The operation of a model self organising data

management system
P. A. Dearnley

School of Computing Studies, University of East Anglia, Norwich NOR 88C

The concept of a self organising data management system is summarised and operational data from

a model of such a system is presented.
(Received October 1973)

The self organising data management system

The self organising data management system is designed to
serve the interests of a variety of users, possibly remote and
unco-ordinated, whose usage of the database either cannot be
completely determined at system design stage or will change as
the database and users’ interests develop. In such a system the
structuring of files occurs at access time or as the result of a
forecasting procedure predicting future accesses, but not
usually at data load time. The system attempts to minimise
overall cost and gives potential users cost quotations, prior to
carrying out their tasks. A further feature of the system is that
the duplication or partial duplication of the same data in files of
different structures and generations is used to balance access
costs against storage costs.

The system is based on the following principles:

1. The system has the capability to determine and implement
suitable structures for the files held in the database. Structures
are chosen with the object of minimising the total cost of
known or predicted accesses.

2. The access strategy adapted is constructed by the system.

3. Any correctly specified task can be completed by adopting
some access strategy and the user is given a cost quotation in
advance.

4. The system can restructure or update files as a result of (a) an
accepted cost quotation or (b) by observing patterns of usage
and predicting that a different structure will be economically
advantageous to the body of users.

5. The user is allowed to leave requests for tasks in the system
in the hope that batching or structure changes will eventually
reduce the cost of his task to an acceptable level.

The original concept of a self organising data management
system is described in more detail in Stocker and Dearnley
(1973).

The model system

To validate the ideas behind the self organising data manage-
ment system a working model has been constructed. The model
implements principles (1) to (4) above, in some form. It is used
to demonstrate that a viable data management system can be
built along self organising guidelines and to obtain operational
data for such a system. The operational data obtained is
described in this paper.

The model system supports simple file structures including
serial, sequential, indexed sequential and random organisations
with the appropriate access methods. The system is able to
convert files from one structure to another, and is also able to
create new files both by extracting sub-records containing
selecting fields and updating existing files. The mode] system is
described in more detail in Dearnley (1973).

The two mechanisms which are of main interest in the system
are route finding and folio management. Route finding occurs in

response to a user request for access to the database. The
activity involves choosing the files, access methods and re-
organisation algorithms required to satisfy the user request.
Folio management is the creation of new files or the restructur-
ing of old files for the overall benefit of the users rather than as
a result of one particular user’s request. Folio management is
undertaken when the system would otherwise be idle. It involves
reviewing the usage of a particular corpus of data or folio’ and
deciding if some particular file could be created which woulﬂ
lessen the overall cost of future accesses. The examples glveg
in the following sections illustrate both route finding and fohg
management.

1/ sdnu

Example 1: Usage leading to an extended route
Routes involving the choice of a single file and the appropna@?
access method are referred to a ‘simple’ route. Routes involving
the use of several files and the appropriate access methods m.
be cheaper in certain circumstances; such routes are referred to
as ‘extended’ routes. This example shows the advantageous use
of such a route.

A folio* containing eight fields was defined. The definition 15
given in Table 1. A series of requests for access were made (Sf
the system. The characteristics of the requests are given ig
Table 2. The requests were interspersed with periods of idlg
time. During the idle time folio managment was undertaker.
The requests were satisfied with serial searches of the om:
original file in the folio. The folio management module pre\\a
dicted that the sorting and indexing of various versions of thg
original data would be advantageous. The cost of the sorting
being met out of the saving of subsequent indexed searches ove}‘.
serial searches.

"The result of the folio management was the creation of sevan
new versions tailored to the first seven request types given 1@
Table 2. At this stage the folio was represented by the eight
versions listed in Table 3. When requests of type 8 in Table%

woo

Table 1 Test Folio for Example 1

40z Iud

Folio definition—Forestry data of specimen trees

FIELD TYPE NOTES

1. Area Alphanumeric geographical area code

2. Date Numeric date tree planted

3. Height Numeric tree height in feet

4. Width Numeric tree width in inches

5. Location Numeric geographic location
code within plantation

6. Address Alphabetic address of plantation

7. Type Alphabetic tree description

8. Reference Numeric dossier reference

*The term file is avoided since, as the example later shows, one body of data or ‘folio’ may be represented by a number of files or ‘versions’.

