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1. Introduction

A large class of problems in operations research may be formu-
lated in terms of graphs. These graphs naturally represent the
relations of partial ordering, which are defined, for example,
in sets of production parts or in complexes of interrelated

activities. Here we will deal with decomposition of graphs

which are characterised by the properties:

1. The graph is finite, oriented and acyclic.
2. There are several terminal nodes (roots) of the graph.

Graphs with these properties are called the Gozinto’s graphs.*
They do not need to be connected. The operations on these
graphs and the way they are kept in computer memories are
the objects of considerable attention in literature (e.g. Hu,
1968; Schmidt, 1970), because of the numerous applications of
these information structures.

In this paper, we are dealing with the decomposition of
Gozinto’s graph. By decomposition we mean the selection of
partial graphs (subgraphs) which are associated with given sets
of graph nodes in the following sense: A partial graph belong-
ing to a given set F of graph nodes consists of all arcs and nodes
which are incident with all paths leading to the nodes in F.
The solution of this problem is of immediate practical meaning,
because in view of file updating, it is advantageous to maintain
the whole file together in any type of external memory. On the
other hand, the great size of processed files is generally not
suitable for processing because it requires a series of additional
transfers of data between operational and external computer
memories. This disadvantage is especially appreciable for
external memories with sequential information access such as
magnetic tapes. Some examples of such a situation are:

1. Product cost calculations which are considerably simpler
when performed for individual final products or related
groups of these products than for the whole production file
together. This file is defined by the so-called part-list.

2. Planning and scheduling computations, where the deter-
mination of scheduled number x; of ith part requires also
the knowledge of x;, where j is an arbitrary subscript. This
arises, for example, from a relation of the form:

N
Xi = .Zlaijxj+yi’ i= 1’2s"-5N:
j=

where g;;is the consumption of the ith part in the production
of the jth part. When it is impossible to load the vector
X = (%, X5, ..., xy)T into operational memory, coopera-
tion with external memory becomes inevitable. Processing
organised in this way is time consuming unless an external
random access mass memory such as a disc is available.

3. Network analysis in some deterministic or indeterministic
models (CPM, PERT), especially when the number of
nodes of the network is too large, or the network is subject
to frequent changes.

Hereinafter we shall denote the Gozinto’s graphs as G-graphs.

2. Problem formulation
Let us consider a G-graph ¥ = (%, #), where % is the set of
its nodes, # the set of its arcs. Let f € % be a node belonging to
this graph. Then by the partial graph %, associated with the
node f we mean the graph (subgraph) %, = <%, ¥,
defined by: o
(a) fis anode of ¥, (i.e. fe Uy), Q
(b) if g’ is a node of 4, and g — g’ is an arc of & with initiak
node g and terminal node g’, then g is a node of ¥, an
g — g’ is an arc of 4, (i.e. g%, (9 > g) € H ). The
notation g — g’ for an arc is taken from Dvofak and
Husi¢ka, 1965. 8
Similarly, when F = {f, f3, . - -, fx} is a subset of %, the&
by the partial graph % associated with F we understand the-
graph 9, = (U, #ry defined as follows: )

(a) every f, € Fis a node of ¥ (i.e. every f, € Up),
(b) if g’ is a node of ¥y and g — g’ is an arc of 4, then g is @
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node of 4, and g —» g’ is an arc of ¥ (i.e. ge%,%

(9 - 9)eHr). El
Therefore g
Yp=9,0Y,U...UY, &

is the union of subgraphs associated with the nodes in F. Oug
task in what follows is to describe an algorithm for solving the
following problem: Given a family F = {Fy, F,, ..., F,,} of
sets F, of G-graph nodes determine all partial graphs g,-%
Grss - - - 9r,. This task will be referred to as the decompositiofy,
of the original graph . >

The situations described in the introduction indicate the
meaning of decomposition algorithms. Some of them usg
topological enumeration of graph vertices, i.e. every initial
node of an arc is denoted by a lower natural number than the
terminal node of that arc. Here it is necessary to carry o
topological enumeration before the actual decomposition, and.
when the decomposition is over, we have to pass back to the
original node numbering. An algorithm for topologicdk
enumeration has been described, for example, by Dvofék and
Vaculin (1969).

In this paper, an essentially different form of the decomposi-
tion algorithm is presented. This algorithm makes use of the
nesting store (stack, push-down storage, last-in-first-out list).
This information structure serves in a natural form for storage
of data that cannot be used immediately but have to be stored
for further processing. This situation arises also in a lot of
algorithms for information structures which can be represented
by these graphs (e.g. the syntactic trees generated during trans-
lation of phrase-structure programming languages). An
example of G-graph and its partial graph associated with nodes
1 and 2 is given in Fig. 1.

