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1. Introduction

Modulus p systems, with p a prime number, can be used to add
check digits to a decimal number (Wild, 1968; Briggs, 1970).
Modulus 11 is often used but unless additional restrictions are
introduced it requires the use of a special symbol to represent
the decimal number 10, which may be unacceptable in practice.
Various attempts have been made to circumvent this difficulty
(Andrew, 1970; Campbell, 1970) but they restrict the length of the
integer which can be coded. The extensive literature on poly-
nomial codes (Berlekamp, 1968; Peterson and Weldon, 1972)
can be applied to decimal systems by using polynomials from
GF(11) (Brown, 1974) but these have the same disadvantages
as ordinary modulus 11 systems.

A method for constructing true decimal codes based on poly-
nomial codes for a biquinary system has recently been pro-
posed (Brown, 1973) and this paper explores its application to
decimal error detection.

2. Terminology for errors in decimal numbers

The following terms are used in this paper for the errors
described.

1. Single error: a single digit is altered, a — b

2. Insertion error: a single extra digit is inserted somewhere in
the digit string.

3. Deletion error: a single digit is omitted

4. Transposition error: two adjacent digits are interchanged,
ab — ba

5. Double error: two unrelated digits are altered

6. Double adjacent error: two adjacent digits are changed in no
special way, ab — cd

7. Double repeated error: a pair of equal digits in adjacent
positions are changed to another pair, aa — bb

8. Multiple errors: error types (5), (6) and (7) can occur in more
than two positions. A multiple error is a set of unrelated
errors in unrelated digits. A multiple consecutive error is a
set of errors spread over ¢ consecutive digits (an error burst of
length 7). A multiple repeated error occurs when a sequence
of repeated equal digits is copied with the same sequence
length with a different digit, e.g. ....333.... becomes

.555....

9. Shift errors: are insertion or deletion errors associated with
the special case of a repeated digit being copied either too
few (right shift error) or too many (left shift error) times, e.g.
2655557 becomes 26557 (right shift error) or 265555557
(left shift error)

3. Biquinary decimal codes
The biquinary coding of decimal digits uses the correspondences

Decimal 0 1 2 3 4 5 6 7 8 9
Binay 0 0 0 0 0 1 1 1 1 1

d
Co C{Quinary 01 2 3 4 0 1 2 3 4

which converts each decimal digit into an ordered pair of one
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binary digit and one quinary digit, e.g. 7 decimal is equivalent
to (1, 2) biquinary. It is then possible to consider the data digits
of the message as two digit streams, one a binary stream and the
other a quinary stream. The standard theory of polynomial
coding can be applied independently to these streams using a
polynomial with binary coefficients in GF(2) for the bina

stream and a polynomial with quinary coefficients in GF(

for the quinary. The check digits so produced can be recong
bined by reversing the biquinary form to give true dec1m@
digits. It is not necessary that there should be the same numbeos
of binary and quinary check digits and for error correctiop
codes they will usually be different but in this paper we consideF
only error detection codes with an equal number of binary and
quinary check digits.
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4. Outline of polynomial coding theory
Throughout this paper discussion is restricted to bases whu@
are a prime p so that the elements are the integers modulo
namely, 0,1,...,p — 2, p — 1. The k message digits to be
encoded are m,_,, m;_,, . . ., m;, my and from these a message

polynomial M (x) is formed where %
Mx)=me_  X* P 4+ my_, X2 myx + my )
A checking polynomial g(x) of degree ¢ is used where %
g =x'+ g X g Xt g xtg I

The data digits m; and coefficients g; are all members of the sef
of integers modulo p. The conditions governing the choice ¢f
the coefficients of g(x) will be considered later. The ¢ check digits
to be added to the message are now formed by dividing x* M (.lé}
by g(x) to give a remainder R(x) which is a polynomial of
degree t — 1 with ¢ coefficients. All the arithmetic operatioms
on the coefficients during this division are modulo p. These®t
coefficients are used to derive the ¢ check digits but it is an
advantage to use the complements of the coefficients of R(3)
taken modulo p as the actual check digits. The reason for thgs
is that the division process can be represented as

x' M(x) = g(x) O(x) + R(x)
where Q(x) is the quotient which is not used. If R(x) is sub-
tracted from both sides we obtain

x' M(x) — R(x) = g(x) (x)
which shows that when the final message polynomial of £ data
digits plus ¢ check digits is formed in this way it is exactly
divisible by g(x). This property is used at the receiver to check
the received digits; if the remainder is zero then the message is
accepted as correct.

