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polynomial programming problems
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An algorithm is presented for the solution of a class of constrained, nonlinear programming problems.
The problems considered may be formulated as generalised polynomials. This class of problems,
which encompasses linear, quadratic and geometric programming problems, can be extended to
include functions which are the ratios of generalised polynomials. Computational experience with

some typical examples is also reviewed.
(Received November 1972)

1. Introduction

Geometric programming (GP) is a method for solving con-
strained minimisation problems in which the cost (objective)
function and the constraint functions are in the form of general-
ised polynomials (a generalised polynomial is a finite sum of
terms which are the product of a real coefficient and a finite
set of nonnegative variables, each raised to a real power).
These problems are frequently encountered in engineering
design, although a wider field of application is steadily de-
veloping. The early work of Duffin, Peterson and Zener
(1967) was restricted to ‘posynomials’ (generalised polynomials
with positive coefficients) but was later extended by several
authors to ‘signomials’ (unrestricted coefficients) as well. This
work is well documented in the literature and the reader is
referred to Wilde and Beightler (1967) and Avriel and Williams
(1971) for a complete set of references. Less has been published
on algorithms and implementations for the computer. The
purpose of this paper is to describe an efficient procedure
which has been successfully applied to GP problems and vari-
ations thereof. The algorithm is based on an iterative solu-
tion of the Kuhn-Tucker necessary conditions for an optimum
(Kuhn and Tucker, 1951). A linear approximation is employed
which leads to a sparse matrix which is easily decomposed.
Accordingly the problem dimensionality is reduced, leading to
an efficient computer implementation.

2. Problem statement
The problem is posed in the following form:

minimise
Yo(X) (1)
subject to
ImX) < opm=1,.., M )
x,>0;n=1,..,N 3)
where y, and the y,, are generalised polynomials described by
Tm N
ym(x) = K, H xnamtn (4)
t=1 n=1

with x = (xy, . . ., xy) the vector of variables; x* at optimum
N the number of variables
M the number of constraints
T,, the number of terms in the mth constraint
K., the coefficient of the ¢th in the mth constraint, a real
number
a1, the exponent of the nth variable in the ¢th term of the
mth constraint
0., the normalised limit of the mth constraint = +1.

For convenience we shall introduce
Oy = SgN [Kmt] and Cor = letI (5)
so that

*Now with Xerox Corporation.

Kmt = am!Cmt;
and

—~
o)

0o = sgn [yo(x*)] = +1
so that o, y3° remains a positive minimand.
Furthermore we shall occasionally use
T=To+T, +...+Ty.
The notation is illustrated by means of a simple example:
Minimise
4

WE®peoe//3diny woly pspeojumoq

yO(x) = xlxg.s (
subject to
»x) =x +2x2<1 (
X1, X, >0
where

N=2,M=1,T,=1,T,=2,T=3
Coy=4,C,=1,C, =2
6oy =1,011=10,=1
oo =1,0,=1

Q011 Qdo12| -1 -05
Q111 Q12| — 1 0
Ay21 Q22 0 2

3. Approach and necessary conditions
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to obtain a symmetrical matrix in the final set of equations. £

Define weights for the terms of the objective function as “C'ED
N 4

Wor = Co, [T x30n > 0;1=1,...,T, C2]

n=1 N

so that ~
To 9

2. O Wo, = 0y (103

t=1 o

N
Note that wy, is always positive and it is assumed that y, # 0°
This can be assured by the addition of an auxiliary term to y,.
Generalised weights can be defined for the constraints as

N
Wyt = Cpp TT X2mn >0, m=1,.., M

(11
n=1
t=1,...,T,
so that
Tm
OmtWmt S Opys M = I, M (12)
t=1
By defining
u,=lnx,;n=1,..,N (13)
up = Inoyyg° = a4 In gy, (14)

and taking logarithms of (10) and (11), a set of equations is

tOn leave 1972-73 at University of Manchester Institute of Science and Technology.
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obtained which is linear in the u’s.

