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This paper describes a computing system that enables linear algebra problems to be simply pro-
grammed and efficiently solved. The main features of this language, its translator, and the two
modules for the automatic solution of the eigenproblem and systems of linear equations are de-
scribed. The power of the system lies in the in-depth analysis techniques employed by these modules
and in the quantitative error information accompanying the resultant solutions.
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Many of the day-to-day problems which confront numerical
mathematicians, statisticians, engineers and econometricians
involve solution of linear systems and the general eigenproblem.
The solution of these problems requires frequent computation
- with matrices. In response to this need, many problem-
oriented languages have been developed over the past decade
which provide special facilities for the manipulation of matrices:
APL (Iverson, 1971), ASP (Kalman and Englar, 1965),
Burley (Burley, 1967), MARI (Branin, et al., 1965), MAP
(Kaplow and Brackett, 1966), MATLAN (System/360),
MATRIX (MATRIX), MM (Newbold and Agrawala, 1967),
NAPSS (Rice, 1968), OMNITAB II (Agher, Pears and Varner,
1969), and POSE (Schlesinger and Sashkin, 1967). A survey of
their capabilities can be found in Smith (1970) and Ulery and
Khalil (1974).

It is our judgement that more than ease of matrix manipulation
is needed in a special-purpose language for linear algebra. One
feature we feel is of paramount importance is ‘automatic’
problem-solving, in which the system attempts to provide the
method of solution for a stated problem. The problem of
choosing an appropriate method of solution for problems in
linear algebra is not at all simple. The types of matrices which
appear in practice vary widely, and an algorithm perfectly
suitable for solving one type of system may well be quite
inappropriate for use with another. Much work has been done
in this area of numerical computation, largely by Wilkinson
(1965), and it has reached a very advanced state. The chance of
an amateur selecting the algorithm best suited to his system
from the large body of algorithms available to solve this class
of problems is slim. An inappropriate choice can unfortunately
lead to results with such a poor degree of accuracy as to make
them totally without value, unbeknownst to the unsuspecting
user.

Our aim is to relieve the user of this burden of selection by
making the computer act as a professional trained in this area.
The user can describe his problem quite simply in the LINEAL
language, which resembles standard mathematical notation and
is readily learned. The LINEAL system will then automatically
select the algorithms, perform analysis, and output the results
and statistics pertinent to that solution, thus providing the user
with far better results than he would normally have been able to
achieve. The system also serves the expert in this area by pro-
viding a convenient tool for the comparative study of algor-
ithms, since it provides a measure of the accuracy of the
solution.

A few of the existing systems listed above do provide facilities
for automatic problem solving. In all cases, however, the
number of algorithms and the logic employed to select them is
quite limited. LINEAL represents an extension of these efforts.
In designing the system our chief objectives were to provide
1. Simplicity and clearness of notation;

2. Concise and powerful operators for the computations of
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linear algebra;

3. ‘Automatic’ problem solving for systems of linear equations
and the eigenproblem and a measure of goodness of the
resulting solution;

4. Economisation of storage;

5. A formal description of the syntax and semantics of t
language;

6. High machine independence.

The characteristics of the language, its formal syntax, a paft
of its formal semantic description, and a brief description of its
translator and the two modules for the automatic solution &f
the eigenproblem and systems of equations are outlined here.
APL was used for describing the semantics of LINE
because of its operator richness and conciseness. It is thg
authors’ belief that APL is the most natural way for describing
a language whose data structures are scalars and arrays. Ifs
syntax is described in terms of a modified BNF (Cocke angd
Schwartz, 1970). Repetitive concatenations of objects algfe
indicated by the notation {. . .}/ where i is the minimum nun3-
ber of repetitions required and j is the maximum number of rep-
etitions permitted. Where either index is represented by
variable, the domain of the variable is the metaexpression. &

