Source language debugging on a small computer

R. H. Pierce

Ferranti Limited, Bridge House, Gatley, Cheshire*

Conventional dynamic debugging techniques are often restricted to machine level programs, while
fully conversational compilers for powerful languages are costly to develop and will not fit into small

systems.

This paper describes a source-language debugging system for CORAL 66 which allows a user to
run his CORAL program under teletype control, and to make changes to the source program. The
changes are compiled by the debugging program and immediately incorporated into the object code.
This provides a useful facility which can be added to all but the smallest systems.

(Received May 1973)

1. Introduction

It is now common practice to use a high-level language for
development of both systems and applications software, even
on small computers. However, it is unfortunately true that
while compilers abound, the same cannot be said of good run-
time diagnostic and debugging aids. On a machine with a
multiplicity of order formats and addressing schemes such as
the Argus 700 (Eyre & Williams, 1973), a user would require a
considerable knowledge of both the machine and the compiler
to debug a high-level language program at the level of the
machine (e.g. from a core dump). Now the intention is that all
programming for the Argus 700 should be carried out in
CORAL 66, FORTRAN or some other high-level language,
and that the machine code should be of concern only to the
compilers. It is thus reasonable that the programmer be given
efficient debugging tools that require only a knowledge of the
source language, and do not presuppose any familiarity with
the machine (apart from knowing the word length). Tools of
this nature must inevitably reduce the cost of programming
(and hopefully increase user satisfaction).

Two such systems for CORAL programs are supported. The
first consists of a fairly conventional trace package, with
tracing on a printer controlled by compile-time directives and
run-time steering commands. The second is a more sophisticated
dynamic debugging facility, which allows the user to control
the execution of his CORAL program from a teletype. The
point about this system is that it works entirely in terms of the
source program. As far as the user is concerned, the object
program is invisible. This paper describes the Argus 700
program called Dynamic Debugging-Source (DDS).

2. The DDS system

The Argus 700 is a small to medium scale machine, and the size
of most configurations would preclude the use of a full scale
interactive compiler such as IBM’s PL/I Checkout Compiler
(Cuff, 1972). In addition to this, the development of the main
three-pass CORAL compiler was well under way when the
need for an interactive debugging system was recognised, and
consequently it was decided to construct a separate source-
language debugging system that would fit into a minimum
amount of space while allowing the user to make minor
alterations to his CORAL program without having to recom-
pile the program (such alterations are commonly known as
‘patches’). In some respects, DDS is similar to a small-scale
interactive compiler, but the original compilation is carried
out by the full CORAL compiler. DDS operates in conjunction
with this compiler, though they are separate programs.

The compiler produces a map of the source program con-
taining all the information that the debug needs to run the

*Now with ICL, Wenlock Way, West Gorton, Manchester M12 5SDR.

Volume 17 Number 4

program. This map is held on disc. It will only be written if
specifically requested by a steering command to the compiler.
In addition the compiler will provide the user with a listing
of the source program in which each executable statement is
assigned a serial number (Fig. 1). The user refers to this
numbered listing when debugging his program.
When using DDS, a programmer at a keyboard may:

1. Set (or clear) a number of breakpoints in his program.

2. Resume execution of the program at a specified source
statement, or continue from a breakpoint.

3. Examine and alter variables, array elements or absolute
locations.

4. Delete, alter or insert CORAL statements at any point in the
program, or remove a patch previously inserted.

Commands may be entered whenever a program stops at a
breakpoint, or is interrupted by the user’s typing a control
character on the keyboard. Run-time errors also cause control
to be passed to the user, after the appropriate message has been
output.

Commands are as abbreviated as possible; lengthy command
formats would tend to irritate most users. If a mistake is made
when typing a line (either a command or a CORAL statement)
the character ? will cause the entire line to be ignored.

