data-division as a single section of his program but some similar
grouping of declaration statements can be adopted when using
the latter language. A set of such listings together with a general
flow diagram for the program suite theoretically meets in full
the requirements under category 1. If ‘correct’ cards are used
only when program alterations have been fully checked out,
then the set of automatically dated listings including the card
listings enables the reconstruction of a previous position.

This is, of course, a theoretical situation but it is interesting
to note that all other documentation comes into category 2 and
its production can be the subject of management investigation
and appraisal. Some of this can be produced by automatic
means—if the manufacturer does not supply an analyser for
use with your operating system he should be encouraged to do
50, and if you really like to see the procedural parts of a pro-
gram with lines drawn round them, Grace Hopper has a
solution. But beware using programmers’ flowcharts for
anything but lighting bonfires, they will be both out-of-date and
wrong; nor is it worthwhile expending effort to try to make
them otherwise as many of the typical error conditions arising
during production running would not be apparent from a study
of such documents, in any event. It is better to encourage an
intelligent use of procedure names, comment cards and
comment fields in statement cards—this latter particularly for

identification of amended or added statements during updating.
Rather than insisting on more elaborate, rigorous and time-
consuming documentation it is, once again, possible to deter-
mine root causes of failures in running production work. An
exercise carried out over the last two years in a large commer-
cial installation has revealed a distinct pattern in reasons for
abortive work and has enabled documentation and control
diagnostics to be concentrated in those areas providing the best
returns. Every installation manager will express an opinion as
to why abortive results occur, but a systematic recording and
correlation of the events leading to each failure is a manage-
ment exercise which must be gone through before any spec-
tacular advance can be made in improving running efficiency
of work. No two installations are precisely the same and for
this reason blanket edicts on standard procedures which are not
based on a thorough analysis of failures will only increase the
operating overheads without achieving the desired result.

Acknowledgements ‘

The author is grateful to the Chairman of the South Eastern
Region of the British Gas Corporation for permission %o
publish this paper and to many of the Directors for providiag
the incentive to carry out this work. g

Discussion

Job control languages and job control programs

D. W. Barron

Department of Mathematics, University of Southampton, Southampton, SO9 5NH

Introduction

It is reported (Commoner, 1971) that one of the first visible
signs of the massive pollution of Lake Erie was the appearance
of a thick carpet of slimy green overgrowth of algae. This will
be a familiar phenomenon to anyone who has tried to run a
program on a ‘third generation’ computing system and has
found himself confronted with a thick overgrowth of Job
Control Language. (Whether this can be described as green
and slimy is a matter between the reader and his operating
system.)

It comes as a shock to the innocent user to find that in addition
to a programming language, he has to learn a job control or
Job description language before he can get a job through the
system. Once he graduates from the simplest form of job, he is
likely to find the preparation of the job control cards at least
as troublesome as the program itself, if not more so. This
difficulty will increase as he tries to avail himself of the more
advanced facilities offered by the system and sooner or later
he will give up. It seems likely that the full exploitation of the
facilities of a modern sophisticated operating system is denied
to all but a few by the almost impenetrable obscurity of the
job control system. As Cheetham and Wickham (1973) have
observed,

‘In order to understand how to use a powerful, flexible
operating system, even to run small, simple jobs, one has to
be a powerful, flexible programmer’.
When the manual for a typical modern operating system (ICL,
1973) is one and a half inches thick (520 pages), it is not sur-
prising that most users, having found a set of JCL cards that

1/ /e1o1de/|ulwoo/woo dno olwapeoe//:sdiy woly pa

w
work, will go to considerable pains to avoid the necessity of
change. It is interesting to speculate why user-dissatisfaction has
not led manufacturers to improve their offering in this respe@:
(or, indeed, in many others). It is another example of the
passive acceptance of what the manufacturer offers: to putdt
crudely the users don’t realise that something better is possiblg.
(In a recent paper (Tanenbaum and Benson, 1973) referenée
was made to a system in which the standard F ORTRAN
compile, execute, debug and return to the editor sequence is 38
cards.” One can only assume that the people who designed such
a system had never actually used a computer to solve real
problems, and therefore considered the user interface zﬁ
irrelevant.) i

There are, of course, some aficionados for whom JCL brings
back the esoteric mystique that high-level languages have
largely removed from programming, but we do not consider
them as relevant to the subsequent discussion.