Volume 17 Number 3

205

Table 2 Request types for Example 1

1. Given date return location

2. Given area return height, width

3. Given area return date, height

4. Given date return height, width

5. Given area return date, width

6. Given location return reference

7. Givendate, height, reference return area, width, address, type
8. Given area, date return height, width

Table 3 Versions created in Example 1

version 1 fields 1, 2, 3, 4, 5, 6, 7, 8 serial
, 6 , 58 sorted and index on field 5
» 8 ”»” 2’ 5 9 2 9 b2} b2} 2
2 10 9 1, 3, 4 ”» 2 2 2 2 1
» 12 b2} 2’ 3, 4 bE] ”» b} 2 2 2
» 14 » 1’ 2, 3 2 2 ” 2 » 1
bR 16 » 1’ 2’ 4 2 ”» ”» » ” 1
2 18 ” 1’ 2’ 3’ 47 6’ 79 8 2 2 ” ”» ”»” 8

18(11)

i Key :

File Reference

Ave

Expected Field
Cost Reference

Fig. 1 Graph of versions in Example 1

occurred again they were satisfied by an extended route. The
route finder had the choice of using versions 1 or 18 for either
simple routes or for the terminal versions of extended routes.
The versions 8, 10, 12, 14 and 18 were all potential starting
places for an extended route, in that they contain one or more
of the key fields to be matched. The graph in Fig. 1 illustrates

206

STEP |

STEP LI |

18
kin 6 (11.76)
IsTEP 111 STEP I

18 (I1)

Key as Fig. 1

Fig. 2 Subgraph chosen by route finder in Example 1

WwioJ} papeojumoq

the position. The nodes represent fields and the arcs represent =
access paths from key nodes to non-key nodes. The versiong
facilitating a particular path is recorded on each arc. Ing
addition, as the graph was used, each arc was weighted by the &
cost of using that arc. The costs cannot be determined exactly 3
and were estimated at each stage. For example the cost of using
an intermediate arc from node 2 to node 5 depended, in part, ons
the number of items found in version 8. This, in turn, depended 8
on the number of items produced by the search going from%
node 1 to node 2 or node 8 to node 2. The route chosen by S
the route finder is shown on the graph in Fig. 2.
The route is as follows:

1. Define temporary files K, L, M.
2. Search version 8 for the user supplied values of field 2

producing values for field 5 in file K, carry forward values of
both field 2 and field 1.

[

w
7]
aQ
o
=]
[¢]
=
<
o
[
2z
]
=
(=)}
g
=
-
=
(¢
<
=N
[=1
(4]
»
o
=n
=
o
(=N
(9]
=
o
(=N
=
=
=
(¢]
~

G168€/S0Z/E/LL/P1e/U

producing values for field 8, in file L, carry forward values of ©
both field 2 and field 1.

4. Search version 18 for values of fields 8, 1 and 2 held in file L 2
producing values of fields 3 and 4 in file M, include theo
matched values of fields 1 and 2 in file M.

5. The required output is in file M, delete files K, L.

The route chosen was not an obvious choice when considering
the range of alternative versions. The costs of using various§
arcs are shown in brackets in Figs. 1 and 2. If an arc is chosen
then all other fields in the same file are available without further
cost. For example choosing the arc from node 2 to node 4
given by version 12 makes node 3 available at no extra cost.
Thus the cost of the chosen route is 12-9 + 11-76 + 11 ~ 36.
Alternative simple routes would involve using version 1 or 18
at a cost of 154. The alternative of sorting version 1 or 18 and
performing an indexed search was rejected because of the high
initial cost of the sort.

The operation of the model has shown that machine costs are
dominated by the time taken to access secondary storage, thus
the unit of ‘cost’ used is a disc access. In this example the cost of
occupying additional areas of secondary storage is ignored.
(This factor is considered in examples 2 and 3.) Further, the
cost of route finding was not included. The gross saving of the
extended route over a simple route was 154 — 36 =118. The

nb Aq

udy g1 u

The Computer Journal

Table 4 Folios for Example 2

Folio 1
1. CACM review category
2. Document reference number

Folio 2

1. Document reference number
2. Title of document

3. Author of document

4. Journal name, volume and number
5. Date published

route finding involved making disc accesses for 1 folio definition
and 8 version definitions, a total of 9 disc accesses. Thus the
net saving is 109.