N
—0OoUp + _Zl Aouutty = In (Wo,/Co); t =1,...,T, 15)

N
"=21 Auenthy, = 10 Wy, /Crr); m =1, .., M; (16)
t=1,...,T,
Combining u, the transformed cost function, with (10), (12),
(15) and (16) to form a ¥ Lagrangian with multipliers 2 and 1
we have:

To
LW, u, A, Q) = ug + A (09— 121 GoWor)

M Tm
- Z lm(am - E o-mtwmt)
m=1 t=1

- g Qo:{ln Woi/Cor) — % Qg + Uouo}
3 ¥ Qm,{ln Ol Cr) = 3 amu} an

m=1t=1
Next, the Kuhn-Tucker necessary conditions are used to obtain
expressions for the stationary points of (17).

Observe that the monotonicity of the logarithmic transform-
ation has not compromised any properties of convexity of the
original problem. The function is to be minimised on the w’s
and «’s but, alternatively, it can be maximised over the A and Q:
the necessary condition equations are the same. Note, however,
that the w,,, are restricted to the positive orthant and that the
inequality (12) dictates non-negative A,. Accordingly the
complementary slackness conditions to be met at an optimum
are w,,, 0L [oW,,, =0 (m=0,1,.. ., M;t=1,...,T,) and
Am 0L [0Ay =0 (m=1,...,M). The remaining necessary
conditions are derived by equating to zero the partial deriv-
atives of % with respect to the variables u, (n = 0,1, ..., N),
Agsand Q,,,(m =0,1,...,M;t=1,...,T,), all of which are
unrestricted in sign.

Thus it is found that
Qe = ApOmiWmesm =0,1,. .. M;t=1,..

ST, (18)

Ao =1. (19)
Rearranged and referred to Q,,, the relevant conditions appear
as

and

N
—In (thamt/o'mt)'m) + Z Qotnlhy — o-mumamo =0 (20)
n=1
Tm
2 Om@mt = Am (21)
=1
M Tm
Z“_Zl AninPm = 0 (22
for
m=01,..,M;t=1,..,T,;n=1,..,N
with
0’,,,,9,,,, > 0, }.o = 1, 500 = 1, 5,"0 = 0 When m :)é 0.

Further manipulation of the preceding equations and use of
the Kuhn-Tucker saddlepoint theorem would allow derivation
of the familiar dual problem:

. . M C,,,,l %0
Maximise d(Q, 1) = o, H H 23)
m=0 t= ‘tho-mt
subject to equation (21), the ‘normality condition’ when m = 0,
and equation (22), the ‘orthogonality conditions’.

When all sigma’s are + 1 we have the geometric programming
dual which may also be derived from the arithmetic-geometric
mean inequality (Duffin, 1962) from which geometric program-
ming derives its name. Duality implies yo(x) < d(2, ) and
Yo(x*) = d(Q*, A*), where the asterisk denotes the optimum.
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In the general case (6 = +1) some of the concepts of duality
are lost, for instance the ability to bound the problems as
indicated in Wilde ez al. (1967). Also the optimum may not be
unique, and one refers to the ‘pseudomaxima’ of d(Q, 1).

4. Methods and solution

The dual problem given by (23) is attractive in that only linear
constraints appear in its formulation. A fortuitous case arises
when T = N + 1 because then the linear constraints uniquely
determine the optimal dual variables. Our earlier numerical
example (7), (8) falls into this ‘zero degrees of difficulty’
category:

Qo4 =1
_901 + Qll = 0
_0'5901 + 2912 = 0
Q=10 =1,0%, =1/4

From Q* the optimal d* = y§ can be computed:

v e (AN {15\ (25
o= (i) () (5) oo

When T < N + 1 the problem can be transformed into one
with trivial solutions. The case T > N + 1, with D = T —
(N + 1) = ‘degrees of difficulty’, requires that the dual objec-
tive function be maximised subject to its linear constraints. A =
number of procedures have been proposed. For instance the3
linear side conditions may be used to reduce the total number =S
of variables, then a search procedure can be applied to (23) in w
a reduced search space (Frank, 1965; Duffin et al., 1967; orm
Wilde et al., 1967). Alternately some authors view the prob-
lem as a convex programming problem with linear constraints 3
(Dinkel and Kochenberger, 1972).