JCL as a language

Although the initials JCL stand for job control language,
it is rarely considered in the same way as a programming
language. The JCL statements are not clearly distinguished
from the facilities they control, and this is the cause of much of
the trouble. It is a cardinal principle of language design that
you should decide what you want to say before you think about
how you are going to say it. In the case of IBM’s JCL it is all
too clear that they did it the other way round, and the language
format is entirely determined by the decoding mechanism,
which obviously borrows much from a macro assembler.

The Computer Journal

|/COMP EXEC PGM=IEYFORT,PARM = ‘SOURCF’

[[SYSPRINT DD SYSOUT=A

J/SYSLIN DD DSNAME=SYSL.UT4,DISP=0OLD,
DCB = (RECFM = FB,LRECL =80,
BLKSIZE = 800)

//GO EXEC PGM=FORTLINK,COND = (4,LT,C)

Fig 1. Extract from OS/360 JCL for a simple FORTRAN job.

Examples abound: two will suffice. Fig. 1 shows part of the
JCL for a simple FORTRAN job. The EXEC statement
includes the phrase

COND 74, LT, C)

which is interpreted to mean ‘omit this job step if 4 is less than
the condition code returned by Step C’. It requires distinct
effort to work out what condition codes cause the job step to be
included. In the first place, the comparison is backwards way
round: the natural way is to write the variable first and the
constant second, thus ‘C greater than 4°. Also, it would be more
in the spirit of programming languages to specify the condition
for inclusion rather than exclusion, or at least to replace the
word COND by OMIT IF.

The second example also from Fig. 1 comes from the data
definition statements (e.g.-SYSLIN), where the syntax consists
entirely of brackets and equals signs. The best that can be said
of this is that it is an implementation in search of a language.

(It may be argued that these are small irritations, but the sum
of a large number of small irritations is sheer unacceptability,
unless one accepts the converse argument, put forward by
Stafford Beer, that one last desperate approach to the problem
of saving a crumbling church tower is to ask the death-watch
beetles to hold hands.) The next example is taken from the
CDC 7600 (SCOPE 2) system, in which one may find oneself
obliged to write a job control statement of the form LGO, , ,,
LONDOP. The four commas indicate that ‘LONDOP’ must
replace the fourth parameter in the PROGRAM statement.
As a language, this is on a par with the grunts by which
Neanderthal Man communicated with his fellows: the chaos
that can be caused by omitting a comma is too awful to con-
template, being rivalled only by the remarkable effects that
can be caused by a single spurious blank in the middle of an
OS JCL statement.

GEORGE 3 command language (ICL, 1973) does represent a
significant step forward in that it uses concepts well-known in
programming languages, the conditional, the GOTO and the
procedure. Thus, whilst OS JCL only allows the conditional
inclusion (or is it exclusion ?) of a single job step, GEORGE 3
has labels, GOTO’s and IF statements, which greatly increase
the power of the language.

In earlier versions of GEORGE 3, the IF qualified only one
command (as in ANSI FORTRAN): this meant that the only
conditional used in practice was a conditional jump. (More
elaborate constructions could be achieved by making the IF
control the call of a macro, but this was a roundabout way of
getting things done.) The most recent version of GEORGE 3
allows IF ... THEN...ELSE as well as IF... THEN...
However, it is symptomatic of the way in which designers of
job control languages have ignored the lessons of high-level
language design that the designers of GEORGE 3 have fallen
into the trap of the ‘dangling else’ that has been known for ten
years. Thus the GEORGE 3 user can write

IF...THEN...IF...THEN...ELSE
which can be interpreted as
IF...THEN(F...THEN...ELSE...)
or as
IF...THEN(IF... THEN)...ELSE...

Volume 17 Number 3

The main defect of the GEORGE 3 job description Ianguage is
its syntax which, as can be seen from Fig. 2 is rather minimal.
The general pattern is that each command starts with a verb,
which is followed by parameters separated by commas.
However, as shown in Fig. 2 unexpected commas are some-
times required, which is a trap for the unwary.

Hidden underneath this simple syntax are many of the
attributes of a high level language.