Example 2: Usage with a basic theme plus other random enquiries
The purpose of the second example was to test the system on a
large number of requests occurring in a limited system lifetime.
In the previous example the lifetime of the system was assumed
to be very long and thus new versions made by the folio manage-
ment routine would eventually prove to be economic. In this
test a short lifetime was specified and thus it was possible that
the folio management would be unable to create new versions
economically.

A main theme was assumed for the requests, and other requests
with randomly selected characteristics were made. The folios
used are described in Table 4. Folio 1 had one version only
which was indexed on CACM category. Folio 2 started with one
version indexed on document reference number. This initial
position represented the file structures which a user might
have employed if he had used a conventional data management
system. The basic theme of requests assumed that most requests
would be ‘given CACM category recover document reference
number’ followed by ‘given document reference number recover
document details’. These main types of requests were satisfied
by indexed sequential searches; other requests were performed
by a serial search of the appropriate version.

Folio 1 was only used for searches on CACM category as the
key field, thus the cost of using this folio was the same as that
which would have been incurred by a conventional system.
Thus the comparison of interest is that of folio 2 against the
conventional equivalent.

Sixty sets of requests were produced. The appropriate key and
other field references were chosen with the aid of tables of
random numbers. The frequency of the key ‘document reference
number’ was biased to reflect the main expected area of usage,
i.e. retrieval by document reference number. Each set of
requests used one key field and required the return of one, two,
three or four other fields. The number of requests per time
period was also determined by random number tables.

The model system was run with the sixty chosen sets of
requests with a spell of idle time after each time period. The
results were compared with the use of a static conventional
" system. The results are summarised in Table 5. Until the end of
time period 5 the systems used the same combinations of serial
and indexed searches. At the end of time period 5 a second
version was made containing all 5 fields but ordered and
indexed on field 3. The cost of this operation was 2657 thus the
cumulative cost of the self organising system is increased at the
end of time period 5. The use of this new version yielded lower
costs in time periods 6 to 12 giving a gross saving of 6936.
But some 105 extra blocks on disc were required for the second
version by the self organising system for 7 time periods (from
6 to 12). The cost of this must be offset against the saving in
cumulative operating cost. To mix operating cost in disc
accesses with extra disc space it is necessary to have some

Volume 17 Number 3

conversion factor. It was assumed that an 8 million character
disc pack cost £100 and that it had a life of five years. It was
further assumed that the time period represented in the test
covered a total of three months, thus the cost of an extra block
of storage was approximately 0-003 pence per time period.
For disc accesses a time of {;th of a second per access was
assumed and for machine time a cost of £20 per hour; thus the
cost of an access was approximately 0-06 pence.

Hence the equivalent in ‘disc accesses’ of 105 blocks for 7
time periods was approximately 37. Thus the gross saving was
reduced to 6899. An allowance must also be made for the cost
of route-finding, for periods 1 to 5 there is only one version and
one folio definition accessed for every search. For time periods
6 to 12 there are two versions definitions and one folio defini-
tion. Each review by the folio management routines requires
accessing the search statistics for every version of the folio.
Thus the total allowance required was 187. Hence the net
saving was 6712. This represented a net saving of 35 per cent
over the cumulative cost of the conventional system. The
effect of the adjusted cost estimates is shown in Fig. 3.

|w)
o
5
Table 5 Results of Example 2 §
(o}
CUMULATIVE OPERATING COST g
TIME PERIOD CONVENTIONAL SELF ORGANISING 3
SYSTEM SYSTEM §
1 746 746 8
2 1926 1926 2
3 3327 3327 o
4 3619 3619 5
5 6613 9270]
6 7198 9535 3
7 9195 10412 S
8 10908 10445 El
9 12898 11322 g
10 15409 11513 S
11 18753 12217 =
12 19211 12275 @
5
g
ADJUSTED g
CUMULATIVE [8)]
COST [e¢]
20000 /3
V-
/8
/ o
SELF ORGANISING / i
16 000 / ©
——- CONVENTIONAL / >
E
=
o
N
12000
8000
4000
o .
o 2 4 6 8 10 12

TIME PERIODS

Fig. 3 Operating cost for Example 2

207

Example 3: Usage with seasonal variation in enquiries

The third example is based on the file used by universities to
keep track of student applications. The file is created and
maintained by a central authority and copies are sent to the
universities at regular intervals through the year. The use of
file changes as offers of places are made to students, as students
react to the offers, when GCE ‘A’ level results are published and
O on.