*This name originated from Vaszonyi (Vaszonyi, 1962). The ‘mathematician’ Zepartzat Gozinto of course did not exist. Vaszonyi derived
its name from the pronunciation of the English phrase ‘the part that goes into’, that characterises the first usage of these graphs.
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Fig. 1 G-graph and its partial graph associated with nodes 1, 2.

3. Graph definition

Let us assume G-graph ¥ is given by the ordered list Ly of its
arcs i, = ju, 1 £ o < L, where L is the number of arcs of 4.
Let N be the number of nodes of 4. Without loss of generality
we can assume:

1. The nodes of ¢ are denoted by the natural numbers
1,2,..., N. If not so, we shall carry out such numbering
before processing, e.g. by sorting and dichotomic search.

2. The list Ly is arranged in such a way, that for every node i
firstly listed arcs are the arcs i — i), where i is the initial
node, and after them arcs i2’ — i, where i is the terminal
node, that it is to say, the list Ly is arranged as follows:

i—i)

: for every node i:
i—i, at the beginning

: arcs with i as initial node,
i —-> 1;
i —i

: followed by
iy arcs with i

: as terminal node.
i” _>i

If the list Ly is ordered in accordance with the described rule,
we call it a (topologically) top-down ordered list.If the original
list LY should not be top-down ordered, it may be rearranged
to be so by the following method:

1. For every node i we determine how many times it occurs in
LY as the initial (lower) node. Let N; be this number.

2. The arc i — j may be rewritten into the top-down ordered
list Lg if and only if N; = 0. Therefore, it is sufficient to go
through the list LS in a cyclic manner. When for current
record i — j N; equals zero, the arc i — j is transferred as
the next one into the ordered list L, and is deleted from
LY. N; is then decreased by 1 and we pass to the next
record in the reduced list L. When N; # 0 we pass to the
next record i’ — j* in L3 immediately. We proceed in this
way until the list LS is empty.

Therefore, the assumptions given above are actually no limita-

tions of generality. For the sake of simplicity let us assume
that every group of nodes, whose associated partial graph is to

. partial graphs 4, ,%,,, .

be taken out, consists of only one node. The extension to
arbitrary number of nodes in the group follows easily from the
further description of the decomposition method.

4, The decomposition algorithm
Let there be given m nodes fi, f3, - - -, f, Whose associated
.., %, in the G-graph ¢ are to be
determined. Let us assume for definiteness magnetic tape files.
Let A be the unit, which bears the input file Ly corresponding
to the graph %. Let B and C be magnetic tape handlers, which
will be used as working devices, and let V be the output mag-
netic tape unit. The algorithm may be easily modified to deal
with a greater number of magnetic tape units, but this will not
be described here.

Let P denote the unit with an input file and let Q and R be
working units. Thus we have P = A, Q = Band R = Cat the
beginning. The principle of the presented decomposition
algorithm consists of the partial decomposition (‘halving’) of
the current input list located on P and the recording of the
partial lists into which the original list has been split. The
newly created partial lists are written on Q and R respectivelys’
as the next data files. This partial decomposition is repeated fos
every input list, i.e. for the original input list and every createds
partial list. These lists are in turn selected with the use of stacks
mechanism.

More precisely, two lists associated with sets

D = {fs, fis1,-- S} (the ‘lower’ set)

H={fis1,fi+2>--»Su} (the ‘upper’ set)
of graph nodes are created during the partial decompositior
(splitting) of the input list on P. This list is assumed to corres
spond to the set c
DUH = {fg, fir1>--Ju} g
of graph nodes. Here s = [(d + & — 1)/2]; [x] is the integrag
part of x. We have of course d = 1, h = m at the beginning 3
hence s is a centre of the interval [d, #] chosen so as the cardin=
ality (i.e. the number of elements) of the lower set D does not.
exceed that of the upper set H. Now several situations have tG
be distinguished : N
1. If d < s, then neither of the sets D and H consists of jusfs
one element. In that case the list belonging to D and also
the list belonging to H must be split further. Hence bot@
lists are written as next data files on working tapes so that;
on tape R(Q) the list associated with H(D) is writtens,
Information about content and storing of lists associated
with H and D are written into stack, respectively. For every
set it is sufficient to keep in the stack only the subscript of
the first and last nodes and the unit, where the correspond=.
ing-list has been recorded. i~

2.If d = s, then D contains only one node. Therefore, the list.
associated with D can be immediately written on the outpug
unit and hence we shall take Q = V. Only informatiof¥
about the list associated with H will be recorded into the
stack.