Another approach employs a successive approximation S
method, based on the logarithm of the dual objective function 8
(Duffin, 1962; Schinzinger, 1965; Beck and Ecker, 1972). The %
procedure presented is not unlike the latter method, but instead 3
of starting from the dual function the method begins with the =
Lagrangian of the primal problem. The main advantages are 5
(@) a more obvious symmetry in the matrix formulation of the 2 o
linear approximation to the necessary conditions, (b) a straight = N
forward transformation from dual to prlmal variables. The &
extraction of the primal variables has, in other methods,
proceeded along more cumbersome lmes (See for example
Schinzinger, 1965). For instance one could retrace the relation-
ships between Q, A and x at the optimum and solve a set of
equations which are linear in terms of the logarithm of the
primal variables, but the set may be overdetermined. In contrast
the procedure described in the next section solves for u, = In x,
directly along with the dual variables Q and A.

ape jumoQ

speo

dno-ol

5. The algorithm

Equation (20) is non-linear in Q and A. Linearising the non-
linear terms of these equations about some initial guess,
indicated by 4,,, Q,,, and Q,, yields:

Q. 0o Q.0 Q 2
1 mt” mt zl mtY mt _ﬂ_t__n_l
“[cm,zm] n[cm.z ]* B T

Substituting (24) into (20) and making use of (2) we have:

N
QOr Qor”or
- E — In| Yo% 25
N + Aoty + Ho n[ Co (252)

n=1

20z ludy 61 uo 1sen6 Aq 98V68€/L9

24

and
2, < a o
— __mt m l mta'mt 25
n=1
m=1,.. ., M;t=1,...,T,
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where

A
. ko = (1 — aoup) (26)
with
ootlg = In (6oy0) = (1 — po) @7
or
Yo = ooexp (1 — pg). (28)
Normalising (28) to preserve matrix symmetry yields
30, A
t ma
Zmt _ TmTm _ 29
D F - @
t=1

Equations (25), (22) and (29), when collected in the form of
a partitioned matrix as shown in Fig. 1, have the following
interesting symmetry

D|A4|K Q b
___|__._|___ —— —_—
A"\ 3| & ul=1_e (30)
___l___l___ —_— ——
KT\ @ | L A %]

where ¥ is a zero matrix of appropriate dimensions. From the
above we have

D@)Q + Au + KA = b(@, J) 31)
ATQ = e (32)
K'DQ + LA = & (33)

Matrices D and L are diagonal and invertible under the assump-
tion that Q < oo and A < oo, which is reasonable for most well
posed problems. Thus we can rewrite (31) as

Multiplying by AT and using (32) we can solve for u from
Ru=ATD"YQ)b@, 1) — e (35
where
b= (@ — K4 and R = (ATD"14). (36)

We solve sequentially; equation (33) for 4, equation (35) for u,
equation (34) for Q. Since D and L are diagonal matrices, the
only computationally significant effort is in solving (35). This,
however, is a greatly reduced matrix; while the tableau of Fig. 1
shows a total of T+ N + M + 1 variables the rank of R is
merely N + 1.

Once the Q*, u*, A* are known the original variables are
obtained from equations (28) and (13).

Sensitivity analysis, which is perhaps just as important as
numerical answers, allows us to examine changes in the
objective function for a small change in the coefficient, K, :

6.VO(-X*) _ Q*mt * S
’8_K,: = mtly’: Yo(x*) (40)

)
This may be obtained directly from equation (23) if duagty
holds. S
The rate of change of the objective function with respect%)o
an active constraint value is given by Zener (1971):

Yolx*) _ _ 1 (yo(x*))
OYm(x*) "\ Im(x*)

