A note on left factored languages

T. Komor

INFELOR Systems Engineering Institute, 1281 Budapest, P.0.B. 10, Hungary

In the papers of Wood (1969, 1970) left factored (LF) grammars and languages are defined. In this
paper we show that Lemma 8 in Wood (1970) does not hold, and therefore the proof of Lemma 6 is
incorrect. We prove a theorem which gives a necessary and sufficient condition for an unambiguous
grammar to be an LF grammar. On the basis of the theorem we give an example of a language, which
can be used in the proof of Lemma 6. In Section 5 we given an extension to Foster’s SID (see Foster,
1968), which transforms context-free grammars to LF form.

(Received September 1972)

Terminology

A context-free grammar G is a 4-tuple G = (M, T, S, P),
where M is a finite set of metasymbols, T is a finite set of
terminal symbols, S € M is the sentence symbol and P is a
finite set of rules of the form A —» ¢, AeM, V¥,
V = T u M. Further, by grammar we will understand context-
free grammar and the use of G as a grammar assumes implicitly
G=(M,T,S,P).

Usually we denote terminal symbols by a, b, c, . . .; strings of
terminals by x, y; metasymbols by S, 4, B, C, .. .; symbols
from V by «; finally, strings from V'* by other Greek letters.

If G is a grammar, then by G, will denote the grammar
Gy= My, Ty, Sy, Py), where M, =Mu {S4},
T,=TuU{#}, P, =PuU {S; > S#} (it is assumed, that
Sy¢Mand # ¢7).

Occasionally we use BNF style notation for rule alternatives,
ie. A—> ¢,ld;l...|¢,. The set R, = {$p|4 > pep} is
called the rule alternative set.

We write ¢ = if ¢ = x4n, ¥ = xon and 4 - o is a rule

G

of the grammar G. We say ¥ is derived from ¢, denoted
¢;>|/1, if a sequence of 7, exists, 0 < i < n, such that
G
Y =1no=1n =...=1, =Y, the strings n; form a derivation.
G G G

We write ¢ = V if G is understood. Note that we consider only
left-derivations. A language generated by a grammar G is

L(G) = {x|xeT* S = x}.

We assume that the notions of admissible and unambiguous
grammar are known (they are defined for example in Ginsburg
(1966)).

The following notation is needed. Let ¢ = a;a; . . . &, Where
a; are symbols in some alphabet, then |¢| = k. For A—the
empty string—| A | = 0. By LM we denote the first j symbols of
a string, that is LM{(§) = a5 . . . a;if j < kand LM(¢) = ¢
forj > k.

Let T be an alphabet, T(¢) = k if LM (¢)eT* but
LM, (¢) ¢ T*. We denote the empty set by .

The left terminal set of a rule 4 — w, denoted [4, w] with res-
pect to a grammar G we describe with the help of the corres-
ponding grammar G, = (M y, Ty, Sy, Py)

[4, 0] = {a[S#.= xAp , Ap = w¢'=> ay,a €Ty, x,y €Ty,
pe(My L Ty)*}
A grammar G is an LF grammar, if for all A € M it is true for

all g,yeR,, ¢ #Y that [4,4]1n[4,y]= ¢ (Wood,
1969). A language L is an LF language, if L = L(G) for some
LF grammar G.

LF languages and power property
Let us consider the following grammars.

G, = {{S:1}, {a,b, ¢}, Sy, P,}, where P, = {S; - aS,alb|c},

242

G2 = {{S2}9 {a9 b, C}, S2s P2}9 where P2 = {SZ g aS2b|C|A }’
and
G; = {M;, Ts, S, Py}, where M5 = {S;, 4, B,C}, o
T3 = {a7 b3 ¢ da eaf; g, h}g
and o
Py = {S; - adB, A —» bAC|c|d, B > glh, C — e|f} .
The languages, generated by G, G, and G are denoted by
L,, L, and L, respectively. Grammars G;, G, and G; are lefE
factored, therefore L,, L, and L; are LF languages. g
In Wood (1970) the power property is defined and Lemma &
asserts that every LF language has the power propertys
Nevertheless, for L,, L, and L, we can form the sets
Q, = {a'bd'|i > 0}, R, = {d'cd’|i > 0};
Q, = {d'cb'li > 0}, R, = {a'b'|i > 0};
Q, = {ab'ce'gli > 0}, Ry = {ab'df'hli > 0};
and these show that L,, L, and L; do not have the powe
property.

papeo

ed

(Moo dnoolwap

LF grammars and k-derivations
In this section by grammar we will understand admissibl
grammar.

