CLAM—Its function, structure and implementation

R. A. d'Inverno* and R. A. Russell-Clarkt

CLAM, a successor to ALAM, is a LISP-based system for carrying out algebraic manipulation. It
was designed especially for use in the field of general relativity where it lays claim to being the fastest

such system.
(Received June 1973)

1. Introduction

CLAM (CDC LISP Algebraic Manlpulator) is a LISP-based
algebra system and represents the final form in the develop-
ment of ALAM (see d’Inverno, 1969). Both ALAM and CLAM
were designed especially to aid research work within the field
of general relativity and, to date, they have been used success-
fully on numerous problems, details of which can be found in
d’Inverno (1970), d’Inverno and Russell-Clark (1971) and
Russell-Clark (1973).

In the past, the most common uses of computer algebra
systems within relativity have been what we shall term ‘metric
applications’. These are calculations which take ten algebraic
expressions as their initial data (specifically, they are the ten
independent components of a covariant metric tensor, g,;) and,
from these, by the processes of differentiation and algebraic
manipulation, evaluate a number of other important quantities
of geometrical significance. CLAM has been designed primarily
with this type of application in mind.

A CLAM program consists simply of a series of commands.
Each command is made up of a CLAM function name followed
by a list of arguments (in fact, the simplest form of LISP
doublet). The principal function is METRIC which takes as its
argument a list of the ten algebraic expressions comprising g
and its action is to compute and print out all the independent
components of the quantities

{gaba g gab, Fz,;’ Rabcd’ Raba R: Gab}

which are various combinations of the metric tensor and its
derivatives up to the second order. There are also functions for
defining variables, functional dependence and substitutions;
functions for halting the action of METRIC at various points
in its process and for calculating further required expressions.
A description of the types of commands available to the pro-
grammer is given in succeeding sections of this paper. The
resulting system is flexible and extremely easy to use for metric
applications and the command language has been found to be
quite adequate for such purposes.

A two-part manual (d’Inverno and Russell-Clark, 1971; 1972)
has been written for the CLAM system. Part 1 of the manual
describes a minimal subset of the command language sufficient
for the reader with no previous programming experience to
write programs to calculate the curvature tensor and some
related quantities of a restricted, but large, class of metrics.
It has been found that this is possible after only about half an
hour’s study. The attainment of this goal has been one of our
principal aims from the outset. Part 2 explains how to deal with
common factors and substitution in general and describes some
additional facilities which have been found to be most com-
monly needed in practice.

The following sections of this paper are concerned with various
aspects of the CLAM system. We describe the simplification
processes in CLAM and how substitutions and common factors

are dealt with. In particular, Section 10 gives a brief account of
METRIC and the associated functions which affect its action.
In the final section we attempt a critical analysis of the system.
One of the appendices contains a sample program and its
output.

2. Algebraic expressions and simpliﬁcation
The format in which algebraic expressions are input is the same=
as in ALAM. However, the definition of an algebraic expresswng
glven in d’Inverno (1969) is not complete and a corrected vers1onQ
is presented in Appendix 1. o

Our attitude towards simplification has been dictated by the:r
needs of relativity on the one hand and on the other by the needo
to economise on store as much as possible whilst using the§
LISP list structure. As a result, no attempt is made to extracts
common factors or perform division. The simplification process§
is at its most efficient when the calculations involve onlys
constants, variables, arbitrary functions and the trigonometric,g
exponential and logarithmic functions. However, whenj
common factors occur which have to be differentiated and/orz
simplified or when substitutions are required, then extraS
51mphﬁcat10n functions are called into use and more time 155
consumed in their execution.