1} papegiumoq

The LINEAL language g
Some of the details of the language are formally described im
Appendices 1 and 2. We will concentrate here instead on a morg

informal description of the main features of the language. £
The two examples below illustrate the general format of
LINEAL code. <
Example 1: a
COMMENT  THIS PROGRAM GIVES A SOLUTION TO TI-%
GENERAL EIGENPROBLEM ABX = AX; ©
DECLARE M, N; %_;f
READ M, N; 5
DECLARE A(M, N), B(N, M); S
READ A, B; =
SOLVE EIGENPROBLEM A * B;
END.
Example 2:
DECLARE N, I, J, S;
READ N;
DECLARE RHS(N, 1): SYMMETRIC HILB(N, N);
COMMENT GENERATE HILBERT MATRIX;
LOOP 1=1TON DO
S=0;
LOOP J = 1to N DO
HILB(L, J) = [ ((1 + J) — 1);
ENDLOOP J;
LOOPJ =1TO N DO
S =S + HILB(l, J);
ENDLOORP J;
RHS(I, 1) = S;
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ENDLOOP I;
SOLVE

LINEQ HILB/RHS;
END.

The first example is a program to solve the general eigen-
problem, given the coefficient matrices ‘A’ and ‘B’. The second
is a program to solve a system of linear equations whose
coefficient matrix is an internally-generated Hilbert matrix of
order ‘N’.

The allowable data types in LINEAL are real, boolean, and
alphanumeric. The latter type is used in composing strings.
The permitted data structures are scalars and arrays which are
treated as units of information and manipulated accordingly.

A LINEAL program is a sequence of statements which
normally are executed sequentially. A feature of the language is
the absence of labels and unconditional transfer statements,
their place being taken by an iterative and a conditional state-
ment. The former invokes an action using a succession of values
of its looping index and terminating when the upper limit for
the loop is exceeded. The latter invokes one of two alternate
actions: the choice is based on the truth or falsity of its boolean
expression.

The arithmetic expression permits direct manipulation of
scalars and arrays with the basic operators (4, —, *, *¥) plus
a large number of built-in numerical operators particularly
suited to matrix computations. Included are operators for
finding the absolute value, the trace, transpose, determinant,
and inverse of a square array; element-wise reciprocals; the
sum of elements of an array; a scaling operator; the maximum
and Euclidean norms; and the spectral radius. In addition,
built-in operators are included for the trigonometric functions
sine, cosine, arctangent and logarithms.

An assignment statement is of the form

T=1
where T is an identifier and 7 is an arithmetic expression. 7 is
evaluated using the current values assigned to the variables
appearing within it. The value(s) obtained is stored in T. To
avoid specifying precedence of operators, expressions have to
be fully parenthesised.

For example,

T = NORME (4 * B)
defines the scalar ‘T as the value of the Euclidean norm of the
matrix product A -B. (See Appendix 2 for the semantic
description).

LINEAL distinguishes segments of the program called define
declarations. Intuitively, a define declaration is equivalent to a
procedure: it is a sequence of statements which form a semi-
independent unit within the body of the main program.
When the procedure is invoked, a branch from the main
program to the first statement of the procedure occurs. Exit
occurs only from the last statement in the procedure and returns
control to the next statement in sequence in the main program.
The header of a define declaration includes the name of the
procedure followed by a list of formal parameters. A procedure
is invoked by a call statement consisting of the word CALL
followed by the name of the procedure and a parenthesised list
of actual parameters. The procedure call represents a copy of
the procedure body in which the actual parameters have been
substituted for the dummy variables.

An example of the define declaration is given below:

COMMENT THE SAMPLE MEAN AND SAMPLE VARIANCE
OF A RANDOM SAMPLE OF SIZE N ARE
COMPUTED;
STAT(X, N, MEAN, VAR);
MEAN = X(1);
VAR = 0;
IF N GTR 1 BEGIN
MEAN = (SUM X)(/N);

DEFINE

VAR = ((NORME(X — MEAN)) %x 2)

(/(N — 1));
ENDCOND;
ENDSTAT; '

LINEAL permits the assignment of attributes to arrays for
efficient storage management and algorithm selection. There is
a special statement to perform this task, i.e. the declare state-
ment. The allowable attributes are: vector, general, symmetric,
band, band symmetric, triangular, and sparse. These attributes
are used to provide control structures for selection of appro-
priate algorithms and means of efficient storage management.
On translating the declare statement, the LINEAL translator
associates with each declared array identifier a five-element
attribute vector in which the type of the array, its dimensions,
and other relevant information are stored for subsequent use.