The division process is easily implemented by a repetitive
process which takes the message digits one at a time starting
with the most significant m,_,. Let R; be the column vector
{rosT1s+ - s Ti—2, 1 }; Of t elements which are the ¢ coeffic-
ients of the remainder R(x) after i — 1 message digits have been
processed and let the ith message digit be m;. Then R;, is
formed by
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Message In

c ® Multiplication by ¢ modulo p

@ Addition modulo p
Fig. 1 Shift register

ro 0 0...0 _go ro
ry 1 0...0 —g, r
Ri+1 = =
| Y 0 0...0 —g,_, r_,
Feo1divt 0 0...1 —g,y)Lre-y + ml;

This mathematical description is represented exactly by the
shift register configuration of Fig. 1. In Fig. 1 the t-stage shift
register holds the coefficients of R,(x). At the input to the jth
stage of the shift register there is a modulo p adder with one
input from the previous stage (j — 1) and its other input the
product modulo p of —g; times the sum of m; and the most
significant remainder digit; g; is the coefficient of x’ in the code
polynomial. As a shift pulse is applied this forms R;, ;.

Once the formation of the check digits is understood as a
polynomial division giving a remainder the chief error detection
properties become obvious. Any error in the received message
can be considered as the addition to the correct message of an
error polynomial E(x) multiplied by some power of x which
simply shifts E(x) to the appropriate part of the message. The
important part of this error is E(x). If E(x) is not divisible
exactly by g(x) there will be a remainder after division and an
error will be detected. If E(x) is a polynomial of degree ¢t — 1
or less then it certainly cannot be divided by g(x). This means
that any error spread-over ¢ adjacent digits (an error burst of
length ¢) will be detected with certainty by the code. For bursts
of length greater than ¢ some of the errors will be undetected
but, assuming a ‘random’ set of errors, the chance of this
happening is 1 in p* which is the chance that a random E(x)
will be divisible by g(x).

5. Decimal codes using one check digit

These are formed by using first degree polynomials. There is
only one such binary polynomial X + 1 and division of the
binary digits by X + 1 is a complex way of describing the
formation of a simple parity check giving even parity over the
message and single check digit.

There are four quinary polynomials of the first degree X + 1,
X+2, X+3, X+ 4. X+ 1 is rejected because it will not
detect double repeated errors, type aa — bb. The error E(x)
in this case is a polynomial of the form ¢ (X + 1) where c is
1, 2, 3 or 4 and this is divisible by X + 1. Likewise X + 4 is
rejected because it will not detect a transposition error which
always has an E(x) of the form ¢ (X + 4). Either of the two
remaining polynomials X + 2 or X + 3 can be chosen for the
quinary check; neither seems to have particular advantages.

With then a parity check over the binary digits and a quinary
check digit formed by using X + 2 or X + 3 as the check
polynomial over the quinary digits a decimal code can be
constructed which will have the following error detection
properties over a string of decimal digits of any length. It will
detect a single error with certainty and most double repeated
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and transposition errors. It will not detect double repeated
errors of the form aa — 5 + a, 5 + a, e.g. 33 — 88 which alter
both binary digits so leaving the parity check correct and leave
the quinary digits unaltered. Similarly it will not detect trans-
position errors of the form a, a + 5 — a + 5, a; this reverses
the binary digits leaving the parity check unaffected and leaves
the quinary digits unchanged.