Thus, whilst OS JCL has ‘catalog procedures’ which are
precisely analagous to assembler macros, GEORGE 3 has
things called macros that are in fact true procedures. (The dis-
tinction is that a true procedure has a local name-space and
consequently procedures can be nested with no fear of name
clashes.) It is ironic that both IBM and ICL should have chosen.
precisely the wrong word to describe this facility.

If we accept that JCL is a language akin to a programming
language, then we see that in principle it can be interpreted or
compiled. Interpretation is the more usual, but it can lead to
situations where, on a system dominated by small jobs, up to
309; of the processing capacity can be expended on JCL
interpretation.

eojumoqg

The relation between job control and programming 8
In an earlier paper (Barron and Jackson, 1972) the evolutiorg
of job-control languages was traced, and it was suggested thaty
0OS/360 JCL is akin to an assembly language with macrc®
facilities, whilst GEORGE 3 Command Language is a rudi%
mentary high level language. A possible line of development is
to pursue this analogy and see what in job control corresponds
to a really high level language. It is sometimes claimed that thiq“é
amounts to inventing programming all over again, but this is?o_
not true: what we are saying is that job control is just anotherg
sort of programming, and a job control language should beg
viewed as a programming language for a processor with a

unusual repertoire of basic operations. The question that arisesg
is thus whether this new form of programming can be accom=
modated within existing languages, or whether an entirely;%
separate and different language is needed for the purpose. If=
we conclude that a separate language is required, then wea
can view the operating system as the implementation ofx
that language. (I am indebted to Mr. David Beech of the IBMS
Laboratories at Hursley for this illuminating observation.)

GG68€E/C8

Do we need a job control language?
As an alternative to pursuing the consideration of what might_
be included in a high-level job control language, we eam,
consider a more radical alternative: can we do away withp

LOAD MYPROGRAM
ASSIGN *CRO,MYDATA
ASSIGN *LPO,MYRESULTS
MONITOR ON, DELETE
ENTER 0
IF NOT HALTED (LINE PRINTER), GOTO 999
ONLINE *LP1,GREMLINS
RESUME
999 IF FAILED, LISTFILE MONITOR, *LP1
IF HALTED, ENTER 1
ENDJOB

20z ludy 61 Uo

Fig. 2 Example of GEORGE 3 Job Description. (The program in the
file MYPROGRAM is to be run using data from the file
MYDATA and sending results to file MYRESULTS. If the
program halts with the message ‘LINEPRINTER’ a line-
printer is to be put on line and the job resumed. If the program
halts for any other reason it is to be restarted at entry point 1;
and if it fails the monitor file is to be printed. Note the
apparently inconsistent appearance of commas.)

JCL? This is certainly possible in single-language systems (e.g.
OS-6 (Stoy and Strachey, 1972) POP-2 (Burstall et al., 1971),
APL (Pakin, 1972), BASIC (Kemeny and Kurtz, 1967). In the
more general context a more amenable approach is to design
systems in which we can implant subsystems that require a
minimum of JCL: this opens up the possibility of absorbing
the residual JCL into the various programming languages. We
may note that in existing systems some job control information
has already been absorbed in a fairly haphazard way by ad hoc
extensions to existing languages. Thus in FORTRAN, I/O
channels are identified by number, e.g.
WRITE (6, 100) X, Y, Z .

The ‘unit number’ must somehow be associated with a specific
device or dataset: in the ICL 1900 version of FORTRAN this
is done in the ‘program description segment’ by a statement
of the form

OUTPUT 6 = LPO .

(The program description is a form of bastard JCL, read by the
compiler.) However, if when running under GEORGE 3 the
user wants his output to go to a file, he must provide a piece of
GEORGE 3 job control also, thus:

ASSIGN * LPO TO : MYPRINTFILE .

This arbitrary division of function is confusing to the program-
mer, who may be pardoned for thinking that he exists for the
convenience of the system, rather than vice-versa. He would be
much happier with a piece of genuine FORTRAN, thus:

CALL OPENFILE (6, 11IHMYPRINTFILE) .

(This latter type of call was provided in the GEIS conver-
sational FORTRAN system.)