p

d@ woJy

Also for changes in the exponent a,,, we have

% a a * *
= Ko, I1 x50 (Inx) = Qogo-Otuk (

Fig. 1 Linearised set of necessary conditions

Z
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2
Q=DYD) b@ 7 - K(A)A — Au} (3% 0ayy, n=1 o) )
©
K [ —1 I l 10 ] B Q0,0 g—
_- 01001
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6. Conditions for solutions
At this point some conditions which must be met for the
algorithm to yield the optimum will be enumerated.
(@) In the case of posynomials, positive X, will assure a positive
Yo. If the original problem allows negative X,, then simple
transformations may be resorted to (Duffin et al., 1967;
Duffin, 1970; Zener, 1971; Avriel and Williams, 1970). If the
sign of y, is not known a priori both 6, = +1 and —1 may be
tried, or the problem may be transformed by the addition of a
large artificial variable, constrained from below.
(b) A posynomial is convex if each variable X, which appears
with a positive exponent also occurs at least once with a
negative exponent, or vice versa (Erlicki and Applebaum, 1964).
This condition is also reflected by the requirement that the
0.2, Which satisfy Equation (22) be non-negative. In the
more general case of signomials the algorithm may converge
onto a local optimum or a saddlepoint. Wherever possible
problems should be formulated as posynomials.
(¢) Use of 6o = —1 when y, < 0, in order to render o4y,
positive, can lead to difficulties as demonstrated graphically by
Fig. 2. Appropriate starting values for X, (from which @ may
be determined) become important.
(d) The rows of matrix 4 in (30) must be independent or
R = A"D™'4 will be singular. The introduction of artificial
variables as suggested by Beck and Ecker (1972) can overcome
this difficulty. Singularity may also occur when certain vari-
ables appear always in the same grouping, in which case a
single variable, say x, = x{ x5 x%, can be substituted (Zener,
1971, p. 12).
(e) Convergence usually proceeds quite rapidly and could be
further accelerated by employing second order methods. As a
stopping rule either relativé or absolute changes in the magni-
tudes of all variables can be used, with particular precaution
for variables which approach zero or change sign. The require-
ment 0,,Q2,, > 0 is imposed where necessary. Convergence
tests are applied to the Q,,,, u,, 4,, and y, as well as all x,,.
Even with the above restrictions a large class of optimisation
problems can be solved. The next section is intended to indicate
the scope of the areas of application and problem formulation.

7. Application

The examples given in the appendix were all solved using the
algorithm and are intended to give the reader a sampling of the
many areas of application. Due to the limitation of space only
the problem statement, the solution and, where appropriate,
remarks concerning formulation are presented. However most
of the problems have been gleaned from the open literature on
optimisation theory, which may be consulted for a more
complete description.

Numerical results are summarised in Table 1.

The number of iterations reported indicates the total number
of solutions of the (N + 1)-order set of linear equations before
the problem converged.

The computer (a XDS Sigma 7) was operated in a time-share
mode, and therefore run times of only two problems with
artificially high iteration counts caused by a restrictive con-
vergence criteria are given.

8. Conclusions

We have presented an algorithm related to geometric program-
ming. It solves optimisation problems which can be formulated
as generalised polynomials. The ready inclusion of constraints
is particularly attractive. The algorithm handles GP type
problems rapidly with little computer storage requirement.
The examples presented indicate its broad area of application.
Convergence has occurred in all problems attempted thus far,
provided feasible solutions existed. In a number of signomial
cases care had to be exercised in selecting starting points, and
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Fig. 2 Transformation of the objective function with negative
minimum

solution times of problems with constraints were at times
sensitive to the manner in which the constraints were formu-
lated. The authors were pleased with the results and hope that
the numerical data provided here will invite comparison by
others.
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Appendix Numerical examples

Problem 1:

Waste Treatment Plant Design (Scherfig et al., 1969). Minimise
the variable annual cost of waste treatment plant:

The Computer Journal
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Table 1 Numerical results

PROBLEM NO. 1 2 3 4 5
Optimal x, 0-6169 5628 x 1073 5-3336 1,000-0 1-054
n=1..,N) 5-814 x 10° 2:450 x 1077 4-6585 99-962 0-122
2:999 x 103 2:332 x 1076 10-4365 4-607
12-0840 52-336
0-7525 276-299
0-8781 21-453
202-248
Ob;. Fct., y, 71-765 x 103 5-525 x 10%° 135-1023 2,420-284 0-500
Variables Q,, 0-1464 1-000 0-0519 0-0874 0-517 0-991
t=1,...,Ty) 0-0800 0-0453 0-0764 0-051 0-009
0-4298 - 0-1016 0-0647 0-432
0-3438 0-0359 0-0888
0-0491 0-1465
0-0813 0-1711
O
1st Constraint 0-9996 1-000 0-9999 0-999 1000 =
Sens. Coeff. 1, 0-2223 1-638 1-0954 0-485 1-009 ]
Variables Q,, 0-2223 0-041 0-001 1-0954 0-243 0-009 &
@¢=1,..,T) 0-148 0-027 0-027 1-00 =
0783 0-018 0216 S
0-001 0-037 Z
0-485 0-097 @
2
2nd Constraint 0-9997 1-000 ?%)
Sens. Coeff. 4, 0-4606 0-510 2
Variables Q,, 0-0556 0-0534 0-510 e
t=1,...,T,) 0-0485 0-0732 ®
0-1088 0-1211 S
3rd Constraint 0-998 —3
Sens. Coeff. A5 0-225 o
Variables Q;, 0-124 S
¢t=1,..,Ty) 0-010 =
0-091 >
N
Convergence |¢| 0-0001 0-001 0-0001 0-001 0-001 2
Iterations 32 7 50 8 8 g
Time (Sec) 32 6-2 o
<
Yo = 2:1.107 1 x2'55 + 6:29.107 x3/x$ + 8:5.10'%/(x,x3> x3) ~ Schinzinger, 1965). Minimise the present worth of a trans-
+ 1:6.10% x2:5 x3/x, former, including operating costs over 20 years. 2
. -5
=307 x <1 , Yo = 0:0204 (x2 x4 + X, X; X4 + X1 X3 xg) + 00187 2
Xy fraction of f.'e«.ed chemical oxygen demanq not met (dimen- (xy X X3 + 157 X2 X3 + X5 X3 X4) + 00607 1
sionless) x,, x5: influent, and effluent, volatile solids concen- (2 X4 X2 + X, X, Xg x2) + 0-0437 N