The simplification function is SIMP which takes as its argu-o
ment an algebraic expression and returns as its value the(i
simplified form of that expression. When no substitutions arew
present, SIMP consists solely of a call to each of the three3
functions ZERM, EXPD and EDIT in turn. The action of3
these functions has been described in detail in d’Inverno (1969%
but the following summary will be sufficient for the purposes?
of this paper. ZERM rids an algebraic expression of zeros after=
which EXPD expands the expression out using the laws oE
distributivity and associativity. EDIT then passes through the’
resulting expression simplifying each term and collecting hk@
terms together.

ojumoq

1e/|

Z udy 61

3. Substitutions
Substitutions are defined by the programmer by using th@
function SUBSTITUTE whose first argument is the expression™
to be substituted for and its second is the expression to be
substituted. Both arguments are formed into a dotted pair and
this is added onto the end of the substitution list which is held
as the APVAL of the atom SUBS.)
Although substitutions may have been defined in this way,
they will not be used by SIMP unless the function SWITCH-
SUB has been used. The command SWITCHSUB (ON) will
patch SIMP in such a way that, on all subsequent calls, a
branch is made after the ZERM-EXPD-EDIT sequence to
another set of instructions which references SUBS, calls the
extra simplification function SIMP** (see Section 5) and
finally passes through the ZERM-EXPD-EDIT sequence once
more. The substitution mechanism is straightforward. The

*Department of Mathematics, University of Southampton, Southampton SO9 SNH.
1The Computer Laboratory, University of Cambridge, Corn Exchange Street, Cambridge CB2 3QG.

Volume 17 Number3

first dotted pair on the substitution list ((«, . 8,) say; a,, B, are
algebralc expressions) is accessed and the algebraic expression
is searched for every occurrence of «, using EQUAL (both a,
and B, will have been canonicalised on input, see Section 6).
Every time one is found, a copy of B, replaces it by direct
modification of the list structure. The next pair on the sub-
stitution list is then accessed and the algebraic expression is
searched again and so on until the end of the list. The full action
of SIMP can be displayed in the form of a block diagram:

IEnterl I Exit |
A

ZERM EDIT
LEXPD EXPD
EDIT | ZERM |
ON
ISW]TCHSUMference SUBS l———)lSlMP**
OFF '

SIMP can always be patched back into its original form by
SWITCHSUB (OFF). A set of substitutions already defined
can be lost by the command LOSE (SUBS) which merely sets
the APVAL of SUBS to NIL; whereupon, a new set can then
be defined if so wished.

4. Common factor expressions
If the algebraic expression (a + b)(a + b)~! were to be given
to SIMP, it would be expanded out to

a(@a + b)~! + b(a + b)~*!
by EXPD and the subsequent call to EDIT would leave it in
this form and not reduce it to unity. However, if the factor
(a + b) were to be represented by the atomic symbol A, then
the example expression would now be AA~! and SIMP will
simplify this to unity. It is in precisely this way that CLAM
deals with common factors.

Common factors are defined by the function FACTOR which
takes two arguments; the first is the chosen atomic symbol
which is to represent the factor expression and the second is the
expression itself. FACTOR proceeds by calculating all deriv-
atives up to the second order (METRIC only requires deriv-
atives up to this order) of both arguments, at the same time
forming a list of dotted pairs of the corresponding derivatives.
This list, which includes the original argument pair as well, is
then added onto the end of the factor list which is attached as
APVAL to the atom FACTORS. For example, if the atom A
is to represent the factor expression o which is a function
(either implicitly or explicitly) of the variables x° and x! then
the command FACTOR (A «) will produce the list:

(BAT11).a49) (BA D)) (A0 1).0cxpy)
($A00).090) ($A0).0tp) (A.x))

which is then NCONC’ed onto the APVAL of FACTORS.
Within algebraic expressions, common factors defined by
FACTOR can therefore be represented by their corresponding
atoms and SIMP treats these just like arbitrary functions.
Thus, valuable store is saved and required cancellations will
take place. Unlike substitutions, the actual values of the factor
expressions and their derivatives are only substituted on output
and the process forms part of the function PRT (see Section 9).
The command SWITCHFAC (ON) patches PRT so that the
factor list is referenced in a manner similar to that in which

230

the substitution list is referenced in SIMP and the values of
the common factors and their derivatives are substituted into
the argument of PRT. This intermediate result is then given to
SIMP** and SIMP before a branch is made back to the main
body of PRT which prepares the final simplified expression for
output. PRT can always be patched back into its normal state
by SWITCHFAC (OFF).