Having once arranged things this way, many incidental
benefits appear. The second parameter does not need to be an
explicit text constant: it can be a variable or a function having
a text constant as its value. It can even be a variable whose
value is set by a preceding READ statement, thus preserving
the flexibility of file-naming but in a context more familiar
to the programmer.

Minimum JCL versus high level JCL

Many of the troubles that beset large scale operating systems
can be ascribed to the fact that they try to be all things to all men
(Barron, 1972). Similarly, the complication of a job control
language stems largely from the fact that they cater for the most
complicated kind of job, and lose sight of the indispensible
maxim that simple things should remain simple. (The obsession
with generality is not new: it was pointed out long ago by
Needham (1964) that the classic von Neumann machine is
based on the assumption that users will wish to write random
programs. It is only recently that the inherent structuring of
programs has been reflected in machine design.)

In fact most user communities will generate jobs that largely
conform to a pattern. For example, consider the following
extract from the Leeds University 1906A User’s manual
(Hock, 1971):

‘PROG is a general purpose macro designed to enable the
user to translate and run his programs without having to use
GEORGE job control language. With this macro, a user
programming in any of the languages in accepted use at
Leeds can translate and run his program . . .’

Here a macro has been used to adapt the system to the class
of users, but the implication is that the facilities provided are
more general than is required, and a more efficient means of
adapting would be preferable.

We thus see that the problem really moves back into the design
of the underlying operating system. To quote Cheetham and
Wickham (1973) again.

284

‘A system designed to cope with large complex jobs takes so
much of the resources of the machine to discover that a job
is small and simple that no job ever is (small and simple).’

This is why the concept of subsystems is important. If the
majority of jobs are FORTRAN compile-and-go, then a
system of the WATFOR type (Shantz, 1967) will not only run
more efficiently, but will also relieve the user of the need to
provide elaborate job control statements. Even if an in-core
compiler is not available, unless he actually wants to preserve
intermediate material the user should not have to include (to
him) irrelevant job control information about link editing, nor
is it desirable that he should have to retrieve a macro (catalog
procedure) to get round this.

Linear jobs
If we look at the functions of JCL, we can see that they fall
broadly into two groups:

1. sequencing a number of job steps,

2. establishing the environment for a job step (i.e. file openi@
and creation, etc.). =3

o
A large number of jobs consist of a number of job steps th%t
are to be executed in sequence, with the option of stopping
after any step. We call such a job a linear job. The prime examp!
is compile-link edit-go. Such jobs are suitable candidates fora
minimum-JCL system: if the sequencing is of a more compléex
nature then we need the constructs of a high-level language
(e.g. if-then-else, repeat while, case) to control the sequencilg
in a palatable manner. 2

Let us consider the classic compile-link edit-go job as the
paradigm for this class. At the end of the compiling phase, g
there have been no errors the linkage editor must be loaded and
entered to link together the compiled segments and any library
segments that have been referenced. In OS/360 this is achiev;g
by a JCL card which includes a reference to a condition codg
returned by the compiler (see Fig. 1): there are also JCL cards
specifying the files (datasets) to be used as input to the linkagg
editor. But the compiler knows whether there have been an
errors (and hence whether or not to call the linkage editor);
and it (presumably) knows where it put its output (which wilk
be the input to the linkage editor), and thus it is not strictly:
necessary to exit to JCL-decoding level. We can dispense wit§
JCL entirely in this context if it is possible for the compiler té!
delete itself and to load the linkage editor, passing informatioff
across in the machine’s registers (or in a reserved area of store

This principle can be extended to most linear jobs. It i§
provided in a restricted form in ICL 1900 series compilers
(under the name ‘automatic consolidation’). The PDP/16;
Monitor uses a similar technique to provide a powerful
compiling subsystem in which, for example, compiling of %
source file is skipped if there exists a file containing a relocatg
able binary version of the same routine, at least as recent as thé"
source.

The necessary feature in a system to permit the construction
of JCL-less subsystems is thus the ability of a program to delete
itself and nominate a successor, retaining intact its environ-
ment (i.e. open files, register contents). This implies that an
effective way exists of passing information from one program to
another; a method of creating and using temporary files
suffices. It helps if there is a uniform way of handling character
files.

The linear job facility is found at its most elaborate in the
Titan operating system (Hartley, 1972), where it is known as
‘changing phase’. However, since the facility was added
subsequent to the original design, the mechanisms for com-
municating between job steps are less elegant than one would
desire.

