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The digital computer analysis of dynamic systems, described by differential equations, is often
complicated when a discontinuity causes the equations to change. This paper discusses the problems
introduced by discontinuities and describes subroutines which may be used in conjunction with a
general purpose integration routine to aid the modelling of discontinuous systems.
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1. Introduction

The dynamic analysis of electrical networks, control systems
and other dynamic systems by digital computer is often com-
plicated by the presence of discontinuities. Such systems are
usually described by a set of differential equations which change
when a discontinuity occurs. These problems are best tackled
using specially designed integration routines. This paper dis-
cusses the problems of dealing with discontinuities and des-
cribes subroutines used in conjunction with a general-purpose
integration routine which aid the modelling of discontinuous
systems.

2. Location of discontinuities
Most integration routines require the system equations in the
form of a first-order set:

dy ay;

d f(t ylsyZ"--,yn)i=1,2,--',n (1)

In a discontinuous system the f; in (1) change according to the
state of the system. Therefore to generalise (1) to permit m
different states Sy, S5, ..., S,

dy;

d .fu(t J’1,J’2,---,}’n)i=1,2,-- n

j=1,2..,m V)

where the state, S, of the system is determined by a set of
discontinuity functions ¢,.(¢, ¥y, ¥55 . . -, ¥,) Which are defined
such that a discontinuity occurs when one of the conditions
¢x = 0 is satisfied.

The computer program must check the values of ¢, repeatedly
to determine the state of the system so that the appropriate
set of equations from (2) can be substituted. Whatever inte-
gration method is used, the values of y; and ¢, will be available
only at certain discrete values of ¢ because of the step-by-step
nature of digital integration. Therefore, a change of state is
detected by noting a change of sign in the value of a discon-
tinuity function and the precise instant at which the discon-
tinuity occurred will not be known.

Subsequent action may take several forms. The simplest
approach is to assume that a discontinuity has occurred at the
end of the step in which it was detected, equations (2) being
changed for the start of the next step. This method introduces a
timing error which may seriously affect subsequent results,
particularly if more than one discontinuity occurs within a
single step. An excessively short step-length may therefore be
necessary to locate discontinuities sufficiently precisely.

A second method requires an integration routine which varies
the step-length according to an estimate of the local truncation
error. The discontinuity functions are checked after each
derivative evaluation rather than after each complete inte-
gration step, so that if necessary the derivative equations are
changed part way through a step. Changing equations in mid-
step produces an artificially large error estimate causing the
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step to be subdivided until the control mechanism selects a
much reduced step-length until the discontinuity has been
negotiated.

A third method, like the first, requires that the discontinuit
functions are evaluated only at the end of each step. If, howev
a discontinuity is detected, additional calculations are peE
formed to locate it accurately. The last step is then repeated
with a shortened step-length so as to end at the discontinuity
and the integration continues with the new equations. Thg
routines, described below, use a sequence of linear inter]_i—
olations between ends of successive steps to locate the dls-
continuity to a prescribed accuracy. The method employed
detects the discontinuity to a specified accuracy, and provides
facilities to process any discontinuity which is simply specifiezl
by a discontinuity function alone. O’Regan (1970) gives za‘l
interesting alternative to linear interpolation which uses &
third-order interpolation to pinpoint the discontinuity, witho@it
repeating the integration step. However, the accuracy §f
d1scont1nu1ty detection may be questioned and this technique
requires the user to provide more information than the mmpﬁ
discontinuity functions.

A completely different approach is to change the variable é‘f
integration (Fox, 1962) from time to the appropriate ¢;. This
method has been found rather unwieldy, when applied 9
systems with multiple discontinuities and is not well suited to
general-purpose routines.

¥G68¢€/S

3. Error control of step-length
Error-controlled variation of step-length is a useful feature &'
some 1ntegratlon routines which is incorporated in the methad
described in the following section. Organisational problems
arise in combining step-length control features and dlscon-
tinuity location, however, automatic step-length control
permits improved computational efficiency. Step-length contr

is particularly important when solving equations of a dis-
continuous system because the discontinuity detection pré-
cedure demands additional integration steps to be performed.
The so-called pseudo-iterative procedures (Sarafyan, 1966)
have been found most satisfactory for error estimation. This
group of procedures supplies two solutions in each step, of
order n and n — 1. The difference between these two solutions,
which approximates to the nth term in the corresponding
Taylor series expansion, is used as an upper bound to the local
error (Sarafyan, 1966; Schiesser, 1970; England, 1969; Chai,
1970; Merson, 1957; Crosbie and Hay, 1971).