5. Extra simplification functions

SIMP in its normal state makes no attempt to simplify man-
tissae of exponential expressions or multiply out expressions
raised to integral powers. However, if such simplifications are
required (for instance, after common factor substitutions and/
or ordinary substitutions have taken place) then either SIMP
or PRT (or both) can be made to reference the extra simpli-
fication function SIMP** by using SWITCHSUB or SWITCH-
FAC respectively. SIMP** works by searching an algebraic
expression for every subexpression headed by the operator **,
whereupon the subexpression is handed to EDIT* which
performs the quick, elementary simplifications. If necessary, _
the value of EDIT* is given to EDIT** which performs the O
more complicated simplifications associated with exponen-
tiation.

Two functions, POWER and EXPAND, affect the action of o
EDIT**, POWER patches EDIT** so that numbers raised to S
an integer power whose modulus is <ky (the argument of =
‘POWER) are multiplied out. EXPAND similarly patchesU
EDIT** so that sums of terms raised to an integer power of =
modulus <kg (the argument of EXPAND) are likewise & 8
expanded out. The default setting of ky is 3 and that of kg is 13
(i.e. no expansion). For example, with the default settings, the 5
expressions

apEeojuUM

y woJy

@%@+ b @+ b)?
would be unaffected. However, if the commands POWER (4)
and EXPAND (2) are interpreted, the above expressions
would subsequently be simplified by EDIT** to

16/81, a* + 2ab + b, (a* + 2ab + b*)~! respectively .

No attempt is made in CLAM to combine or expand out &
expressions involving sine, cosh, log, etc. The arguments of X ;
these functions are never simplified and thus it is left to the
programmer to decide in what form expressions 1nvolvmg these © <0
functions should be input. A consequence of this is that a °°
substitution making the argument of cosine zero, say, will not & @
result in a simplification to unity; that is, the substitution g
defined by SUBSTITUTE (X 3 0) will only reduce (COS X 3) to o Q
(COS 0). However, SUBSTITUTE ((COS X3) (1 1)t will <D
produce the required simplification. As mentioned in d’Inverno o)
(1969), it is this kind of restricted capablhty which has enabled _ 2
ALAM/CLAM to be reasonably efficient in the calculations it i~
has been called upon to do.

|0|ue/|u[Luo:)/Lu00'dno 1w

20z Iud

6. Canonicalisation

All algebraic expressions read into the system through the
standard input functions (these are METRIC, METRIC2,
SUBSTITUTE, FACTOR and TETRAD; see Section 10) are
canonicalised. SIMP1 is the canonicalisation function and it
works by recursively calling itself throughout an expression
using EXPD and EDIT where necessary to multiply out sub-
expressions. SIMP1 canonicalises all arguments of trigono-
metric and logarithmic functions and all mantissae and expon-
ents. All expressions within a term are put into canonical
order so that ‘like terms’ can be tested for equality by using
EQUAL. On the other hand, the order of the terms within a

+Rational numbers in CLAM are represented by a list of two posi-
tive integers. The first integer is the numerator of the fraction and
the second the denominator. Thus, in this case, (1 1) represents the
number 1.

The Computer Journal

sum is not canonicalised unless the sum is the argument of a
function or is a mantissae or exponent.

Within calculations, further canonical ordering only takes
place when new mantissae or exponents are formed. The actual
ordering itself is not important and in practice a natural one
has been chosen so as to make the output the more readable;
for instance

(1/3)UR™E?B~26B_ instead of B,R™1(1/3)E~20+2BU .