The general format for commands is:

{command) ::= (store examination command)|
{patching command)|
{breakpoint command}|<other
command)
{store examination command) ::= {general command)
{breakpoint command) ::= {general command)
{other command) ::= (general command)
{patching command) ::= X <{from st no)<to st no)
{newline>
{coral patch)|
Y (statement number){newline}
{coral patch)|
R (statement number)
{statement number) ::= (decimal number)
{from st no) ::= {decimal number)
{to st no) ::= (decimal number){<nil)>
(coral patch) ::= {ss listd>{newline>|{newline)
¢ss list) ::= (subset statement)|
{ss listd><{newline»{subset statement>

{general command) ::= {command identifier}{space>
{parameters>{newline>
{parameters) ::= {parameters>{space>{parameter)|
{parameter)

313

¥202 Iudy 61 U0 1s8nb AQ $S9EY/E L E/P/ L L/BIoIE/|UlWwoo /W00 dno-ojwapeode//:sdiy wolj papeojumoq

(00643 CBST:

ALPHAt=ALPHA+2)

*IF' SYNSYM °LT® 128 °
*BEGIN’

£0065)
(00661
00672
10068)
£0069)

SALINKY

TAKESS

ALPHA:=ALPHA)
"END® ‘ELSE’
00703 *BEGIN"®
c0071)
10072}
te072)
L0074

BEGIN"
800L:=03
SEGCALL}

*END' ‘ELSE"®

tp075) 100763 *1F* SYNSYM
€g077) (0078) *IF* SYNSYM
1 0079) (0080) *IF* SYNSYM
too81) ‘ELSE* BOOL

coo082) CEXI TCROOL 3
*END *»
{0e8d) ‘GOTOD* NXTSYM3
€ 00843 CERR:
ERRECCALPHA))

‘GOTO® NXTSY4s

Fig. 1 Numbered source listing

€00857)

THEN *

*IF® SYNSYM °‘GE® 256 °*THEN'

LT 240 “THEN' "GOTO® CASEl °ELSE®
'LT® #372 *THEN' °GOTO* CASE2 °*ELSE®
'EQ' CNXT °*THEN'® BOOL:=1

$=03

{parameter) ::= (number)|{identifier parameter)

(identifier parameter) ::= (identifier){scope)|
(identifier [{subscript>]
{scope)

{scope) ::= : {decimal number)|<{nil)

{subscript) ::= {number)

{number) ::= {sign)<{decimal number)|{sign)
{decimal number).
{decimal number)| # {octal digits)|
@<hexadecimal digits)

sign) 1= —{Knil)
{space) ::= at least one space
{newline) ::= at least one new line (CR LF).

The syntax of {subset statement) is given below.

The command identifier is in most cases a single letter.

Table 1 gives a list of the available commands. Identifiers may
be scalars or arrays of any arithmetic type, and must be declared
somewhere in the program. Since CORAL is a block-struc-
tured language, the same identifier may be declared a number
of times, so clearly it is necessary to provide a means of specify-
ing which declaration is meant in any given command. The form
{identifier) : {(number) is used for this purpose, the {number)
being the statement number attached to the ‘BEGIN’ of the

block containing the required

declaration. The default option

is the block containing the breakpoint or fault at which the
program stopped. All arrays are regarded as being one dimen-
sional for the purposes of debugging, with lower bound equal
to that of the first bound-pair of the array. Thus, to examine or
alter an element of a multi-dimensional array, it is necessary
to regard the array as a vector and work out the correct sub-
script. In CORAL, arrays are stored in row-major order.

Identifiers as parameters are only allowed in the store examin-
ation and alteration commands.

Printing is done by the debugging program in a style that
depends on the type of the identifier in question. Fixed and
floating point numbers are printed to a standard number of
places, while the printing style for integers depends on the
current mode, which can be set by a keyboard command. This
allows decimal, octal, hexadecimal or ISO character represent-
ations of integers.

Stack tracing

Since CORAL is a block-structured language, the effect of
restarting the program in an outer block or procedure after a
fault in an inner procedure could be to leave rubbish on the
stack. This in turn could lead to further spurious errors. To
avoid this, a facility is provided to trace back through the
sequence of called procedures from the point at which a fault
occurred, removing the procedure activation records in the
process. This enables the machine stacks to be reset to a state
suitable for restarting, and provides the programmer with some
useful diagnostic information. Similarly, if a fault is detected in
a library procedure, DDS automatically prints a trace of calls
until the user program is reached.