4. The integration routine and discontinuity detection process

INT is a general purpose integration routine which may employ
any mathematical integration formulae. However, in general a
high order method with automatic step-length control is
recommended. Sarafyan (1966) and England (1969) each
describe a suitable fifth order integration process which has an
embedded fourth order solution. The difference between the
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fifth and fourth order solutions is an indication of the local
truncation error and may be used to control the integration
step-length.

The discontinuity facilities are introduced by a subroutine
INTERP which intercepts the flow of results from INT to the
printout instructions, Fig. 1. If a discontinuity function has
changed sign during the last integration step INTERP forces
INT to recompute the last step with a reduced step-length to
give a first approximation to the point of discontinuity and this
interpolative procedure is repeated until the discontinuity is
located to a specified accuracy. CNTRL may then be entered
to register the change in the system state. However, if no dis-
continuity has occurred during the last step INTERP arranges
for control to pass to the printout instructions and the sub-
routine CNTRL is by-passed. INTERP, like the integration
subroutine, is a general purpose mathematical subroutine and
is not dependent on the system being simulated. Whereas the
integration subroutine obtains information of the differential
equations representing the current state of the system from the
user provided subroutine DERIV, INTERP obtains values of
the discontinuity functions from the user provided routine
DFUNCT. The relationship between the two mathematical and
the three user provided subroutines is shown by Fig. 1, and a
simplified flow diagram of INTERP is presented in Fig. 2.

Consider as an example a system which has three states:

State ISTATE = 1: if |y| < z then

d .
d_';) = fl(t’ y) = —Ay <+ Sin (wt)
ISTATE = 2:if y > z then

Y = 163 = =By + sin (@)

I Initialise set initial values for the simulation I

DFUNCT
Evaluate discontinuity functions ¢

i

~ INTERP
Detects discontinuity controls integration
to pin-point discontinuity.
NEXIT=1 4st entry or discontinuity
accurately detected,
=2 no discontinuity,
=3 interpolative integration step
required.

=2 CNTRL
Set state markers
for new system state

Print results

I DERIV

From state markers
determines correct
set of equations
and evaluates

L [ =t Ctanu e
! ]

Fig. 1 General flow diagram for complete program

INT
Integrate diff.
eqns, step length
control to achieve

specified
accuracy
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On exit
NEXIT=4 after ist entry or when
discontinuity accurately det-
ected
= 2 no discontinuity
= 3 interpolative integration
step required to pin-point
discontinuity
DT is size of next integration step

set initial
parameters

INEXIT=1|

store end of normal step details
TNORM=1t DTNEXT= DT

2 J

was
last step an
interpolation

no

within error

limits yes

demand a step based on inter-
polation using present and normal
end of step values of ¢ to find

demand a repeat of last step
with step length based on
interpolation using present

and start of step values of the discontinuity

¢ to find the discontinuity 7
NEXIT=3
NEXIT=3
NORM=2
la
set yondt step size set to give
o repeat step size set to normal normal end of step
step - -
DT = DTNEXT DT=TNORM -t
S .
10

[ store present ¢ ,yandt for use in next mT:]

Fig. 2 INTERP flow diagram

ISTATE = 3:if y < —z then
d .
= =/x(t.y) = =Cy + sin (@1) 3

The state marker, ISTATE, determines which differential
equation is selected in DERIV. The value of the state marker is
passed to DERIV from CNTRL in which it is evaluated from
the current values of the two discontinuity functions required
in this case. These are defined in DFUNCT as:

pr=y—2¢=-y—z
and ISTATE is defined in CNTRL as:
ISTATE = 1if ¢, <Oand ¢, <0
ISTATE = 2if ¢, > 0
ISTATE = 3if ¢, > 0