The actual file used consists of one record per student con-
taining his personal and school details with a repeating group
embedded in the record containing an entry for each application
made for a place at university. The record length is 240 charac-
ters and the records are held in a sequential file keyed on a
centrally allocated reference number. The file builds up very
rapidly in the first two months, then is used for amendments
(e.g. offers made, refusals, etc.) and interrogation (e.g. reply
to offers). The vast majority of amendments are to the applica-
tion repeating group entries; the personal and schooling details
remaining largely unchanged.

For the test a reduced number of records and fields was used

and the record stucture was normalised. It was also assumed.

that updates were sent to the university in place of a new
master file. Folio 1 was used to hold the relationship between
student reference number and personal/schooling details.
Folio 2 was used to hold the relationship between student
reference number and a single application. Table 6 gives the
folio definitions used.

Whilst the original file is designed to provide information
about students it can also be used to get information about
types of offers made by other universities and for reviewing the
offers made for particular courses.

The various types of enquiries made are given in Table 7. The
communication enquiries are used when writing to candidates
to offer interviews, to offer places, to confirm offers, etc. The

Table 6 Folios used in Example 3

Folio 1 Students

FIELD . TYPE
Reference Number Numeric
Name Alphabetic
Address Alphabetic
Sex Alphabetic
School code Numeric
School Type Numeric
Age Numeric

Folio 2 Applications

FIELD TYPE
Reference Number' Numeric
Preference Rating Numeric

NOTES

Indicates the candi-
date’s order of pre-
ference for applica-
tions

University reference

number Numeric
Course Code Numeric
University Decision Alphabetic
Conditions on offer Alphabetic Indicates the GCE
‘A’ level grades re-
quired of the student
by the university

Conditions ex- Numeric As above but
pressed in ‘points’ expressed numeric-
ally with each grade
given a weighting
Candidate Reply Alphabetic

Table 7 Enquiry types for Example 3

ENQUIRY TYPE SPECIFICATION

Communication Given student reference number get name
and address.
Interview Given student reference number get all

application details.

(a) Given university number and course
number get university decision and
conditions.

(b) Given course number get university
number, decision and conditions.

(c) Given university number and course
number get preference rating.

Given university number, course number

and decision get candidate’s reply.

Given university number and course

number get reference number.

Then from reference number

(a) Get school areas

(b) Get school types

(c) Get sex distribution

(d) Get age distribution.

Given course number and university

decision = ‘reject’ get reference number.

Offer Strategy

Recruitment
Position
Review

Clearing

FREQUENCY

INTERVIEW
REVIEW

POSITION

TIME PERIODS

Fig. 4.1 Frequency of enquiry types in Example 3

20z udy 61 U0 159n6 Aq 85 1L68E/S0Z/E/L L /B10M4E/|ULO0/WO0d"dNO" oIS PEDE//:SARY W) PAPEOUMOQ

interview enquiries are used prior to selection interviews to give

information about the current states of other applications.
Strategy position enquiry types allow departments to choose a
competitive offer strategy and to observe the results of offers.
Clearing is used after GCE ‘A’ level results to try to allocate
unplaced students to vacant places. The general school and
personal profiles of candidates applying for particular univer-
sities and courses are given by review type enquiries. The
frequency of the various enquiry types is given in Fig. 4.1 and
4.2. The various enquiries were performed by system with a
period of idle time for folio management at the end of each time
period. The cumulative costs of performing enquiries, creating
new versions and occupying further disc storage were recorded.