7. Syntax analysis

Upon entry through any of the standard input functions (see
Section 6) an algebraic expression is given first of all to
SYNTAX which uses the definition in Appendix 1 to check
whether the expression is a legal one. Any illegal expression is
printed out and is followed by a message informing the
programmer of the fact. SYNTAX then aborts the job.

Some CLAM functions check their arguments to determine
whether they are of the correct type. Other errors, such as
misspelling and incorrect bracket pairing, are trapped by the
LISP input routines.

8. Differentiation

Variables and arbitrary functions are represented by atoms
which have the properties VAR and DEP respectively on their
property lists. For a variable the property itself is a member
of the set {0, 1, 2, 3} denoting whether it is the x°, x!, x* or
x* variable. For an arbitrary function the property is a list
of numbers denoting the variables on which the function
depends. These properties are defined to the system by using
two functions, VARIABLES and FUNCTION. For instance,
VARIABLES (U R THETA PHI) declares U to be the x°
variable, R to be the x! variable and so on; and FUNCTION
(A (U THETA)) will define A to be a function of U and
THETA, i.e. give A the DEP of (0 2).

The function which performs differentiation is DIFF; its first
argument is the algebraic expression to be differentiated and its
second is an integer denoting the variable with respect to
which it is to be differentiated. If the first argument is atomic
DIFF searches its property list for a VAR or DEP property
and acts accordingly. If neither is found the atom is assumed
to represent a constant.

If the argument is neither an atom nor a CLAM number, then
DIFF recovers the SUBR property of the top-level operator
and hands control over to that. By giving the set of operators
SUBR’s, each of which recursively calls DIFF, all the rules for
differentiating products, exponentials, etc. are implemented.

9. Output

In CLAM, two files are used for output purposes. Interpreter,
garbage collection and error messages are written to the
standard file OUTPUT. However, to keep the results of cal-
culations separate, these are written to the scratch file METRIC
which can either be copied to OUTPUT at the end of the job
or can have its disposition changed to that of the line-printer.

The function which prints out algebraic expressions in a three
line mathematical format is PRT (to our knowledge, the first
system to do so).

Upon entry its argument is copied and is then given to VALU
which changes from prefix to infix notation delineating super-
scripts and subscripts by the special atoms // and /*. Every
new atom which enters the CLAM system is automatically
given the property NAM which is a list of the character object
atoms which make up its name. VALU references this property
when processing atoms so that the PNAME does not have
to be decomposed every time the atom is printed out. How-
ever, because numbers are not held uniquely in LISP, these
have to be decomposed into a list of the corresponding
numeric character objects.

Volume 17 Number 3

After VALU, the function STR flattens out the list structure
of its argument so that it becomes simply a list of character
objects (apart from // and /*) all at the top level. PRT breaks
the resultant list after the last term that can fit on a line, sets
a pointer to the remaining part and hands the first part to
LINEPRT which converts the character objects into DPC
codes (this is trivial as all character objects in the CDC LISP
system are held in consecutive locations in store in the correct
DPC order) and finally assembles the line, in three line format,
in the output buffer. PRT then picks up the remaining list and
deals with this in the same way. The full action of PRT can now
be displayed in block diagram form (see also Section 4).

| Enter |

ON reference g

SWITCHFAC FACTORS| 3

| &

VALUE | SIMP | SIMP**§
STR

Output «—lﬁ\IEPRﬂ Eetermine next linel

buffer \
Exit

10. METRIC and associated functions
Every scalar or tensor quantity which is referred to by the:
CLAM system has associated with it a unique atomic namer
The metric tensor g,,, for instance, is referred to by G— —
and the Riemann tensor R, by R—— — —. The compos;
nents of non-scalar quantities are stored in a hierarchicab
list structure which is attached as APVAL to the appropriat§

g/|ulwoo/woo dno-olwspese//:sdny

(802 812 822 &23)

(803 813 823 8&33)
where each g, represents a pointer to the corresponding algqog
braic expression for that component. As g, is symmetric, the
double appearance of g,;, say, indicates the same pointer.
In this way, valuable store is saved by making full use of any
symmetries which a tensor may possess. (For example, of the
256 components of R4, only 20 independent components are
constructed and stored.) The value of a scalar is stored as the
APVAL of the relevant atom; a vector is simply a linear list
of its four components and, for quantities with more than two
indices, the structure is the logical extension of the type shown
above.