CORAL subset for patching

Clearly, the size of the debugging program is of great import-
ance—it was intended to occupy no more than 3K of 16-bit
words—and inevitably the subset of CORAL that can be used
for patching must be greatly restricted. The aim has been, as
far as possible, to remove all the high-level features such as
‘FOR’-loops and compound conditions, leaving only the
primitive operations that are necessary in any programming
language. Only integer arithmetic is allowed. Apart from this,
procedure calls and arithmetic expressions retain their
generality.

Each patch is regarded as an implicit block, and may be
headed by declarations. Labels may appear within a patch, and
both local and non-local jumps are permitted. Only one
CORAL source statement is allowed on a line, the new line
being treated as equivalent to a semicolon, unless a continuation
marker ‘CT’ is used. There is no restriction on the number of
such continuation lines. The size of a patch is limited by the
space allowed for the patch code and the patching compiler’s
tables. Each patch is independent of the others, and there is no
way of getting at the inside of the implicit block, since patch
statements are not numbered. It is impossible, for example, to
set a breakpoint within a patch, or to patch a patch. This
restriction is imposed to minimise the amount of data that
needs to be recorded for each patch.

Table 1 List of commands

PATCHING COMMANDS

BREAKPOINT COMMANDS

STORE EXAMINATION COMMANDS MISCELLANEOUS COMMANDS

X Alter one or more-source
statements

Y Insert a patch after given
statement

B Set a breakpoint at given
statement

C Continue from breakpoint

P List all breakpoint

E Examine a location S
(symbolic/absolute)

I Insert a value into location U
just examined

Set current segment

Use specified program
map file

R Remove patch previously F Examine next location Z Reset debugging program
inserted positions (used after E) to original state (lose all
patches)

T Set number of times A Examine machine register OUT Remove one or more
through breakpoint before procedure activation
stopping D Print values records from the stack

between specified locations
M Change printing mode
314 The Computer Journal

¥202 Iudy 61 U0 1s8nb AQ $S9EY/E L E/P/ L L/BIoIE/|UlWwoo /W00 dno-ojwapeode//:sdiy wolj papeojumoq

Even if a patch is deleted, the code generated remains in the
patch area, which will eventually become full. At this point the
source program must be edited and re-compiled. The size of the
patch area is set at load time of the program, and is not fixed.

The syntax of the CORAL subset for patching is given below.

Syntax errors detected by the patching compiler will cause the
current line to be forgotten. Likewise, the character ! will
cause the whole patch to be ignored, so that the user can start
afresh.

{subset statement) ::= (label): (subset statement}|
{conditional |{simple statement}|
{declaration)

{assignation) ::= {destination) := {expression)|

{destination) := {procedure call)

{destination) ::= {wordreference}|{partwordreference)

{wordreference) ::= (identifier)|(identifier) [(subscript}]
|[<{subscript>]

{partwordreference) ::= ‘BITS’ [{totalbits), <bitposn)]

{wordreference’

{subscript) ::= (identifier)|{signed integer)
{conditional) ::= ‘IF’{expression>{relop)
<expression) THEN’(simple statement)
¢simple statement) ::= {assignation)|{call>|{jump)
{call) ::= {procedure call>
{procedure call) ::= (identifier)|{identifier)
(<actual parameters})
{actual parameters) ::= (actual parameter)|
{actual parameters),
{actual parameter)
{actual parameter) ::= {identifier)|<{identifier}
[(subscript>][<expression
Gump) 1= ‘GOTO’ {place)
{place) ::= <identifier)|{identifier >[{subscript)]
{label) ::= (identifier)
(identifier) ::= (first)>{rest)
(first) ::= (etter>|$
Crest) ::= (letter or digit)|{rest)<letter or digit)
(letter or digit) ::= (letter)|<digit)>
(letter) ::= A|B|C|DIE| ... X|Y|Z
(digit) ::= 1|2|3|4|5/6|7|8]9|0
(relop) ::= ‘NE’|'GE’|'LE’|'GT’|'LT’|=|>|<
{declaration} ::= ‘INT’{identifier list})|
‘INT’ ‘ARRAY (identifier)
[¢signed integer): <signed integer>]
identifier list) ::= <identifier)|
(identifier list>, {identifier)
{expression) ::= {optional sign>{unsigned expr)
{unsigned expr) ::= {primary)|
{unsigned expr){operator {primary)
{primary) ::= {wordreference|{partword}|
‘LOC’({wordreference)|(<expression))|
{number)
{operator) ::= {shiftop)|
‘MASK’|
‘UNION’|
‘DIFFER’|
*/