3.1f d > s, then D is an empty set and H contains only one

node. Therefore, the list associated with H can be written
immediately on the output unit. In this case the output unit
is R and we have R = V. No new information will be
recorded into the stack.

Having performed these steps we have to take information
from the last record made in the stack (top of the stack) and
perform partial decomposition using this information. This
process continues until we reach an empty stack in a certain
step. In this case the given decomposition is finished and lists
associated with £}, f3, . - ., f,, are written in that order on the

output unit V.
In the previous part, the decomposition algorithm has been

and
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globally described. Now we are going to describe the partial
decomposition of the list L, which corresponds to the G-graph
I',into two lists L, and L. In this decomposition, we have to
determine for every arc i — j in I whether it belongs:

(a) neither to I', nor to I'y,

(b) to I'y and does not belong to I'g,
(¢) to I'y and does not belong to I'p,
(d)to I', and also to I'y.

At this point let us define a ‘two-bit’ register REG(i) for every
node i(1 £i £ N), where the first (second) bit REGp(f)
(REGg(i)) is of logical value 1, if the node i belongs to the
partial graph associated with D(H) and it is O otherwise. Let
us put in accordance with the definition of the partial graph
associated with D
REG,(i) = 1 for ie D and REGp(i) = O fori¢ D
at the beginning. REGg(i) is defined similarly and
REG(i) = {REG(i), REGL(i)) .

Now we take the current arc i — j contained in L. REG(j) = 0
implies the arc i — j belongs to neither of the partial graphs
and, therefore, we shall pass to the next arc. If REGy(j) = 1
then the node j belongs to the graph associated with
M(M = D, H). Therefore, also node i and arc i — j belong
to this graph and we shall write this arc in the corresponding list.

Then we fill the array REG for node i in accordance with partial
graph definition using the term

REG(i) = REG(i) v REG(j),
where V denotes the logical disjunction (sum). Then we pass to
the next record in L. We proceed in this way until the list L

is exhausted. It is noted here that the top-down ordering of L
ensures, that:

(a) the register REG(i) defines exactly the incidence of node i
first time it is used,
(b) the top-down ordering is retained in the lists L, and Lr,.

The details of this procedure are given by the FORTRAN
subroutine in the Appendix.

5. Algorithm implementation
The subroutine DECOMP which performs the decomposition
of the given G-graph in the manner described above, calls a
subroutine RWDF and a function DISJ. RWDF(l) rewinds the
tape | to the beginning of the last file written on it, DISJ(I, J)
carries out the disjunction of arguments | and J. EOFTST(P, J)
is machine-oriented routine, which checks the end of the file
on device P. This routine can be used as FORTRAN function
(then its value is negative if end of file is not reached) or
subroutine (then J contains 1 at the end of the file and 2
otherwise). For the sake of simplicity the REG registers are
word-oriented. The statements of the program given in the
appendix are written in accordance with FORTRAN-IV
(ANSI) specifications.

In practice, the presented algorithm can be advantageously
modified, for instance

(@) the working file can be defined in operational memory and
only on overflow of the assigned memory range will a tape
be used (reduction to 25%; of original time);

(b) when the input list corresponds to one node only it may be
copied on the output tape immediately in all but the first
steps. The partial decomposition in this case may be
avoided.

When we have to choose the partial graphs associated with a
groups of nodes, we assume that the groups indices are recorded
in the NLIST array and that ADR(2+J — 1) (ADR(2*J)) con-
tains the index of the beginning (ending) node of the Jth
group of nodes, which are themselves recorded in array NODE
consecutively for the first, second, . . . group. The only change
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in the presented algorithm for this case is in the initial settiqg
of the registers. The DO-loop statements, which perform this
setting, are to be changed as follows:

J = NLIST(l)
I = ADRQ2x) — 1)
n — ADR(2+))
DOnJ =M1,
K — NODE())
nREG(K) =1 or DISJ(2, REG(K)) .

6. Effectiveness of the algorithm
The presented algorithm has been tested in many cases and
proved to be superior to the algorithms mentioned in Section 2
for two reasons:

1. It can deal with a large number of groups associated partial
graphs of which we are seeking.

2. It can cope with a large number of nodes in the initial graph
@, because for registration of node incidence only two bits
are sufficient.