Given the initial data {g,,}, the simple action of METRIC is
to calculate and print out all the independent components of
the set {g., & I't,, Ruypeas Raps R, G} in that order. This
order is important as each quantity is then dependent only on
the components of those previously calculated. Special func-
tions are used by METRIC for manipulating and constructing

atom. Thus the components of G — —are stored as §
G-— g

«Q

3

—> a

APVAL ((8o0 801 802 8o3) %

(o1 811 812 &13) ©

g

N

231

the hierarchical structures described above. When a quantity
is no longer required in ensuing calculations, METRIC
automatically sets its APVAL to NIL so that, when the next
garbage collection occurs, store is reclaimed.

Connected with METRIC are some extra functions which
enable the programmer to have more control over its action.

(@) NOPRINT can be used to prevent METRIC from printing
out any quantity which is not required.

(b) STOPAFTER provides a mechanism for terminating the
action of METRIC after it has calculated a particular
quantity.

(c) CALCULATE can be used after METRIC has finished to
calculate any further quantities, or just certain components,
which may be required. As well as those mentioned in the
standard set above, CALCULATE can be called upon to
determine the mixed components of the Einstein tensor Gj,
the contravariant components G, the Weyl tensor C,p4
and also the Ricci tensor R, directly from the Christoffel
symbols I'?_ (normally the Ricci tensor is obtained by
contracting g with R,;.,).

(d) KEEP enables the programmer to keep quantities in store
which would otherwise be disposed of by METRIC.

(e) LOSE exists to rid the store of any quantity (or just certain
components) which are no longer required for ensuing
calculations.

By judicial use of METRIC and these auxiliary functions, the
programmer can select only those quantities or components
which he requires to be calculated and printed out, thus saving
time and store. As there is complete freedom in the use of the
substitution and common factor devices anywhere in a program,
CLAM provides an extremely flexible way of performing these
types of calculations which are frequently required by research
workers in general relativity.

Other facilities are provided. The components of a tetrad can
be defined by using TETRAD after which CALCULATE can
be made to produce the physical components of the Ricci and
Einstein tensors. METRIC2 exists for those metrics for which
METRIC is unable to construct g® for itself. METRIC2
therefore takes the ten {g®°} as a second set of data and proceeds
from there. Two functions LINELENGTH and NEWPAGE
are provided for controlling the number of characters output
per line and a page throw respectively. In Appendix 2 we dis-
play a simple CLAM program which illustrates the use of some
of the functions described above; full details of their use can
be found in the manual.

11. Additional information

The CLAM system is available for use on the CDC 6600/6400
computers and is written in their machine code assembler,
COMPASS, within the LISP system of the University of
Texas. In designing ALAM and CLAM, the emphasis had
always been on producing a system which would be capable of
performing the large algebraic calculations commonly en-
countered in relat1v1ty research. For this reason, neither
system was written in LISP itself because it was doubtful
whether the required efficiency could be attained.

Two versions of CLAM exist; CLAM 2.0 is the standard
version for metric applications using the command language.
There is no way for the programmer to reference explicitly
those functions dealing with simplification, differentiation,
output, etc. All unnecessary code, list structure, buffers and
tables of the LISP system have been edited out to save store.
The system is approximately 10K words in length and is the
one referred to by the manual. A second version, CLAM 3.0
still retains all the LISP interpreter and compiler interface and
can be used for non-metric applications as well (it contains

232

CLAM 2.0 as a subset). Thus, programs can be written in
LISP using CLAM functions, compiled and then executed.
However, we feel the demand for this version is limited as a
knowledge of LISP is necessary to use it and hence no manual
has been written for it.