Finally, one of the most useful features of the system is the
solve statement which has the form:

SOLVE TYPE VARS, (options);

where TYPE specifies the problem, i.e. linear equations,
eigenvalues and/or eigenvectors; VARS are the equation labels;
and options are either empty or represent directives to the
system. On executing this statement, the system returns the
results in reserved arrays (LAMBDA and/or VECTOR) and
all the statistics regarding the solution in another system-
reserved array STATUS. The user may exercise the options to:

1. Impose on the system the degree of accuracy required—if
this option is not exercised the system sets the accuracy
automatically.

2. Specify the algorithm to be used, i.e. control the method of
solution. If no algorithm is specified, the system automatic-
ally selects the most appropriate algorithm for the particular
problem.

3. Suppress output—as mentioned before, the system dynamic-
ally allocates arrays for the solution of the problem at hand.
Once the problem is solved, the system outputs the results
and the relevant statistics, and frees these dynamically
allocated arrays. If the suppress option is exercised, the user
must save his results by an assignment statement immedi-
ately following the solve statement.

For example, to have the system solve the eigenproblem
AX = ABX

for all eigenvalues and eigenvectors, the user would simply have
to write
SOLVE EIGENPROBLEM A/B;

and the system would automatically select an appropriate
algorithm, find a solution with the best accuracy possible for
the particular machine and matrices, and output the results.

Other features include format-free I/O and the option to free
storage space previously reserved for identifiers specified in a
declare statement.

The polyalgorithms

Computations performed during program execution are
handled by a set of polyalgorithms. Polyalgorithms for arith-
metic operations and element manipulation are straightforward.
Of more interest are the two polyalgorithms invoked by the
solve statement: the LEQ module and the EIGEN module.
The design objectives of a module for the automatic solution
of numerical analysis problems have been enumerated by Rice
(1968) and will not be elaborated upon here. Instead, we will
confine our attention to the strategy used.

Each of the modules comprises a number of algorithms
together with the logic necessary to apply one or more of these
to a given problem. The main reference sources of these algo-
rithms are Wilkinson and Reinsch (1971) and Dekker (1970).
The following information, where applicable, is returned to the
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user by each module:

1. Errors incurred in attempting to solve the problem;

2. The determinant and rank of the coefficient matrix;

3. An estimate of the condition number of the coefficient
matrix;

4. The number of iterative improvements required to achieve
desired accuracy;

5. An estimate of the number of correct digits in the solution;

6. The method(s) employed.

Each of the component algorithms may contain one or more of
the following features: scaling, partial or complete pivoting
and iterative improvement.

The strategy employed is based on system size, attributes of
the system, and accuracy specified (Khalil and Ulery, 1973;
Ulery, 1972). In addition, the EIGEN module takes into
account whether both the latent roots and vectors are required
or only one of them, as well as the number of required roots
and/or vectors.

The LEQ module comprises four decomposition algorithms
(Gauss, Crout, Cholesky and Band), two iterative algorithms
(with or without a relaxation factor), and Golub and Reinsch’s
Singular Value Decomposition (SVD), (Golub and Reinsch,
1965). For small, square systems one of the decomposition
methods is chosen initially; for large and/or non-dense systems,
an iterative method is selected. If the initial method should fail,
another approach, based upon the type of failure incurred, is
tried. For example, if failure occurs due to rank deficiency, the
SVD algorithm is applied. This method of recovery is con-
tinued until all applicable paths have been exhausted. The user
is then provided with the best possible solution and relevant
data concerning the methods tried and the results achieved.

The EIGEN module consists of three submodules: symmetric,
general and reduction. The first of these is used to solve
Ax = Ax where A is symmetric. If A is of small order and the
accuracy specified is not high, the Jacobi algorithm is applied.
Otherwise A is reduced to tridiagonal form using Householder’s
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transformation. This is followed by one of the QR versions
depending upon whether or not the latent vectors are required.
On the other hand, if only few latent values and/or vectors are
needed, a bisection algorithm followed by inverse iteration is
applied. The general submodule comprises the following
algorithms: a QR-algorithm for finding the latent roots, an
algorithm based upon the norm-reducing Jacobi for computing
both values and vectors (Ebelein, 1970), and an iterative algo-
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rithm for finding a few dominant values and vectors. Each of
these algorithms exists in two versions: one for the band case,
and the other for the dense case. Finally, the last submodule is
designed to solve the general eigenproblem (A4x = ABx or
ABx = Ax). If the matrices 4 and B are both symmetric, the
submodule will try to reduce this general problem to a standard
form, i.e. Qy = Ay where Q is symmetric. Should the reduction
succeed, the symmetric submodule is then applied. Otherwise,
either the QZ (Moler and Stewart, 1971) or the LZ (Kaufman,
1972) algorithm is applied.