The Computer Journal

IFREQUENCY

STRATEGY
o= e=— COMMUNICATION

CLEARING /

TIME PERIODS

Fig. 4.2 Frequency of enquiry types in Example 3

“These costs are shown in Fig. 5. The approximate cost of
.answering the same enquiry pattern with a conventional system
from one file, sorted and indexed on student reference number,
was calculated for each time period. Similarly the costs with a
.conventional system and two files (one of reference number with
personal/school details, the other with reference number with
.application details) were calculated. The comparisons are given
in Fig. 6, and the differences in cost between the self organising
system and the two conventional equivalents considered is
given in Fig. 7.

Enquiries using folio 1 were always satisfied by an indexed
search of the one version of the personal/schooling data.
Similarly interview type enquiries for folio 2 were satisfied by
.an indexed search of the original version of the application
-data which was keyed on student reference number. At the
-end of the first time period a version of folio 2 was constructed
-containing the fields, University number, Course number,

University decision and conditions. This version was an
indexed sequential file keyed on course number. This version
was used in later time periods to meet strategy type enquiries.
At the end of time period two a version of university number,
course number, university decision and candidate’s reply was
constructed. Again this was an indexed sequential file keyed on
course number. Further position type enquiries were met using
this version. At the end of the third time period an indexed
sequential file of course number, university number and student
reference number was constructed. This was used to give access
via the student reference number field to folio 1 for review type
enquiries. During time periods four to eleven folio 2 was
represented by four versions:

(@) the original application data used for interview enquiries,
(b) a version linking course and university to offer details,
(c) a version linking course and university to candidate’s
decisions,
(d) a version linking course and university to personal/school-
ing details.

In retrospect one may note that versions (b) and (c) above
might usefully have been combined, indeed if folio manageme
had not occurred at the end of period one then this would have
been the system’s decision also. m

Finally at the end of perlod eleven a further version is made @
handle clearing enquiries. The predictive algorithm in the foli®
management forecast that clearing would continue in periotgs
thirteen and fourteen; in fact clearing finished in period twelvg,
thus this ‘investment’ was not worthwhile.

The cost comparisons cover only interrogation, file creatlcﬁh
and storage costs; the processes of amending records a®
inserting new records are not covered.

The file grows quickly in the first two time periods. Insertlon
of new records keyed on student reference number occurs Et
the end of the files, thus this is not a problem in either co@-
ventional alternatives or in the self organising system. However
in perlod two the self organising system has an add1t10n21
version keyed on course number. Since the approximate ﬁngal
file size is known in advance this file can be constructed with
partially packed blocks and insertions made in situ. o

Amendments present more of a problem. Every apphcatlan
record is amended twice, once with university decision a

CUMULATIVE

COsT
TOTAL
=e—e STRUCTURING
60,000 | =--°-- SEARCHING
=== EXTRA STORAGE
50,000
40,000
30,000
20,000
10,000
[e]

TIME PERIODS

Fig. 5 Cumulative cost of self organising system

CUMULATIVE
COSsT

70,000
e ~=a— ONE FILE CONVENTIONAL.

TWO FILE CONVENTIONAL.

60,000 [=°°°°° SELF ORGANISING. /

50,000 -

\
28z 1udy 61 uo 15dnb Aq 851 68ek0BES |

40,000

30,000

20,000 [

10,000

TIME PERIODS

Fig. 6 Cost comparisons

Volume 17 Number 3

209

CUMULATIVE
cosT
- 50,000 COST OF ONE FILE CONVENTIONAL LESS
COST OF SELF ORGANISING SYSTEM
———_ COST OF TWO FILE CONVENTIONAL LESS
— 40,000 COST OF SELF ORGANISING SYSTEM
w
>
<
Z —30,000
(1]
—20,000
-10,000
o
o
@ + 10,000
+ 20,000
o 2 4 6 8 10 12

TIME PERIODS

Fig. 7 Savings—negative costs indicate a saving, positive costs
indicate a loss

conditions, once with the candidate’s reply. Thus we assume
that the overall amendment cost is equivalent to two passes

References

STOCKER, P. M., and DEARNLEY, P. A. (1973). Self organising Data Management Systems, The Computer Journal, Vol. 16, No. 2, pp. 100-105.
DEARNLEY, P. A. (1974). A Model of a Self organising Data Management System, The Computer Journal, Vol. 17, No. 1.

through the entire file amending every record. The conventional
system using one file has a large record length due to the per-
sonal/schooling details, thus the amendment cost will always be
greater than that of amending only the application data in the
two file conventional alternative.