A numerical example based on X + 1 (binary) and X + 3
(quinary) of a coding for 11 data digits is:

data check  polynomial
26035792828 1
binary 01001110101 0 X+1
quinary 21030242323 1 X+3

6. Decimal codes using two check digits

There are two binary polynomials of the second degree X2 + 1
and X2 + X + 1. The first of these X2 4+ 1 generates two
parity checks, one over the odd digits and the other over the
even digits. It will therefore detect all errors in the binary
stream in two adjacent digits as well as three consecutive errors.
In this it is superior to X? + X + 1 which will not detect three
consecutive errors which correspond to E(x) = X2 + X + 1.
In the same manner X2 + 2 or X2 + 3 is a reasonable choice
for the quinary check polynomial. Coding based on these
choices will detect the following errors; (a) a single error;
(b) a double repeated error; (c) tranposition error; (d) most
errors in three consecutive digits except for certain special
cases the derivation of which should be clear from the previous
discussion.

7. Decimal codes using three check digits
The same principles can obviously be extended to three or

more decimal check digits. The binary polynomial X3 + 1 will

generate three independent parity checks over the digits spaced
three apart and it will detect most error bursts of length 4 in the
binary stream except those corresponding to E(x) = X3 + 1.

Any third degree quinary polynomial unlikely in itself to
occur as an error polynomial can be used. X3 + 3 is convenient
to implement and is used here for a final numerical example of
the same eleven data digits as in Section 5 but coded with three
check digits.

data checks polynomial
26035792828 195
binary 01001110101 011 X*+1
quinary 21030242323 140 X343

8. Insertion, deletion and shift errors

Polynomial codes will not detect insertion or deletion errors
with certainty. This is because the «difference between the true
and erroneous digits may be an error polynomial E(x) which is
divisible by the code polynomial. An example is:

M ,(x) (correct) 1444573
M,(x) (erroneous) 144573
Ex)=M,(x)— Myx) 1300000

If the quinary check polynomial is X + 3 this is still divisible
by X + 3 and so passes undetected.

In a similar way shift errors alter the block length of the coded
numeral so that the difference, the error polynomial E(x), has
no special form and may be divisible by the code polynomial.

9. Comparison with previous codes

An attempt has been made to summarise the performance of
various codes in Tables 1 and 2 which refer to the use of one
and two check digits respectively. In these tables an entry of x
means that x per cent of the errors in that class will be detected
so that an entry of 100 (per cent) represents certainty of detec-
tion. The entries are mainly the writer’s interpretation of the
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Table 1 Codes with one check digit

Error type - Mod 11 Mod 11  Andrew Biquinary
Typel Type2 (1970)
Single 100 100 100 100
Insertion 100 91 100 87
Deletion 100 91 100 87
Transposition 100 100 <100 89
Double repeated <100 0 <100 89
Double adjacent <100 91 ? 87

Table 2 Codes with two check digits

Error Mod 97 Mod 97 Andrew Tang and Biquinary
type Typel Type2 (1972) Lum (1970)
Single 100 100 100 100 100
Insertion 100 99 100 100 99
Deletion 100 99 100 100 99
Transposition 100 100 100 100 100
Double

Repeated 100 100 100 95 100
Double

Adjacent 100 99 ? ? 100
Triple

Repeated 100 100 ? ? 89
Triple

Consecutive 99 99 ? ? 99

various papers referred to and may therefore be open to dispute
because, apart from claiming 100 per cent. coverage of certain
errors, authors seldom seem to give exact probabilities for
coverage of other errors.

The reference to type 1 and type 2 systems is taken from Wild
(1968) who has described two principal ways in which modulus
P (p is a prime) systems are used.