The logic flow employed in both these polyalgorithms is
illustrated in Figs. 1 and 2.

Implementation of LINEAL

The LINEAL translator will eventually allow for both batch
and interactive execution. Effort has been made to keep the
translator as machine independent as possible. The interactive
portion is currently being written as a FORTRAN IV program.
Since the Burroughs 6700 is our available machine and ALGOL
’60 has no I/O, the current running version of the translator,
an ALGOL ’60 program generator, is writtenin B6700 ALGOL.
The polyalgorithms are written in ALGOL ’60, however, and
are therefore transferable to other machines.

The implemented generator is approximately 5700 cards long,
excluding the polyalgorithms. It accepts a LINEAL source
program and produces an efficient, semantically equivalent
ALGOL ’60 program (Carvin and Khalil, 1973). It is modularly
organised to facilitate expansion of the language and updating
of the underlying numerical algorithms.

The generator uses a modified form of the recursive descent
algorithm (Gries, 1971; Leathrum and Fisher, 1970) to parse
the input program. A demand lexical analyser is used to
provide lexical units upon request from the parser. Code
generation is done in parallel with the parse of the input pro-
gram whenever possible. Although this approach proves to be
efficient, it causes some problems in optimising the generated
programs.

The generator provides many capabilities which we summarise
here:

1. Memory usage minimisation

Memory usage is minimised by mapping arrays according to
their declared attributes. For example, a band matrix with
‘Ib’ and ‘ub’ codiagonals below and above the main diagonal,
respectively, will have the ALGOL declaration [1:N; —1b: ub].

2. Mapping of variable names from LINEAL to ALGOL

If the LINEAL program contains an ALGOL reserved word as
an identifier, the generator will change the name of the
identifier.

3. Recognition of unspecified attributes

The attributes of a LINEAL array serve not only as a means of
minimising storage, but also as a control structure once a
polyalgorithm is involved. The generator investigates the
declared LINEAL arrays to assure proper assignment of
attributes.

4. Code optimisation
At this time, the generator optimises the evaluation of arith-
metic expressions as well as the folding of expressions (Cocke
and Schwartz, 1970).

5. Documentation of generated programs

The generator flags unusual constructs, explains the function
of some of the polyalgorithms used, and correlates the state-
ments in the ALGOL source with the corresponding statements
in the LINEAL source.
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6. Inclusion of polyalgorithms

The user has the option of either using a compiler version of a
polyalgorithm at running time (on the B6700) or of copying the
source version of it into his ALGOL program.

7. Error checking and recovery

The generator checks for syntactic, semantic and logic errors
during both the recognition and generation phases. Once an
error is detected, code generation ceases; however, scanning
of the remaining source program continues to completion. At
run-time numerous checks are made as well. Error messages
regarding abnormal job termination indicate probable causes
of difficulty. The statement number in the LINEAL source
program attributed to the error is specified also.

8. Options
The user has available to him options to:

8.1 Display the LINEAL source and/or ALGOL source.

8.2 Compile and/or execute the generated program.

8.3 Copy the generated program onto disc and/or cards.

8.4 Copy the object program produced by the ALGOL com- ¥
piler onto disc. 5

8.5 Include in the generated program the source code for 3

required polyalgorithms or code to bind the generated §
program to a compiled polyalgorithm at run-time. 3
8.6 Specify maximum size of identifiers. ! 3
8.7 Specify maximum amount of processor time to be used for§
execution of the generated program. e
The above characteristics are illustrated by examples in 2
Appendix 3. §
3

Thirty test programs were run on the B6700 to obtain a &
measure of machine requirements. The average size of eachg
LINEAL program was twelve statements; corresponding to g
each source statement, the generator produced 5-3 ALGOL 3
statements (excluding the polyalgorithms). The average S
processor time required for the translation was 1-8 seconds.=
(It is expected that the average time/statement will be reduced &
as the size of the source program increases.) The generated &
ALGOL program required an average of 1-9 seconds for =
compilation.