The system equations are integrated using the standard
integration method provided in subroutine INT until a dis-
continuity is detected. Let the step in which this occurs range
from t = T to t = T + h. INTERP now interpolates linearly
to obtain a first approximation to the point of discontinuity
t =T+ ah(0 < a < 1). Anintegration step is now taken from
Tto T + ah and the discontinuity functions are again checked.
Either the discontinuity is found between T and T + ah or
T + ah and T + h, in either case an interpolation/integration
cycle is repeated employing an interpolation based on values of
the discontinuity function at ¢ equal to T and T + ah or
T + ah and T + h. These operations are repeated until the
discontinuity function becomes sufficiently small and has
changed sign. The latter ensures that at the point detected as the
discontinuity, the discontinuity function has a sign which
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start of
normal step

#

—_— 1 — — — —— ——e bound
o%// rror boun

integration normal int. step
steps ’ 1st approx.
—]

2nd opprox-required solution

. o new solution at normal step end
a) single discontinuity

[
_________ —/4/— |error bound

o : g,

normal int. step

st approx

#2nd approx - solution

—={ new solution ot normal step end

b) single discontinuity

* ]
—_— e —— —_—Jcrror bound
o 2
N /
¢2 ¢
normal int. step
st approx. for ¢4
—_— 2nd approx.- solution
new solution for normal step end
ist approx. for $o
+#2nd approx~solution
O multiple discontinuities —={new solution for normal step end

Fig. 3 Integration steps when negotiating discontinuities
*Forward interpolations aim for error bound and not ¢ = O.

corresponds to the new state of the system. Fig. 3 indicates the
steps which may be necessary, and Fig. 3(c) the steps under-
taken when two discontinuities occur within a single step.

5. Program detail

The FORTRAN program which simulates the discontinuous
system described in the previous section is presented in Fig. 4.
The program conforms to the flow diagram of Fig. 1, and the
definition of program variables is presented in the following
table.

List of principal program variables associated with:
1. Differential equations

N number of differential equations.

T independent variable time.

Y array of the current values of the dependent
variables.

YLAST values of Y at the start of the last integration step.

DY array for the current values of dY/dT.

A, B, C, W parameters of the equations defined in (3).

[

2. Discontinuity functions

NDF number of discontinuity functions.

DF array of the current values of the discontinuity
functions ¢.

DFLAST values of DF at the start of the last integration
step.

ERROR array of error bounds to which the corresponding
discontinuities must be detected.

Z - parameter defining DF defined in (3).
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DIMENSION Y(1),DY(1),ERROR(2),DF(2),DFLAST(2),YLAST(1 ), WORK(11)
COMMON ISTATE,A,B,C,W
EXTERNAL DERIV
WRITE(6,10)
C DIFF. EQN. DATA
READ(S5,11)A,B,C,W,Y(1),T
N=1
Cc DISCONTINUITY FUNCTION DATA
NDF=2
HREAD(5,11)(ERRKORCI)» I=1,NDF),Z
Cc RUN CONTKOL DATA
READ(5,11)DTMAX,EPS, TF
DT=DTMAX
IFIRST=0
[ MAIN PROGRAM LOOP
1 CALL DFUNCT(DF,Y,T»2)
CALL INTERP(NEXIT,T»DT,Y,YLASTs ERROR» DF» DFLAST,NDF,N, IFIRST)
GOTO(2,3,4),NEXIT
2 CALL CNTRL(DF,ISTATE)
WRITE(6,13)ISTATE
3 X=SINC(W*T)
WT=W*T*180.0/3.1415927
WRITE(6,12)T,WT,Y(1),X
IF(T«GE«TF)STOP
4 CALL INT(DERIV,Y,DY,T,DT,»DTMAX,EPS,N,WORK)
GOTO 1
10 FURMATC1H1, 6X, 4HTIME, 3X, THWT(DEG)»9X» I HY, 4Xs 6HSIN WT//)
11 FORMATC(7F10.4)
12 FORMAT(F10¢4,F10. 112F10-4)
13 FORMAT(16H SYSTEM STATE = ,1I1)
END

SUBROUTINE DFUNCT(DF,Y,T»2Z)
DIMENSION DF(2),Y(1)
DF(1)=Y(1)-2

DF(2)=-Y(1)-Z

RETURN

END

SUBROUTINE DERIV(Y,DY,T)
DIMENSION Y(1),DY(1)
COMMON ISTATE»A»BsC,W
GOTO(1,2,3), ISTATE

1 D=A
GOTO 4

2 D=B

GOTO 4

D=C

DY(1)==D*Y(1)+SINC(W*T)