His description is:
Type 1: the maximum number of digits, k, in a code is pre-
determined and a weight w; (i = 1 to k) is associated with each

k
of the digits n; in the code number. The sum Y (wn,) is
i=1
divided by p and the remainder is used as the check digit(s).
Type 2: the code, which from the check digit point of view may
be of any length, is divided by p and the remainder is used as
the check digit(s).
= 11 gives a modulus 11 system with one check digit (but
remainder 10 needs special treatment). p = 97 gives a modulus
97 system with two check digits. However, Andrew (1972) has
devised a modified type 1 modulus 11 system with two sets of
weights to generate two check digits.

It should be remembered that polynomial codes do not restrict
the integer length and so they should more properly be com-
pared with type 2 codes only.

These comparative tables cannot do justice to codes having
special properties. An example is the extension made by Briggs
(1971) to a type 1 modulus 97 system which will detect multiple
transcription errors of identical digits in any position, e.g.,
7273774 copied erroneously as 1213114. This also illustrates
the importance of choosing a code with properties selected to
detect the errors most likely to occur. It seems unlikely that a
human operator would copy 7273774 as 1213114 but a faulty
automatic reader might well consistently mistake one digit for
another.

The figure of 87 per cent error coverage for insertion and
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deletion errors in the biquinary column is estimated as follows.
There is a chance of one half that the error will be detected by
the binary parity check alone. For those errors not so detected
there is a 3 chance-that they will be detected by the quinary
check. The total chance of detecting the error is therefore
0-5 + 0:5*0-75 = 0-875. The biquinary system is. slightly
inferior to a type 2 modulus 11 system on insertion, deletion
and transposition errors but gives 89 per cent. coverage of
double repeated errors which are completely undetected by the
modulus 11 system.

In this case of two check digits the biquinary system is slightly
inferior to a type 2 modulus 97 system which is certainly easier
to implement as a straightforward division by 97.

Although no work has been reported on three check digit
systems it appears that a biquinary code would be slightly
inferior to a modulus 997 type 2 system.

10. Implementation of biquinary coding
For only a few check digits generated by polynomials of low
degree there is no difficulty in the matrix multiplication of
Section 3 for obtaining R;,; from R;.

peojumoq

10.1. One check digit
Parity formation over the binary digit stream is s1mple and ong
the quinary check calls for comment. If X + e is the qumagl
check polynom1a1 and q; is the quinary check digit value when
message digit m; is to be processed then, with f =5 — e,

gi+1 = f*(q; + m;) modulo 5

Because f'is a known constant this expression can be evaluated
conveniently by settingup a 5 x 5 integer array giving q;, , far
all input combinations of q; and m;. Then a single ALGOL
statement g : = array [q, m] gives the new value of ¢. Using th?s
array the following ALGOL 60 procedure gives the new valué
of the binary check digit b and quinary check dlglt q when
message digit m is processed.

procedure next remainder (m, b, q);
value m; integer m, b, q;
beginif m > 5
then
begin b := if b > O then O else 1;
m:=m-—295
end;
q := array [q, m]
end next remainder;

oe//:sdy
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10.2. Two and three check digits
Consider first the case of two check digits. The formation &
binary parity checks over odd and even digits using X2 +18
simple. For the quinary checks it is convenient in the gener@
case to set up two 5 x 5 arrays called sum and times such that
sum [i,j] = i + jmodulo 5 and times [i,j] =i*j moduloS
where i and j take the values 0, 1, 2, 3, 4. Let the quinary check-
ing polynomial be X% + cX + d and let e and f be the com-
plements modulo 5 of ¢ and d respectively. Let b0 and b1 be the
two binary check digits and g0 and g1 be the two quinary check
digits and let m be the message digit to be processed. Then an
ALGOL 60 procedure to form the new digits is:

procedure next 2 remainder (m, b0, b1, 40, g1);
value m; integer m, b0, b1, 40, q1;
begin integer &, /;

k :=bl;bl :=b0;1:=ql;

ifm>=5

then

begin b0 := if k > O then O else 1;

m:=m-—>5
end
else b0 := k;
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k := sum [I, m];

ql := sum [qO0, times [e, k]];

q0 := times [f, k]

end next 2 remainder;