Summary

A specialised, high-level, language-oriented system for auto-
matically providing optimal solutions to the common com-
putational problems of linear algebra is presented. One import-
ant characteristic of the system is the assignment of array €
attributes to provide efficient storage management and appro- &
priate algorithm selection. Another is the use of the LEQ S
module and the EIGEN module to automatically solve systems &
of linear equations and the eigenproblem and provide quanti- =
tative error information with respect to these solutions. The %
system is well-adapted for use by both the low-level user whose 3
knowledge of programming and numerical mathematics is =
limited, and the sophisticated user interested in the comparative
study of different algorithms as well as the accuracy of the
solution.

Aq G6168€/292/€/L1/9101H
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Appendix1 Syntax of LINEAL

{program)
{sentence)
{declaration}
{stmt)

{sd st)
{d-sentence)
{letter)
{digit)
<bi-op)
{uni-op)

{relation’

{eigen algorithm}
{leq algorithm)
{attribute)
{keyword)

{special)
{integer)
{number)
{string)

{scalar id)
{array id)

{def id)

Cid)

id list)
{subscripted id)
{subscript list)
{sexpr)
{simple id)
{elementary id)
{variable)
{variable list)
{scalar expr)
{arithmetic expr)
{primary}
{boolean expr)
{comment st)
IO st)

{paren)

{assign st)
{control st)

{erase st)

{call st)

{solve st}
{solve word)
{id expr)
{error expr)
{use expr)
(suppress expr)

{att spec)
{attrib)

{def decl)

1= {{sentence);}," END.
::= {declaration) | {stmt)
::= (sd decl) | {def decl)

= (sd st) | (if st)

lI II || II II

A
0
+ 1=
SIN
NO

ll II II I| II

= (assign st) | (comment st) | {call st) | {control st} | {erase st} | (IO st} | (solve st}
{sd decI) | {stmt)
|B|...1Y|Z

11 I2I3|“rl5li‘»l7l3|9

| COS | ATAN | LN | EXP | ABS | TRACE | DET | RANK | INVERSE | TRANSPOSE | SCALE | SUM |
RM1 | NORM2 | NORME | — |/

GTR | GEQ | EQL | LEQ| LSS | NEQ

JACOBI | HOUSEHOLDER | ITERATIVE | NONSYM

CROUT | GAUSS | CHOLESKY | SOR | LSQ
SYMMETRIC | TRIANGULAR | IDENTITY | BAND | SYMBAND | SPARSE | GENERAL

END | DECLARE | READ | WRITE | LOOP | ENDLOOP | FREE | SOLVE | TOLERANCE | USE | IF |

BEGIN | ENDCOND | DEFINE | CALL | EIGENPROBLEM | EIGENVALUES | EIGENVECTORS | LINEQ |

SUPPRESS | COMMENT

::= LAMBDA | VECTOR | STATUS | FLAG

= {(digit)},*!
= Jol

id)>{, <id>}o"

([T II II II II |I II || Il I

letter ) {<letter) | (digit)},’
scalar id) | (array id)

{array |d)((subscr|pt list))

(sexpry{, (sexpry},’
{digit) | {scalar id)
{elementary id}» | {number)

= {scalar id) | {subscripted id)
::= {elementary id) | (array id)

::= {variable){, (variable)},"

1:= {{simple id) U (bi-op) U | {uni-op) U | 8}1 {simple id)
= {{primary) U {bi-op) U | (uni-op) U | ¢}, {primary)

{(digit)y}o'<!* {. {<digit)}o"' "'}

| n > 0and x e symbol excludlng, and”’}

{+

EIetter){(letter) | <d|glt>}0
{letter){{letter) | (duglt)}o
<
<
<

;:— {number) | {variable) | ((arithmetic expr})
1= (scalar expr) (relation) {scalar expr)

::= COMMENT U
{READ | WRITE},! {U {paren) U (variable list) | U ‘(string)’},*
((subscript list)) | ¢
::= (variable) = (arithmetic expr)

1= LOOP U (*scalar id) = (sexpr) U TO U {sexpr) U {BY U (sexpr) U},!
DO u {{d-sentence);}," U ENDLOOP U (*scalar id)

