
which machine was certainly more oriented to scientific computation
than was the 705, a business machine. I recall with glee that my
interpretive division routine, programmed in machine language
with a Newtonian iteration to get the desired precision and accuracy,
was actually faster than the single division command built into the
hardware, to no little consternation of the hardware engineers.

As a note to history, the PRINT I system (PRINT stood for Pre-
edited Interpretive) was the first load-and-go compiler to operate, as
far as I know.

Yours faithfully,
R. W. BEMER
Editor
Honeywell Computer Journal
Honeywell Information Systems Inc
Advanced Systems and Technology
Deer Valley Park
PO Box 6000
Phoenix
Arizona 85005
USA
11 October 1973

References

BEMER, R. W. (1956). PRINT I—A proposed coding system for the
IBM type 705, Proc. Western Joint Comput. Conf.

BEMER, R. W. (1956). Reference manual, PRINT I system for the
705, IBM Corp.

BEMER, R. W. (1956). PRINT I—An automatic coding system for
the IBM 705, Automatic Coding, Monograph No. 3, Proc. Auto-
matic Coding Symposium, Franklin Inst., pp. 29-38.

To the Editor
The Computer Journal

Sir

In his interesting article on Himmelbett Mr. Bell states he knows no

reference for ‘Space War’—may I give him one:

ALBERT W. KUHFELD (1971). Space War, Analog, Vol. LXXXVII,
No. 5, pp. 67-79.

Analog may not have the scientific reputation of the majority of
journals quoted as references—it does, however, have a very wide
distribution amongst engineers, scientists and computer personnel.

Yours faithfully,

K. FREEMAN

Vice Chairman
The British Science Fiction Association Limited
128 Fairford Road
Tilehurst
Reading RG3 6QP
14 October 1973

Volume 17 Number 2

To the Editor
The Computer Journal

Sir

Ternary Logic in Parallel Multipliers
In a recent paper Vranesic and Hamacher (1972) discuss the relative
speed and cost of binary and ternary multipliers. A speed improve-
ment and some simplification of the design are possible if balanced
ternary arithmetic is used.

Suppose the units are —, 0, + and both true and complement
forms of the operands are available. The multiplier bits are not
grouped but each selects the multiplicand, its complement, or zero.
The adder is not required. In the 16 x 16 digit example discussed
summand selection will take 27 (originally 117).

More blocks will be required in the carry save adder tree, but in this
particular example no more levels are required and the time taken
remains 157. The full adder cells are identical in design as each
input is weighted by one requiring the output to be weighted by four;
i.e., by one in both sum and carry.

The adder must be redesigned as both positive and negative carry
one possible. Positive and negative propogate and generate terms
are required and these can be formed in 37. Positive and negative
carries can be generated separately in 47 and applied consecutlvely
to the sum in a further 27. The total adder delay is 97 (originally 87).5

The complete multiplier delay is therefore 267, substant1ally§
better than the 34+ of the original design and slightly better than the;
277 of the equivalent binary multiplier. However for most operandm
sizes the carry save adder tree has one more level than in the ongmal_h
design. For most operand sizes in the range studied the balancedO
ternary multiplier is 37 faster than the original ternary design and 11':
slower than the equivalent binary design. S

The cost of the summand selection logic (counting either gates or\
inputs) is approximately half that of the original design. The costO
of the carry save adder tree is approximately doubled, and the adder‘l
is approximately 50 /, more expensive. A balanced ternary multiplier3
is thus very similar in cost, as well as speed, to the correspondmgg
binary multiplier. ‘_O

Yours faithfully,
A. G. BROMLE s

0/W0D

Basser Department of Computer Science
School of Physics

University of Sydney

Sydney

New South Wales 2006

Australia

25 October 1973

Reference
VRANESIC, Z. G., and HAMACHER, V. C. (1972). Ternary Logic in
Parallel Multlpllers, The Computer Journal, Vol. 15, p. 254.

senb Aq 999939/88L/Z/LL/alome/w.fLuo

Professors Vranesic and Hamacher reply:
The main pomt of Dr. Bromley’s letter, that there is a speed i 1mprove-
ment in using balanced representation without multiplier digitS
grouping, is correct at most operand lengths. However, we do notZ
agree with all of the quantitative comparisons. Our detailed com->
ments can conveniently be grouped in terms of the three mul-=.
tiplier subsystems: N

1. Summand selection: Using the same type of multivalued algebra,u
and operand forms as assumed in our paper, summand selection in
the balanced ternary design would take 47, not 2. If we had assumed
that certain unary functions of the multiplier digits were available
(equivalent to a zero-delay digit decoding function), our summand
selection would have taken 97 instead of 117. Thus, for consistency,
we will assume a 47 value for the balanced ternary design and 11+
for our design.

2. Carry save adder tree: Although the number of levels (three) in
the tree is the same in the 16 x 16 digit case, there is at least one case,
21 x 21, where the balanced ternary tree requires five levels while
our design still only requires three levels, a difference of 10+.

3. Final adder: We agree with the 97 balanced ternary adder and
its associated relative cost.

In general, we agree with the cost comparisons made by Dr.
Bromley. However, consolidating our timing comments, and
accounting for a small extra adder delay in our 21 x 21 case, we feel
that the correct 16 x 16 and 21 x 21 total delays should be 28+