Definition 1

Let G be a grammar and ¢ = ¥, be a derivation

d €2€68€/2r2/E/L) /1M e/|ulwody

G
p=yo=>n=...=2n=y,
for 1> 1. If there exists k > 1 such that T(y) >

T(y,-,) < k and for some yeT*, S;-»ygb, then we writé
k

x>
o
=

¢ = ¥ and the derivation above is a k-derivation.
k

In other words, ¢ = { means that the first k& symbols of
are terminals and the kth terminal of Y appears on the la:
step of the derivation.

vZ0z% & 61 uo

Definition 2

A grammar G is a deterministic derivation grammar, if for all

k > 0 in the grammar G, for all ¢, ¥, and ¥, (¢, ¥y,
k

V,e{My,uUT,}*) such that ¢ ';> v, ¢=V, and
LM, () = LM,(y,) then Yy = 5.

Lemma

If in some grammar G, S = x¢, T(¢) = O and ¢ = ay, a €T,
1 *

then there is a word # such that ¢ = an = ay.

Proof
Let us consider the derivation

p=vo=>71=>...=27=ap.T@o) =T($) =0,
T(y,) = T(ay) > 1. Since we consider only left derivations

The Computer Journal

T(;+1) = T(y;) holds. Therefore p = min (j|T(y; = 1) exists,

0 < p < I. Obviously LM,(yp) = a, therefore for some 7,

7, = an. The derivation ¢ = yo =y, = ... =7, =an fulfills
1

all the conditions of Definition 1 for k = 1, thus ¢ = an.

From y, = y, it follows that an = ay.

Theorem _ .

(a) Each LF grammar is a deterministic derivation grammar.
(b) An unambiguous deterministic derivation grammar is an
LF grammar.

Proof
We will prove both statements by indirect proof.
(a) Let G be an LF grammar, assume that G is not a deter-
ministic derivation grammar. In this case there are k > 0, ¢,
k

¥y, ¥, € {T, U M, }* such that in the grammar G4 ¢ = ¥y,
k

¢ = V,, LM({,) = LM,({,) but y; # y,. By Definition 1
LM,(yy) € T} and thus we can write ¥, = W Vo = Wi,
where ye T} and |y| = k. Let us consider the derivations
p=vo=>7=>...=>y =) and p=0p=>0=>...=
; = y¥. For p = max (sly; = 6,) we have p < land p <j,
therefore y, and 8, are of the form y, = 6, = x4n, where
|x| < k. Furthermore, y,,q = x@;1 and 6,,; = X1, where
o, and o, are different alternatives of 4 and we have

xw.n =y, xw,n = yy;. Since |x| < k and |y| = k, then
y = xx’ where |x’| > 0. Thus we have LM,(x’) € [4, ®,] and
LM,(x’) e [4, w,], but this is in contradiction with the
definition of LF grammars.

() Let G be an unambiguous deterministic derivation
grammar. Assume that G is not an LF grammar, then there are
two different alternatives w, and w, for some meta-symbol 4
in the grammar G for which [4, w,] N [4, ®,] # ¢. This
means, that for some x € T} and a € T, we have in the grammar

Gy Sy = XA, Ap = 0, = ay;, Ap = w,¢ = ay,. By the
1 *
Lemma there exist #, and #,, such that A¢ = an, => ay,,

1 .
A¢p = an, = ay,. Since G is unambiguous, 7, # n, (the
derivations of an, and an, from A¢ begin with different rules
A - o, and 4 - w,); this, however, is impossible in a
deterministic derivation grammar.

We show now that the language L, = {a'dba'b, a'dca’c|i > 0}
is not an LF language. Assume the contrary, that there would
be an LF grammar G, = {M,, T4, S4, P4}, such that
L(G,) = L,. Let us consider the words a’dba’b and a’dca’c for
a fixed i. Similar to the proof of the Lemma it can be shown that

i+1 -
there are 7, ; and 7, , such that S, = a'dy; ; = a'dba’b and
i+1 -

S, = a'dn; , = a'dca’c. By the Theorem, 7;; = 1;2, We
denote it by n;. We can assume that all metasymbols of G have
more than one terminal derivation (a metasymbol, which has a
unique terminal derivation, can be removed from an LF
grammar by substituting for this metasymbol in the rules of all
other metasymbols with its unique terminal derivation).
In this case it is easy to see that |n;| = 1, otherwise from #;
would be derived not only ba'b and ca’c. Thus n;€ M, and
fori # j,n; # n; which implies that M, is an infinite set, which
is a contradiction. Therefore L, is not an LF language.

Note that L, can be generated by grammar
Gs = (M5, Ts, SS’PS) s
where
MS = {SS’ B’ C}9 TS = {a’ ba ¢ d}
and

Ps = {Ss = Bb|Cc, B — aBa|db, C — aCaldc} .
Gs is an LR(0)-grammar, thus in Wood’s notation L, is an E
language (Knuth, 1965), accordingly L, can be used in the

Volume 17 Number3

proof of Lemma 6 of Wood (1970).