{string)

::= FREE v id list)
:i= CALL v (def id) ({primary) {, {primary>},")

::= SOLVE u (paren) u {solve word) U (id expr) {error expr) {use expr) {suppress expr)
::= LINEQ | EIGENVALUES | EEGENVECTORS | EIGENPROBLEM
Carray id){{* | [}, Carray id) | &},
,TOLERANCE {paren) | ¢
JUSE U {(leq algorithm) | eigen algorithm}},* | &

'SUPPRESS | ¢

IFu {boolean expr)> U BEGIN U {{sd st);}," U ENDCOND
DECLARE U (att specy{:(att spec)}o

= {attrib) U (id){paren){, {id){ >t
= SYMMETRIC | TRIANGULAR | IDENTITY | GENERAL | SPARSE ((integer)) | BAND ({integer),

(integer)) | SYMBAND ((integer)) | ¢

= DEFINE U (*def id) (<id list)); {{d-sentence);};" END U (*def id)
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Appendix 2 Semantic description

(a) (assign st) ::

= {var) = {{primary,;) U (bi-op) U | uni-op) U | &} {primary,)

Let t: LINEAL — APL, then t((var)) — T; t({primary,>) — A;t({primary,>) — B, and the semantics of the form T = A(bi-op)B

is given by:
LINEAL Statement ~ pA pB pT Conditions for which ‘t’ is defined Semantics
‘ t : LINEAL — APL

T=A+B T—~A+B
T=A-8B T«A-B
T=A*B T—<AxB
T=A+8B M M (pkT)= M T<«A+B
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LINEAL Statement pA pB pT Conditions for which ‘t’ is defined Semantics

t : LINEAL — APL
T=A-B M M (pT)=M T—~A-B
T=A*B M M (pT) > M T—AxB
T=A+8B M N M N Al(pT) > M, N T—~A+8B
T=A-B MN M N Al(pT) = M, N T—~A-B
T=A*B M N MN Al(pT) = M, N T—~AXxB
T=A+B M M (eT) =M T—A+B
T=A-B M M (pTH =M T«A-B
T=A*B M M (pTH) =M T—~AxB
T=A+B M M M (bT) =M T—~A+B
T=A-B M M M () =M T—~A-B
T=A*B M M T—A+.xB
T=A+8B M LK NONE ERROR
T=A-B M LK NONE ERROR
T=A*B M LK K M=L)A(T) =K T—A+.x8B
T=A+B M N M N Al(pT) = M, N T—~A+8B
T=A-B MN M N Al(pT) = M, N T—A-B
T=A*B MN MN Al(pT) = M, N T—~AxB
T=A+8B MN L NON ERROR
T=A-B MN L NONE ERROR
T=A*B MN L M (N=LA(H =M T~A+.xB
T=A+8B MN LK MN M=LAN=K)AA/(pT) > M, N T—~A+B
T=A-B MN LK MN M=LAN=KAA/(pT) =M, N T—~A-B
T=A*B MN L K MK (N=L)A(pT) > M, K T«A+.xB
T=A**B T« A*B
T=A**B M M (pT)>M T—A*B
T=A*B MN M N Al(pT) = M, N T<A*B

(b) Cerase st) ::= FREE v (id list)

Let t : LINEAL — APL, then t(<id list)) — LIST and the semantics t({erase st)) is given by

INDEX « 1

start : - (INDEX > p LIST)/end

LISTLINDEX] « (p LIST[INDEX]) | LIST[INDEX]
INDEX « INDEX + 1

—start

end : RETURN

Appendix 3 LINEAL to ALGOL translator

B6700 LINEAL TO ALGOL TRANSLATOR LEVEL II.03.00

COMMENT EXAMPLE 1

PROBLEM - SOLVE A SYSTEM OF LINEAR EQUATIONS WHERE COEFFICIENT

MATRIX IS A 3 BY 3 HILBERT MATRIX;

DECLARE RHS(3,1),RES(1,3),1,J;

GENERAL HILB(3,3),INVHILB(3,3);
>>WARNING 001>>

COMMENT GENERATE MATRIX;

LOOP I = 1 TO 3 DO

HILB(I,I)=/((I+I)-1);

RHS(I,1)=0;