12. A critical analysis

In this final section we shall attempt to present an objective
appraisal of the CLAM system. The unsuitability of LISP as an
input language has already been mentioned in the previous
section and the inconvenience of this choice has been mini-
mised by the use of a command structure in the basic (2.0)
version. The format in which algebraic expressions are input
also leaves something to be desired. As the amount of input to
the system is usually small compared with the amount of out-
put, it was originally considered that this format would provide
a simple and unambiguous method of input and storage of
algebraic expressions in a LISP list format. However, for those
apphcatlons which have large amounts of data, the 1nput of
expressions is very tedious and the resulting program is not
easy to read for checking purposes. An admirable solutlono
would be something similar to REDUCE (Hearn, 1970) Wthh,:
although LISP based, has an ALGOL-like input languagem
and a method of writing algebraic expressions very similar toﬂ>
FORTRAN. This would not be difficult to achieve for CLAM‘“
but we feel that it is not worth the effort as the system als03
suffers from the drawback of the LISP data structure. E

LISP list structure provides a natural and simple method of"’
list processing but, for the purposes of algebraic mampulatlono
it is extremely inefficient in store usage. In ALAM/CLAM the‘l
CDR of a node invariably holds a pointer to another node3
whilst the CAR frequently does so as well. In algebralcO
manipulation it is often the case that two or more pieces of dataU
naturally belong together and hence it would be more efﬁmen@
to compact the information into consecutive locations in store’
rather than joining by pointers. The CAMAL system (Barton,_
Bourne and Fitch, 1970) provides a good illustration of how—
this can be accomplished. Thus, because of the data structure,o
some of the large calculations which ALAM and CLAM have®
accomplished have extended the resources of the machine tO\‘
the limit. In CLAM, the wastage of store is even greater asN
CDC LISP has an extra CSR field (18 bits within a 60-bit word)ao
which is not used at all except in property lists. Thus we feeloo
that the time spent on providing good input facilities fof\’
CLAM would be better spent on researching into a morec,
efficient data structure which, of course, would mean a.nQ
entirely new system.

However, despite the above criticisms, ALAM and CLAMO
have proved to be extremely useful aids to research in relat1v1ty —
For metric applications, the basic version, we claim, is by far
the easiest system to use. This fact has been established from=
feedback from users and no knowledge of computing is necesN
sary to use the system successfully. PN

CLAM is also extremely fast. The measurement of statistics
of algebra systems poses many problems (see Fitch and Garnett,
1972 for mstance) but we think it is true to say that there. are
no systems in existence which are appreciably faster (see Barton
and Fitch, 1972, p. 285). As an example, we present the statis-
tics for a standard test problem, the B.V.M. metric. To calculate
and print out in a reasonable format all the independent
components of {gu» & &% I'%» Rapeas Rap» R, Gop} for the
B.V.M. metric given only the { ga} as initial data, CLAM takes
18 seconds CPU time in 40K words of store on the CDC 6600
(although the program will run in less store).

Acknowledgements
We should like to thank Professor F. A. E. Pirani of King’s
College, London, for his help and encouragement during the

The Computer Journal

course of this work. We should also like to thank Professor METRIC €C Cx A Cxx R C- C1 1)3)) 00 0