tration (Ib/million) gal.

Problem 2:
Chemical Equilibrium Problem (Duffin, et al., 1967). Consider
the combustion of a stochiometric mixture of hydrazine and
oxygen at 3,500°K, 750 psi:
Yo = 1/(x] x, x3)
y1 = 440:98.x; + 2:846.107 x2 + 6-1584.10'* x2 x,

+ 37018 x; 5-4474.10"° x2 + 3-2236.10° x, x;

+ 2:920.10'° x, x; + 4-4712. 10* x,

+ 3-7964.10'" x2 + 4-2876.10° x, x, < 1
x: Composition variables, y;: equilibrium mole fraction
balance.

Problem 3:

Transformer Design (Hamaker and Hehenkamp, 1950;

Volume 17 Number3

(31 X3 X3 X2 + 1:57 x3 x3 X2 + x, x3 X4 x2)
+ 0-0607 x; x3 x4 X2
y1 = 2070/(xy x5 x3 x4 X5 X6) < 1
¥z = 000062 (x2 x4 x2 + X1 X, X4 X2 + X1 X3 X4 X2)
+ 0-00058 (x; x; X3 X2 4+ X5 X3 X4 X2
+ 157 x2x3x2) < 1

x, through x,: physical dimensions of winding and core;
x5: magn. flux density; x4: current density; y,: in arbitrary
monetary units; y, : rating; y,: loss constraint.

Problem 4.

Catalogue Planning (Sakolich and Harting, 1969; Dinkel and
Kochenberger, 1972). Allocation of resources to cataloguing.
Maximise demand for products, minimise negative thereof.
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Problem 5:

DISTURBANCE Chemical Process Control Problem (Gould, 1971; pp. 83-86).
v This example is a chemical process control system. The block
+ coNTRCLLER _vALvE .y PROCESS diagram is shown in Fig. 3.
v ke F o+ .1 r >q The input v is nominally zero, u is a white noise disturbance
- having a power spectral density @,,(s) = 1/n and q is the process.
' output flow rate.
To minimise the effect of a pressure disturbance, it is desired
SENSO to determine the system parameter K — (1 + K.K,K,,) x 1073,
m which yields the least mean-square value of ¢
1008 + 1 Where
2 01211K + 1-11 x 107¢
Fig. 3 7 = —2K012321 — K)
Notice that this is not in the form of a geometric programming
Yo = — 11 x93 x347 x324 — 0-9 x0'51 x9°53 x019 problem. Stability of the system requires 0 < K < 0-12321;
—1-4 x9'51 x0'5 x0-21 this is al§o necessary to obtain' a positive value of g2. For the
y1 = (50 x5 + 120 x, + 85 x4)/10,000 < 1 formulation it is convenient to set x; =K and
¥, = x,/1,000 < 1 x, < 0:12321 — x, so the problem becomes
Y3 = (x3 + x5 + x)/500 < 1 ., 101211 1-11 x 107¢
x,: distribution quantity; x,;: no. of pages devoted to line f}g‘q =5 Xs X1X,
i=1,2,3; x5;4,: no. of items in line i; constraints: y, on .
development and printing costs, y, on distribution, y, on total ~ subject to y; = 8:1162243[x, + x,] < 1
number of items. : X, X, =20
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