Before leaving this topic, we may note as an aside that the

The Computer Journal

linkage editor usually has the same obsession with generality
that we have noticed elsewhere, and assumes that every seg-
ment of a program will have been written in a different high
level language. Dramatic improvements can be made simply by
treating the most common situation as a special case (Barron,
1976). In a FORTRAN-oriented establishment the continued
survival of the linkage editor is a consequence of the sacred
overtones attached to the concept of independent compiling of
routines. In fact, this concept was only significant when com-
pilers were slow and cumbersome. Nowadays an in-core
FORTRAN system will compile source code faster than a
linkage editor can process the equivalent pre-compiled form,
and provided that there exists a convenient file-substitution
system (Poole and Lang, 1968) to facilitate the inclusion of
library material in source form, the persistence of linkage
editing in large systems is to a large extent a triumph of faith
over reason.

High level JCL

For situations more complicated than the linear job, we need a
high-level JCL. We examine here the facilities that the operating
system should provide to make this possible.

The user interface in the operating system

Consider the functions of an operating system. There is a great
deal of behind-the-scenes activity in resource allocation,
scheduling, interrupt processing, etcetera. But from the point
of view of the individual user, the system allows (or should
allow) him the following facilities:

(a) to control the sequencing of a number of related operations;

(b) to call programs (compilers and utilities) into action,
providing values for various items of parametric
information;

(¢) to provide an environment for these programs by relating
symbolic names to actual files or devices;

~ (d) to set up and manipulate files, directories, etc.

These are closely parallel to the things we want to do in
programming, but at an early stage in the development of
operating systems, designers set off along a lengthy blind alley
though not appreciating this fact.

The Atlas job description (Haworth, 1961) was regarded as a
static definition of an environment in which a piece of program
was to be run. The same is true of the dataset description cards
in 0S/360 JCL. However, most of the setting up can in principle
be done by the program itself. Some of it will be initialisation,
but some can be deferred until a later stage, and may be con-
ditional on the outcome of earlier processing. For example, if
a program wishes to output to a printer there is no need to
specify this before the job is started—it can be done at run time
by a suitable extracode (supervisor call). Having taken this step,
it is apparent that the static job description is merely a form-
alised way of describing the initialisation of certain parameters,
and that the ‘job-description decoder’ is merely an interpreter
for a stylised language, all the work being done by the same
supervisor calls that the program could use at run-time.

With the benefit of hindsight, it seems obvious (to the author
at least) that the basic interface between the user and the system
should be defined by a number of supervisor calls that provide
the basic job control language, exactly as the operations wired
into the processor define the machine language. The choice of
the correct set of primitives is a major design exercise, as is the
definition of a systematic set of conventions for the way in
which the primitive functions return information about their
success or failure.

The process of job control now reduces to the generation of an
appropriate sequence of these supervisor calls. An implication
of this is that anything that can be done by job-control language

Volume 17 Number3

can also be done at run-time by supervisor calls. It is illuminat-
ing to see how this dynamic facility is viewed in various systems.
In OS/360 many, but not all, of the things that can be done by
JCL can also be done by obeying supervisor calls (generated by
assembler macros). In GEORGE 3 it is possible to do almost
anything at run time, but to do it the program must generate a
string of job-control statements in character form that will be
treated exactly as if they had just come from an external
peripheral. Thus the program must go to the trouble of encod-
ing information which will immediately be decoded again by
the job-description interpreted. This is not just an inefficiency:
it implies that the job-description decoder has been elevated to
an unnecessarily central and indispensable position. Perhaps
the system that came nearest to the ideal proposed was CTSS
(Corbato, 1963): once one had logged-in and entered a
program, anything that could be done from the keyboard could
be done by supervisor calls.