RETURN

END

& W

SUBROUTINE CNTRL(DF,ISTATE)
DIMENSION DF(1)

1STATE=1
IF(DF(1)«GE«0.0)ISTATE=2
IF(DF(2)+GE+0+0)ISTATE=3

RETURN
END
DATA
1.0 0.5 0.2 1.0 0.0 0.7853982
0.0001 0.0001 0.5
31415927 0.001 12.5

Fig. 4a Program—user provided code

3. Integration procedure
DTMAX  maximum value of integration step.
DT actual value of step which may be adjusted by IN’Ig
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EPS absolute accuracy criterion for an integration step§
WORK array of working storage used by INT. -

®
4. Interpolation procedure 2’
IFIRST is set to O to indicate first entry to INTERP. -
NEXIT is set by INTERP to: i~

=1 if first use of INTERP, or if a discontinuitg
has been accurately detected as occurring atoo
the current 7, N

=2 no discontinuity detected,

=3 an integration step is required to locate a
discontinuity.

The program listing does not contain an integration subroutine,
and it is the authors’ intention that a suitable standard sub-
routine will be incorporated from the library available at the
user’s computer installation. Any integration process may be
used with this program, however, preference should be given
to subroutines which comply with the specification presented
in the last two sections.

The program running efficiency could be slightly improved by
making greater use of FORTRAN COMMON facilities to
reduce the time required to communicate arguments during the
subroutine calling process. However, this speed improvement
is offset by the inconvenience of having a long compulsory list
of COMMON variables.
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SUBROUTINE INTERP(NEXIT,T,DT,Y,»YLAST, ERROR, DF, DFLAST,NDF,N» IFIRST)
DIMENSION Y(N),YLAST(N),ERROR(NDF)»DF(NDF), DFLAST(NDF)
NDIS=0
IFCIFIRST.NE.0)GOTO 1
IFIRST=1
NEXIT=1
NORM=0
1REM=0
GOTO 10

1 NEXIT=2
IF(NDF<LE.0)GOTO 10
IF(NORM.NE.0)>GOTO 2
TNORM=T
DTINEXT=DT

2  DTPREV=T-TLAST
DTNEAR=DTPREV
NEAR=0
NOTACC=0
DO 3 I=1,NDF
U=DFLAST(I)
V=DF(I)
IFCCUeGE+0+00+ANDe Vs GEe0+0)eDRe CU-LT+0+0.AND.V.LT+0+0)GOTO 3
ERR=ERROR(I)
1IFCABS(V)+GT+ ERRINOTACC=1
TEMP=DTPREV*U/ (U-V)
NDIS=NDIS+1
IF(TEMP.GE. DTNEAR)GOTO 3
DTNEAR=TEMP
NEAR=1

3 CONTINUE
IF(NDIS.EQ.0>60T0 5
1F(NOTACC-EQ.0)GOTQ 6
NEXIT=3
1REM=NEAR
DT=DTNEAR
NOaM=2
DFEND=DF(NEAR)
TEND=T
T=TLAST

. DO 4 I=1,N

4 YCI)=YLAST(I) .
RETURN

s 1FCIREM.EQ.0)G0TO 7
NEXIT=3
U=DF ( IREM)
V=1.0/ (U-DFEND)
DT=TEND-T
DT=U*DT*V+ABS CERROHC IREM) #DT#V)
GOTO 10

6 1REM=0

NEXIT=1

IF(NORM-1>10,9,8

DT=TNORM-T

NOaM=1

GOTO 10

9 DT=DTNEXT
NORM=0

10 DO 11 I=1,NDF

11 DFLASTCI)=DF(I)
DO 12 I=1,N

12 YLASTCI)=Y(I)
TLAST=T
RETURN
END

Fig. 4b Program—standard subroutine INTERP
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Fig. 5 Results from program of fig. 4 =
g
The printout resulting from running the program for the

specified data is shown in Fig. 5.
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6. Conclusions
The software has been successfully tested on a number of
problems with various types of discontinuity including multiple
discontinuities occurring within one integration step. Work is
proceeding on the improvement of interpolation techniques
and a library of standard subroutines defining common types
of discontinuity is under development.
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