If a quinary check polynomial of the form X2 + d is used the
procedure can be simplified further. Then the next
g0 = f* (gl + m) and this can be found directly from the
same type of 5 x 5 integer array as was used in the one digit
case.
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Book reviews

Optimisation Techniques with FORTRAN, by J. L. Kuester and
J. H. Mize, 1973; 500 pages. (McGraw-Hill (UK), £2-90)

This book covers a wide variety of optimisation techniques and
would be useful for teaching purposes as a supplementary or
reference text. Unfortunately, the description of each technique is
absolutely minimal so a further text book on the subject would be
essential. This lack of detail would also be a grave handicap for
research workers and others who attempted to use it as a ‘handy
reference book’, as suggested by the authors.

The book is divided into two parts: Part One—Special Purpose
Methods—includes algorithms for linear programming, quadratic
programming, geometric programming, dynamic programming and
for problems whose objective functions are sums of squared terms;
Part Two—Search Methods—deals with the general non-linear prob-
lem and is subdivided into chapters on single variable unconstrained,
single variable constrained, multivariable unconstrained and multi-
variable constrained optimisation methods. Each technique is des-
cribed in five sections, namely, Purpose, Method, Program descrip-
tion, Text problem and Program listings with example output; the
programs are coded in ASA FORTRAN, apart from one subroutine
in IBM 360 Assembler language. )

To a certain extent, one of the main reasons given for writing the
book—the difficulty of obtaining computer programs for optimis-
ation techniques—is not valid in Great Britain, owing to the ready
availability of copies of routines from the Harwell library, from the
Numerical Analysis and Computing Division of the NPL, from the
Hatfield Optimisation Centre and from the CERN library; in addi-
tion, many universities now have access to the NAG library. The
latter, in particular, provides more efficient and up to date routines
for many of the topics covered here (particularly those in Part Two)
in place of the rather limited versions of some programs included
in this text. Some of the programs given are very close to the original
versions without any acknowledgement being given to the person
who provided the original coding—the routines for Powell’s sum of
squares method, pages 258-269, even have the same variable names
and statement numbers as the original Harwell versions, VA02A
and VDOIA, although some comments and additional statements
have been added to the former.

The choice of algorithms does not always reflect those which are

currently considered the best available, particularly in the case of

non-linear techniques. It would appear that the authors are some- .
what unfamiliar with this area—they describe the methods as being -

available for small problems with typical limits on equations and
variables being less than one hundred—this is certainly not always
the situation; for example, the Fletcher Reeves algorithm has been
applied with success to problems having of the order of a thousand
variables, and some recent programs developed by Murray and Gill
at the National Physical Laboratory have also been applied to large
scale problems.

To summarise, this book could be fairly useful for teaching pur-
poses in that it provides readily available algorithms for course work
use, but has only limited application for other purposes.

HeaTHER M. LIDDELL (London)

Elementary Numerical Analysis, by Conte de Boor, second edition,
1973; 396 pages. (McGraw-Hill, hard cover £4-80, paperback
£2-70)

The book gives an introduction to computer arithmetic, computa-
tional linear algebra, the solution of non-linear equations, interpo-
lation and approximation and the numerical solution of initial and
boundary value problems for ordinary differential equations. The
approach is, as the title indicates, algorithmic. For each of the
topics discussed algorithms are presented in an ALGOL-like lan-
guage and FORTRAN listings are given. Where appropriate, flow
diagrams are included. The algorithms are clearly explained
and the discussion generally includes the background Mathe-
matics necessary for an understanding of the construction and
analysis of the algorithms. Thus, for example, the chapter dealing
with the solution of linear equations contains an introduction to
matrix algebra and matrix norms. The limitations of the algorithms
described are generally indicated and reference made to more power-
ful algorithms.

Evidently the author’s intention is to give the reader an under-
standing of the basic ideas and techniques of numerical methods,
and the fact the methods described are not always the best currently
available does not detract from what is certainly an excellent
introduction.

M. J. M. BERNAL (London)
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