We thus have the concept of an environment being set up
dynamically. Some aspects can be dealt with as required, but
others (e.g. time and space limits) must be set up initially, and
must be subject to some protection (or at least must interactg
with an accounting and budgeting system). Thus we are led to =
associate with every program an initialisation phase (the 1deag
comes from the CTL E4 executive (CTL, 1973)) which need not, Q
of course, be in the same language as the rest of the program. g

In fact the interface presented to the user by the operating =
system must also include a mechanism for communicationt
between job-steps. There must be associated with each job a
communication area, with a mechanism to permit job steps to &
insert and extract messages. The PDP-10 monitor system§
provides a reserved area of store for such communication; 5
alternatively supervisor calls (extracodes) can be provided to 2
read and write a set of pseudo-registers. In either case a smtableg
compiler can map this communication area into a set of JCL 3
variables. An alternative approach is to achieve inter-job step &
communication by one or more pseudo I/O channels along=
which job steps can exchange messages. The ‘event’ mechanism &
of GEORGE 3 is an example of this approach. As described in)
an earlier paper (Barron and Jackson, 1972), a program =
running under GEORGE 3 can (voluntarily or involuntarily) &
cause an event to occur, and associate a character string with it.
The occurrence of an event can be tested by a JCL conditional
statement, e.g.

IF HALTED....

The associated message may be used as part of the conditional
test, e.g.

I uo 3senb Aq 899689/882/

IF HALTED ‘ERROR’...
will test for the event ‘HALTED’ and a message starting ©

“ERROR’. Within a procedure (macro) the message can be%_;?

used in a more elaborate way to provide a genunine transmis-
sion of information between job steps. For example, suppose |\>
we have a program that is going to decide its successor on some
dynamic basis. We arrange for it to generate the ‘HALTED’
event with a message ‘LOADuvwy’ where uvwy is the 4-
character name of the successor. Then within a procedure
(macro) written to control the original program we can write:

IF HALTED ‘LOAD’ GOTO 9991

SETPARAM A, MESSAGE(, 8)
LOAD %A

9991

Within a macro, SETPARAM «a, B replaces the value of para-
meter o by f, so in the above example parameter A is replaced
by characters 5-8 of the message, then LOAD %A loads the

appropriate successor, % being the marker for a formal
parameter.

It will be noted that GEORGE 3 events are ‘polled’ by the
job description. A very powerful and attractive feature of an
operating system interface would be the ability to generate
events as interrupts, so that in the job control we could write
statements like PL/I ON-conditions, e.g.

ON HALTED ‘ERROR’ GOTO 9999

to set traps for certain events. (GEORGE 3 provides a WHEN-
EVER command,.but the only condition that can be tested this
way is COMMAND ERROR.)

Job control programs
If the operating system is structured in this way, selected aspects
of job-control can readily be absorbed into an existing language
system to give a neat user interface. Moreover, almost any
language can be used as a job control language provided that
it can be compiled into, or interpreted in terms of, the appro-
priate set of supervisor calls. It would thus appear that we have
removed the need for a specific and unique job control language,
and opened the way to machine-independent job control.
This is true, but we must beware of falling into the trap of
thinking that because the need for a job control language has
been removed, the need for a job control program has also
vanished. In an online system, whenever an action has been
completed control returns to the key-board for the user to
specify what to do next. Similarly, in a “batch’ environment, at
the end of a job step control must return to a job control
program which decides what to do next (unless the job is a
linear job as defined above). The JCL of OS/360 or the job
description of GEORGE 3 are essentially job control programs
written in a special-purpose language. What we have shown is
that the operating system could be designed in such a way as to
allow job control programs to be written in almost any lan-
guage; this might or might not be the same as the language used
in the actual job steps.

References

Short term improvements

We have indicated a system structure that would greatly
facilitate the provision of an attractive method of job control.
But this depends on changes in operating systems, which is a
long term prospect. In the long term, as Lord Keynes liked to
remark, we shall all be dead. For the short term an attractive
approach is to apply syntactic sugar to an existing job control
system. That is to say, a palatable job control language is
designed together with a program to translate it into the native
JCL of the machine. One such system has been described by
Newman (1972) for the GEORGE 3 operating system on the
ICL 1906A. It is suggested that the system is portable and
applicable to other operating systems but no examples are
given apart from 1906A use. Dakin (1973) has suggested a
machine independent job control language that can be trans-
lated by an intelligent satellite terminal into the job control
language any one of a number of remote mainframe operating
systems, and Parsons (1974) has independently designed a
similar system.