In a similar manner it can be shown that languages
Ls = {a'ba'b, d'ca‘cli > 0} and Ls = {a'bc,a’li > 0} (see
Wood, 1970) are not LF languages, but it is more complicated
to show for these grammars that |n;| = 1.

An open problem 1
In this section under Open Problem 1 we will understand the
Open Problem 1 of Wood (1969).

Foster’s SID (Foster, 1968) can be extended for the case in
which one of two intersecting left terminal sets result from a
rule of the form 4 — A.

In a grammar G, let there be a rule 4 — ¢,|,| . . . | ¢y, where
¢, = A and [4, 1[4, ¢] # J for some 1 <s<k
(In such cases SID reports a failure.) '

This is possible, for example, if in the grammar G there isa
rule B — Y, 5| . . . Yy, ¥y = ndal, of = ax, and a € [4, ¢,]-
To eliminate this ‘bad’ appearance of 4 we can change the rule
of B to a rule of the form B —» n4’|{5| . . . |{;, where 4’ is a
new metasymbol, and we include a rule for 4’:

A = f@IIf (@I - . 1f(¢e)

)

where g
_fpa ifp =4 5

1@) = {qboc(otherwise. 8

Of course for 4’ we have [4’, f(¢,)] N [4’, f(¢))] # ¢ ancg
A’ must be further processed in the manner described by Fosteg
(1968). E

Another case is when /, = n4 and is close up G there is a rule

C—Elél .. |Em & = TBal.
In this case we first process C and obtain

C—B|E] .. |&ms
B - gWylgWo)l ... 1gW),

_)¢B if¢=4¢'B,
§(9) {anC otherwise.

g(y,) = nAaf will be further processed as in the first case.

Note thatif B = A in the first case or C = Bin the second oney
this algorithm does not eliminate the ‘bad’ appearance of A

This method was realised in a Grammar Transformer Prograny;
in the form of a recursive ALGOL-procedure. The procedure
processes ‘bad’ appearances of the metasymbol 4 one aftef
the other in all rules. Either this appearance is of the forn®
B - nAal, and then this appearance is transformed in th§
manner described above (the new rule for A4’ becomes the last
rule in the grammar), except in the case B = 4, when the
procedure reports a failure; or this appearance is of the form
B — nA, and then the procedure begins to process metasymbog
Bif B # A and continues to process 4 if B = A. The procedure
also reports a failure if it begins to process a metasymbo
which is already being processed, that is, if there is a deep right
recursion of ‘bad’ metasymbols. S

Let us consider the grammar G, = ({S,, 4, B}, {a, b}@
S, P;), where P, = {S; > Bbb, B> ad, A~ A lad|baA},
(this is the example from Foster (1968), where A is a number
continuation, B is a number, S is a word, a is a digitand bis a
space).

For A we have [4, A] N [4, bad] # ¢. The algorithm finds
the appearance of 4 in the rule of B, and begins to process B.
It finds B in the rule of S, the transformation of this appear-
ance results in S; — B’, B’ —» aAbb. After this the procedure
continues to process metasymbol 4. On finding the appearances
of A on the right end of the rule alternatives of 4—they do not
alter the grammar—the procedure goes on to find an appear-
ance of A in the rule of B’ and the transformation of this
appearance results B> — ad’, A’ — bblad’|bad’. A’ is further
processed in the manner described by Foster, which gives
A’ - bA"|aA’, A" -» blaA’.

)

where

g/|ulwoo/woo dno-olwapese)/

243

The algorithm excludes metasymbols B and 4 from the gram-
mar to become an admissible grammar. Finally, we have
P,={S, > B,B > aAd’, A’ » bA"|aA’, A" — blaA’}. This
grammar is similar to the grammar given by Wood in Open
Problem 1 (S,-word, B’-number, A’-number tail, A"-space tail)
however Wood gives the rules of 4 as 4> — aA’|bA"| A |, which

References

is incorrect, because after the last digit of the number there
must be two spaces, (see grammar G-).

Note that GTP does not solve Open Problem 1. For example,
it loops for the grammar Gg = ({Ss, 4, B}, {a}, Ss; Ps),
where Pg = {Sg = A, A — aA|aB|a, B — aBlaA}. However,
Ly = L(Gy) is obviously an LF language.

FOSTER, J. M. (1968). A syntax improving program, The Computer Journal, Vol. 11, pp. 31-34.

GINSBURG, S. (1966).

The mathematical theory of context-free languages, McGraw Hill.