The self organising system has one version similar to the
application only data in the two file conventional alternative
and four other versions. One of the other versions exists for
time periods twelve to fourteen only, at this point the process of
offering, and accepting places should be complete. Thus the
additional cost of amending data in the self organising system
is due to the versions made after time periods one, two and
three. These three versions occupy 630 blocks on disc, thus the
additional number of disc accesses required to amend every
block twice is 2520. This reduces the saving over the two file
conventional alternative from 3865 to 1345 and for the one file
conventional alternative from 21,959 to 19,439.

Summary
The three examples quoted give some idea of the capabilities of
the model of a self organising data management system. The2
existing model is crude and, as in Example 3, a human observerz
may, retrospectively, be able to suggest better reorganisation.s.
However even in its existing form the self organising system%
can offer oost savings of 35 per cent in Example 2 and, ing
Example 3, 31 per cent against the usual alternative or 3 per=
cent against an alternative with data normalised into ﬁlesu
holding the two basic relationships.

Book Review

Algebraic Coding Theory, edited by 1. F. Blake, 1973; 413 pages.
(Dowden, Hutchinson and Ross, Penn; John Wiley, London,
£10-00)

The sub-title of this book is ‘History and Development’ and it is one
of a series devoted to ‘benchmark’ papers in various subjects. It
contains 35 papers by 33 authors (many of them well known names)
which the editor has selected as having contributed substantially to
coding theory. Twenty-five of the papers come from three source
journals; IEEE Transactions on Information Theory, 13, BSTJ, 6 and
Information and Control, 6; another seven are from three journals
and a book all published in the USA. Of the remaining three, two
are of Russian origin: Varshamov’s 1957 paper on his coding bound
has been specially translated into English for inclusion in this collec-
tion while a 1962 paper by Vasil’yev (On Nongroup Close-Packed
Codes) is reproduced from the available English translation of the
Russian journal Problems of Cybernetics. Hocquenghem’s paper on
his discovery independently of the BCH codes is reproduced in the
original French. The papers are grouped into nine sections; each is
preceded by a brief editorial introduction of length about one page.
The pre-BCH era (up to about 1960) is given 144 pages; of this the
fundamental work of Slepian on group codes is represented by three
papers occupying 69 pages which makes him easily the most quoted
author. The post-BCH era occupies the rest of the book except for a
1954 paper by Elias on a coding scheme aimed at the Shannon limit.
The book is almost entirely concerned with systematic (n, k) block

[o1ue/|ulwoo/woo dnoolWwepeoe//:s

codes and there is one section devoted to three papers on the weight
properties of these codes (Mrs. MacWilliams et al, and Pless).g
Convolution codes are given only a passing mention in the intro-g
duction with the comment that ‘their future appears promising’ butg
that is all and the name of Viterbi is absent. The editor notes some&
important concepts that unfortunately did not first appear as journal - s
papers and which are therefore omitted; amongst these lS°°
Berlekamp’s iterative scheme for BCH decoding though here it 1s<
fortunate that Massey’s related paper on shift register synthesis is€
included. A minor point is that in some papers from journals with a8
large page size the print appears very small even though the linearS
dimension reduction factor is only about three-quarters. 2
Although there is no doubt that the selected papers are of pr1me>
significance in the historical development of the subject yet it is muchs.
more difficult to recommend it as a book to be acquired. Most of the!»
papers in it are readily available and their substance, including that§
of the less accessible ones, is to be found in several textbooks. These
give much more of the essential theoretical background (e.g. on
finite fields), do not need to omit important but ‘unpublished’
developments and have extensive bibliographies which provide a
means of follow-up just as effective as the lists of references ending
the original papers. Had the papers been issued in cheap paperback
form they might have found a market but at £10 anyone with a
limited budget will have to consider very carefully whether to invest
in this book rather than a textbook.
D. A. H. BRowN (Malvern)

The Computer Journal