Acknowledgements

The ideas presented in this paper have evolved over some twosS
years. During this period I have tried out versions of the3
ideas on audiences up and down the country, and I am gratefulg
to all those who, by participating in the subsequent discussions, =
assisted me to clarify my thoughts.

Postscript—MU 5

After this paper was completed a presentation of some feature
of the MUS system by Morris (1974) made it clear that the
MUS job control system is constructed along the lines advocated 3
in this paper. With hindsight it is possible to see that this iso

U
E

D
Q.
(0]

_,

// sdpy wo.

Q

3

o

implied in the published description of the MUS5 operatingS

system (Morris et al., 1972) though the point is not brought
out explicitly. Once again the Manchester team have introduced5
arevolutionary concept with such a degree of understatement as
to go unnoticed.

BARRON, D. W. (1972a). What Happened to Operating Systems. Proceedings of the Software 72 Conference, pp. 18-21. London: Transcripta

Books.

BARRON, D. W. (1972b). Assemblers and Loaders (Second Edition). London: Macdonald/New York: American Elsevier Inc.
BARRON, D. W., and JACKsON, I. R. (1972). The Evolution of Job Control Languages. Software- Practice and Experience, Vol. 2, No. 2,0

pp. 143-164.

BURSTALL, R. M., CoLLINS, J. S., and POPPLESTONE, R. J. (1971). Programming in POP-2, Edinburgh: Edinburgh University Press.
CHEETHAM, C. J., and WICKHAM, R. (1973). Cafeteria Systems. JIUCC Newsletter, Vol. 2, No. 1, pp. 6-11.

CTL. E4 Product Description, Document Reference 381/47, Computer Technology Ltd.

The Closing Circle, London: Johnathan Cape.

CorBATO, F. J. et al. (1963). The Compatible Time Sharing System: a Programmer’s Guide, Cambridge Mass: MIT Press.

COMMONER, B. (1971).

DakiN, R. (1973). Private Communication.

HARTLEY, D. F. (1972). Techniques in the Titan Supervisor. In Operating System Techniques, ed. C. A. F. Hoare and R. H. Perrott. London:

Academic Press.

HowarTH, D. J. (1961). The Manchester University ATLAS operating System, Part II. The Computer Journal, Vol. 4, pp. 226-229.

Hock, A. A. (Ed.) (1971).

19064 User’s Manual, University of Leeds Electronic Computing Laboratory.

ICL (1973). Operating Systems George 3 and 4, Technical Publication No. 4345. London: International Computers Ltd.

KEeMENY, J. G., and Kurtz, T. E. (1967). Basic Programming, New York: John Wiley and Sons Inc.

Mornris, D. (1974). Presentation at the British Computer Society Symposium Job Control Languages, Past, Present and Future.

MOoRrrIS, D. et al. (1972). The Structure of the MUS Operating System. The Computer Journal, Vol. 15, pp. 113-116.

NEeepHAM, R. M. (1964). The Exploitation of Redundancy in Programs, Conference on The Impact of Users’ Needs on the Design of Data
Processing Systems. Proceedings, pp. 6-7. London: Institute of Electrical Engineers.

NEwMAN, I. A. (1973). The Unique Command Language-Portable Job Control, Proceedings of DATAFAIR 73, pp. 353-357.

PAKIN, S. (1972). APL[360 Reference Manual, Palo-Alto: Science Research Associates Inc.

PARSONS, 1.
PooLE, P. C., and LANG, T. (1965).
11, pp. 5-11.

A High Level Job Control Language. Software-Practice and Experience, in press.
The Development of On-Line Computing Facilities for the KDF 9, Part I, The Computer Journal, Vol.

SHANTZ, P. W. et al. (1967). WATFOR—The University of Waterloo FORTRAN IV Compiler. CACM, Vol. 10, No. 1, p. 41.
Stoy, J. E., and STRACHEY, C. (1972). OS6—An Experimental Operating System for a Small Computer The Computer Journal Vol. 15,

pD. 117 124 and 195-203.

TANENBAUM, A., and BENsoN, W. H. (1973). The People’s Time Sharing System. Software-Practice and Experience, Vol. 3, No. 2, pp. 109-120.

The Computer Journal

Q
o
O

3

€/282/€/L1/o11e/|ufl

20z Iudy 61 uo 3senb Aq 85568