I=I+1;

LOOP J=I TO 3 DO
HILB(I,J)=/((I+J)-1);
HILB(J,I)=HILB(I,J);
ENDLOOP J;

ENDLOOP I;

RHS(1,1)=1;
SOLVE LINEQ HILB/RHS, :USE CHOLESKY,SUPPRESS;
>>WARNING 002>> *SHOULD ONLY BE USED WITH

HFNNNR KRR R

SYMMETRIC ARRAYS
WRITE"SOLUTION OF LINEAR EQUATIONS.";
WRITE"COEFFICIENT MATRIX IS:";
WRITE(12,10)HILB;
WRITE"RIGHT HAND SIDE IS:";
WRITE(12,10)RHS;
WRITE"SOLUTION IS:";
WRITE VECTOR;
INVHILB=INVERSE HILB;
>>WARNING 003>> *IDENTIFIER LONGER THAN 5 CHARACTERS
WRITE"INVERSE MATRIX IS:";
WRITE INVHILB;
>>WARNING 004>> *IDENTIFIER LONGER THAN 5 CHARACTERS
RES=TRANSPOSE (INVHILB*RHS) ;
>>WARNING 005>> *IDENTIFIER LONGER THAN 5 CHARACTERS
WRITE"INVERSE TIMES RIGHT HAND SIDE IS:";
WRITE RES;
END.

NUMBER OF ERRORS DETECTED = 0000.

NUMBER OF WARNINGS = 0005.

TRANSLATION TIME = 000.96 SECONDS PROCESSING.
PROGRAM SIZE = 0034 CARDS.

TRANSLATOR COMPILED 04/30/73 09:38 PM.

Volume 17 Number 3

*IDENTIFIER LONGER THAN 5 CHARACTERS <<

<<

<<

<<

<<

SOLUTION OF LINEAR EQUATIONS.
COEFFICIENT MATRIX IS:

ROW 1 OF HILB

1.0000000000 0.50000000000
ROW 2 OF HILB
0.5000000000 0.33333333333
ROW 3 OF HILB
0.3333333333 0.25000000000

RIGHT HAND SIDE IS:

ROW 1 OF RHS
1.0000000000
ROW 2 OF RHS
0.0000000000
ROW 3 OF RHS
0.0000000000

SOLUTION IS:

ROW 1 OF VECTOR
9.0000000000E 00
ROW 2 OF VECTOR
-3.6000000000E O1
ROW 3 OF VECTOR
3.0000000000E 01

INVERSE MATRIX IS:

ROW 1 OF INVHI
9.0000000000E 00
ROW 2 OF INVHI
-3.6000000000E 01
ROW 3 OF INVHI
3.0000000000E 01

INVERSE TIMES RIGHT HAND SIDE IS:

ROW 1 OF RES
9.0000000000E 00

-3.6000000000E 01
1.9200000000E 02
-1.8000000000E 02

-3.6000000000E 01

0.33333333333
0.25000000000
0.20000000000

3.0000000000E
~-1.8000000000E
1.8000000000E

3.0000000000E
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B6700 LINEAL TO ALGOL TRANSIATOR LEVEL II.03.00
COMMENT EXAMPLE 2

THIS EXAMPLE ILLUSTRATES RUN TIME ERROR RECOVERY
AND _THE USE OF THE B6700 OPTION;
$SET B6700
DECLARE VEC(10);
LOOP I=1 TO 100 DO

VEC(I)=I; 1
ENDLOOP I; 1
WRITE VEC;

END.

NUMBER OF ERRORS DETECTED = 0000.

TRANSLATION TIME = 000.37 SECONDS PROCESSING.
PROGRAM SIZE = 0011 CARDS.

TRANSLATOR COMPILED 04/30/73 09:38 PM.

COMPILATION BEGINS.
COMPILED OK.
EXECUTION BEGINS.

PROGRAM TERMINATED ABNORMALLY AT LINE #2 FROM FAULT WITH
INVALID INDEX.

PROBABLE CAUSE: INDEX GREATER THAN MAXIMUM SPECIFIED IN
DECLARE STATEMENT OR LESS THAN OR EQUAL TO ZERO.

USE '$SET SUBCHK' DURING TRANSLATION FOR MORE INFORMATION.
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