M. V. Wilkes and the referee for their suggestions which have ? :: EI*RR(’:’; ?) §; (‘)‘ 133 00
improved the presentation of this manuscript. (- (% (k% R (2 1)) Ckk CSIN E) €2 1))))
»
. LOSE (G--)
Appendix 1 . .) o LOSE (G++)
Presented below is the definition of an algebraic expression 1n SWITCHFAC (ON),
CLAM. The notation is basically BNF. Within lists, symbols CALCULATE (R-=-=-- (1 3 1 3))
are understood to be separated by LISP blanks and three dots ~ CALCULATE (R---= (2 3 2 35)
are taken to mean that any number of symbols of the type on
either side of the dots may occur, including none at all. CLAM OUTPUT:
(algebraic expression) ::= (AE) -1
(AE) ::= 0] _ G =AR
{atomic-symbol}| 00
({integer) (integer))|
($ <atomic-symboly{varint) 6 =0
{varint) . . . {varint))| 01
(** CAE) (AE))|
(Kinfop) {AE) (AE) <AE) ... _
(AEy)| © = o
(<monop) CAE) 2
S
(integer) ::= (LISP positive integer) G =0 §
{varint) ::=0]1]|2]3 03 e
{infop) ::= + | * -1 g
{monop) ::= — | SIN | COS | COT | SINH | COSH | LOG | G =-RA =
EXP 11 S
2
Appendix 2 ' 6 =0 8
As an example we exhibit a program in CLAM to determine the 12 2
R,3:3 and R,;,; components of the Riemann tensor for the o
Schwarzschild metric G =0 S
. om 2m\ ! . ' 3
ds* = (l —7> ar* — (1 ——) dr? — r?d9* —r?sin? 0dp? 5 g
r
G =-R g
The {g,,} are printed out as a check on input but the common 22 Ny
factor, A = r — 2m, is only substituted for when the two 5
Riemann tensor components are printed out. The four inde- 5 _ %
pendent variables (¢, r, 6, ¢) are input as (T R EP) and the 23 3
quantities g, g%, I'%,, R, are referred to in CLAM by *G*, N
G++, GAM + — —, R— — — — respectively. . __R251N2<E) S
The program will run in well under 15K and takes less thana 55~ 3
[N
second to execute on a CDC 6600. ®
g
CLAM PROGRAM: 2 -1 2 :%
R =C1/2)RSIN (E)(R-2M) -(1/2)SIN (E) 2
1313 S
VARIABLES (T R E P) >
FUNCTION (A (R)) 2 >
FACTOR (A (+ R (- (% (2 1) M)))) R =-2MRSIN (E) 5
NOPRINT ((kG G++ GAM+==)) 2323 N
STOPAFTER (GAM+--) N
~

References

BaRTON, D., BOURNE, S. R., and Fitch, J. P. (1970). An algebra system, The Computer Journal, Vol. 13, No. 1.

BarTON, D., and FircH, J. P. (1972). Application of Algebraic Manipulative Programs in Physics, Rep. Prog. Phys., Vol. 35, pp. 235.

FitcH, J. P., and GARNETT, D. J. (1972). Measurements on the Cambridge Algebra System, Proc. ACM Int. Comput. Symp., Venice.

HEeArN, A. C. (1970). REDUCE User’s Manual, Stanford Artificial Intelligence Project Memo. AIM-133.

D’INVERNO, R. A. (1969). ALAM-Atlas Lisp Algebraic Manipulator, The Computer Journal, Vol. 12, No. 2, pp. 124-127.

D’INVERNO, R. A. (1970). The Application of Algebraic Manipulation by Computer to some Problems in General Relativity, King’s College,
London (Ph.D. Thesis).

D’INVERNO, R. A., and RUsseLL-CLARK, R. A. (1971). Classification of the Harrison Metrics, J. Math. Phys., Vol. 12, p. 1258.

D’INVERNO, R. A., and RUSSELL-CLARK, R. A. The CLAM Programmer’s Manual, Part 1, Simple Applications of CLAM to computing
curvature tensors and some related quantities, (1971), King’s College, London. Part 2, Additional Facilities, (1972), University of Cam-
bridge, Computer Laboratory. :

RuUSSeLL-CLARK, R. A. (1973). The Application of Algebraic Manipulation by Computer to some Problems in Gravitational Radiation Tl heory,
King’s College, London (Ph.D. Thesis).

Volume 17 Number3] 233