The effectiveness of the algorithm is also indicated by a
estimation of the reading and writing operations. In fact
p(1,2,...m)=RV,uV,u...uV,)
+ W0 U Vi) + W mi2141 Y - - U Vi)
+p(1,2,...,[m2]) + p((m/2] + 1,...,m)

Uy wosy papeojumot

where

p(a, B, . ..) denotes the total number of reading and writings
operations during the decomposition of the list associated”
[V

with groups o, B, . . ., 3
R(V u V' u ...) denotes the number of reading operations o@
thelist VoV u... 3

W u V' u...) denotes the same number but for writing?
operations.

o
If the initial volume of reading is |V,|, where V, is the initiaLB?
input list, then the foregoing equation yields approximately

a
~ |Vo| + 2Vmlg,m

p(1,2,...,m)z|Vo|+2(2’_2'_’17+4’fl7+...>

€ L/o1one/ulwo

if 7 is taken to be the average number of records in the partialg
graph of a node or a group of nodes. &

The modified algorithm (which uses part of the operationa@
memory and does not perform unnecessary decompositions)s
has been programmed in FORTRAN-IV (ANSI) for the
GE-427 computer. Time needed to take out about 150 partiak
graphs corresponding to individual final products was 2-1 ming
with 80 kc tapes and 385 us memory cycle.

o

Appendix
The decomposition procedure described above corresponds t
the following FORTRAN-subroutine:

&%z Iudy 61 u

SUBROUTINE DECOMP(NLIST, M,A,B, C,V)
INTEGER NLIST(1),M,A,B,C,VY

C
C DECOMPOSITION ALGORITHM FOR THREE TAPE
C  UNITS
C NLIST LIST OF NODES TO WHICH PARTIAL GRAPHS
C ARE TO BE CHOSEN
C M  THE RANGE OF THE USED PART OF NLIST
C AB,C WORKING UNITS (A CONTAINS THE INITIAL
C INPUT)
cC Vv OUTPUT UNIT
C
INTEGER STACK(60),D,H,S,SP.P,Q,R,NS,VS,REG(1000)
INTEGER DIS)
- INTEGER 1,J,L
REWIND A

A1



REWIND B
REWIND C

0
TO 40
SP) 240,240,20
STACK(SP)
STACK(SP—1)
STACK(SP—2)
SP=SP—3
CALL RWDF(P)
30 IF (P.EQ.A) GO TO 40
= A
IF (P.EQ.B) GO TO 50
R=B

GO TO 60
40Q=8B
50 R=C

60 S = (D+H—1)12

70 DO 80 | = 1,1000

80 REG(l) = 0
IF (S— D) 90,100,100

9 R =V
GO TO 140

100 STACK(SP+1) = S+1
STACK(SP+2) = H
STACK(SP+3) =
SP = SP+3
IF (S.GT.D) GO TO 110
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Book review

Interactive Computing in BASIC, by P. C. Sanderson, 1973; 161
pages. (Butterworths, £4-00 hard cover, £2-00 paperback)

In a London bookshop I recently counted no less than ten different
textbooks on programming in BASIC. That BASIC has attracted
such attention from authors is perhaps the greatest possible tribute
to this rapidly-growing language, which is surely the most commonly
used in interactive computing.

Mr. Sanderson’s is the latest then in an already long line of books
which deal with this subject. In many ways it is no better nor worse
than the others, and any criticisms I make of it could be equally
well applied elsewhere.

The book can be divided into three main sections: firstly an intro-
ductory section which deals with computing, flowcharting, program-
ming languages, etc. in a fairly standard manner; secondly the main
body of the text which introduces BASIC; and finally a chapter that
deals with the conversion of BASIC programs to FORTRAN.

My first criticism of this book is that, like many others, it has a
definite numerical bias. This seems unfortunate since BASIC is a
true general-purpose language, many implementations having
powerful facilities for non-numeric work. However string-handling

and character manipulation receive only a cursory treatment here.

Another fault seems to be that many of the examples given in the 2
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text are trivial, thus there is a definite shortage of genuine case- 2

studies which are surely necessary for beginners. Also some parts

of BASIC are given very sketchy treatment (e.g. The BASIC editor z

o

N

and command language), while other essential parts are omitted (e.g. g

file-handling). Finally I feel that the chapter introducing FORTRAN S

is unnecessary; BASIC is arguably a more powerful and sophis-
ticated language than FORTRAN, and anyone with a comprehen-
sive implementation of BASIC at their disposal need have little
recourse to FORTRAN. In any case, one chapter is insufficient to
state the case for FORTRAN.

The main difficulty for anyone attempting a book such as this,
must be the problem of dialects. So many different versions of
BASIC are now implemented that it must be tempting for authors
to gloss over those areas where there is the greatest variation. Mr.
Sanderson does at least include a brief chapter highlighting the
differences between several implementations; however a proposed
standard for BASIC has now been published, and wise authors will
base their texts on this in future.

M. I. JacksoN (Hatfield)
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