KNUTH, D. (1965). On the Translation of Languages from Left to Right. Information and Control, Vol. 8, pp. 607-639.
Woop, D. (1969). The theory of left factored languages: Part 1, The Computer Journal, Vol. 12, pp. 349-356.
Woop, D. (1970). The theory of left factored languages: Part 2, The Computer Journal, Vol. 13, pp. 55-62.

Book reviews

Principles of interactive computer graphics, by W. M. Newman and
R. F. Sproull, 1973; 607 pages. (McGraw-Hill, £7-85)

At least a useful and complete book on interactive computer graphics.
This book, representing a collection of teaching material in inter-
active graphics which can be used at any university level, is also a
great help to a professional in the field who uses the book to get
more insight to a newly encountered aspect of the use of graphics
or uses the book as a handbook.

The book is practically divided into five parts. The first part
presents the principles of computer graphics, and describes the
common types of graphics in use today. It also briefly illustrates the
way a graphical processor is controlled by graphic instructions.

Part II introduces the concepts of programs used to drive a display,
i.e. display file and structures. It describes the mechanisms used for
2D picture transformations (translation and rotation). It also
introduces the concepts and related mechanisms for clipping and
windowing the picture.

The third part discusses aspects related to the interactive use of
computer graphics. It describes the use of various means for inter-
action between graphics users and the computer through graphics
(light pen, mouse, etc.). This part also illustrates the interrupt and
attention handling techniques, as well as various methods used to
draw and track figures across the screen.

Part IV is concerned with 3D graphics and related aspects, such as
hidden-lines, hidden-surfaces and shading, while Part V deals
with advanced features in the use of graphics in graphical sys-
tems, graphical command and graphical programming languages.
It also discusses the problem of the design of a graphical system.

One of the appendices, that concerned with the aspects of choosing
a display system, is of particular importance.

All in all an excellent book. My only criticism is that the authors
did not devote more time and space to aspects of the display files
and structures, and the related mechanisms of creation and proces-
sing of such structures, which I regard as very fundamental. I would
also like to have seen the author’s opinion and a review of the dis-
play files and structures as used up to date.

On the other hand I found some unnecessary details slightly dis-
tracting, for example formulae on the electrical field and forces on
the electron.

Furthermore I feel that the book is more inclined to the pictorial
and geometrical use of graphics than to CAD applications.

These small criticisms do not alter my conclusion that this book
belongs on the desk of any person involved in computer graphics.

N. Marovac (London)

A Handbook of Systems Analysis, by J. E. Bingham and G. W. P.
Davies, 1972; 191 pages. (Macmillan, £4-95) o
o
The structure of the book is in four parts; Part I: The steps of systené_
analysis, Part II: Techniques, Part III: General Systems Consider2
ations, Part IV: Project Control. In this form the book does give &
useful overview of the pragmatic approach to systems work in Parg’
I with general considerations and extensions dealt with in its lateB
parts. Part I covers specific techniques of Fact Gathering, Chartings:
Simulation and Decision Tables. Unfortunately these topics aré
dealt with at an appreciation level only and do not meet the authorsy
introductory claims of ‘working’ guidelines’. Necessarily these topic§L
and indeed the whole text provide ‘a framework which further stud;
and experience can expand’ (the authors’ own words in the intro&
duction). The authors thus achieve their objective of a ‘primary texg
for newcomers’. 2
A ‘guidebook to practising analysts’ is another claim. The text i§
laid out to emphasise by special markings, the activities or factorsg
to be carried out or considered at successive phases of systems
designer work. These do provide simple checklists which should help>
to re-assure a practitioner that he is following similar prooedures“g,’_
Obviously a very useful checklist for the newcomer about to unders:
take his first investigation! Here, though, the reviewer was conscious}‘
of the word ‘handbook’ in the title. To a one-time design engineeg
this conjured up images of fact sheets, design data sheets, standard$>
on filing and reference systems, etc. Here I thought I might find som
useful data for the systems designer distilled from the authors?
practical experiences, perhaps some figures for task estimates, pros
gram size, run-times, key-punch loads, timing, etc. Unfortunatelﬁ
this was not so—the checklist of steps in analysis was useful, as werg
some standard documentation aids but I feel that without somé
practical data sheets,and thewhole gathered into a loose-leaf formaty>
or useful appendices, a book of this kind is of limited usefulness tc
the practitioner. ©
Another laudable aim was ‘the analysis of business systems—nof
about computers’ but here the authors pay only lip-service. The
chapters on techniques serve to illustrate this; e.g. simulation, afte§
a general discussion simple illustrative examples follow on computer~
selection, benchmarks, a communications network. What an
opportunity missed here to demonstrate the use of simulation in the
analysis of business systems.
In conclusion this is a book of limited usefulness because of its lack
of in-depth treatment of techniques and rather an expensive text for

one of the overview variety.
A. H. Wise (Leicester)

The Computer Journal