+|—
{shiftop) ::= ‘SRC’|'SRA’|‘'SRL’|‘SLA’|‘'SLC’
{partword) ::= {partwordreference)
totalbits) ::= (integer)
<bitposn) ::= (integer)
<{number) ::= (integer)|@<hexadecimal digits}|
<octal digits)>

In the syntax above, the arithmetic operators are listed in
descending order of priority. The construction ‘LOC’({word-
reference) yields the machine address of the variable or array

Volume 17 Number4

element (wordreference), while the converse construction
[(subscript)], called an anonymous reference, obtains the
contents of the address which is the value of the {subscript).
A partword reference, e.g. ‘BITS’ [3, 4] A, would obtain the
three bit field starting at bit 4 of A, and treat it as an unsigned
integer (in the Argus 700, bit O is the most-significant bit).
The remaining constructions in the subset should be self-
explanatory even to those unfamiliar with CORAL, and will
not be described further.

3. Implementation

Error handling system

Two versions of DDS exist. These differ in the way in which
they communicate with the user program. This in turn leads to
differences in the method of handling errors detected in the
user program. Entry to DDS can be caused in three ways:

1. Errors detected by hardware.

2. Errors detected by software, e.g. the file management
system. Included in this category are interrupts given by the
user from his keyboard.

3. Breakpoints.

Breakpoints are handled by planting a special instruction in the
user program, which causes a function code violation when it is
executed. To the executive, then, all the above cases are treated
in an identical manner.

The first version of DDS is loaded as a segment of the user
program. Errors are reported to the debugging segment by
means of the error vector mechanism. A message containing
information about the error (error number and values of
specified registers) is placed in the debugging segment’s
private stack, and the program is re-entered at a preset address
within the DDS segment. The re-entry address and initial
register values are specified by the debugging segment by means
of a call to executive on the first entry to the program. Clearly,
with this system, it is not possible to apply memory protection
to the user program since the DDS segment is part of that
program and DDS must be able to alter the program area to
plant breakpoints and patches. Thus the program may in
certain circumstances be able to corrupt both itself and DDS.

The second version is completely secure. Here the debugging
program runs as a separate task. The Argus 700 Executive
(Benson, 1973) allows one task to act as a supervisor (or
Program Monitor) to another, and all faults in the user task
are reported to the supervisor. Furthermore, all calls to
executive are passed to the supervisor for vetting. It is therefore
possible to give full hardware and software protection by
making the debug supervise the user program.

The main advantage of the first version is that it may be used
with foreground tasks (e.g. communication line drivers) that
do not have a supervisor because of the time penalties involved.

Structure of the DDS program

The debugging program was designed to be as short as possible.
It consists of a short steering program and a number of over-
lays which actually carry out most of the work involved in
decoding user commands, reporting errors, and compiling
patches. The structure is illustrated in Fig. 2.

For every command the user types, at least two overlays must
be brought down from disc and four more for each CORAL
statement typed. In addition, several disc accesses may be
necessary to interrogate the program map, which also resides
on disc. Thus there is a fairly high overhead on disc transfers,
but since this disc activity only takes place when the user
actually types a patch, the overhead is acceptable. This was the
reason for choosing to compile patches rather than to interpret
them.

Although an interpreter might have been shorter and simpler
to implement, it would have consumed a great deal more

315

¥202 Iudy 61 U0 1s8nb AQ $S9EY/E L E/P/ L L/BIoIE/|UlWwoo /W00 dno-ojwapeode//:sdiy wolj papeojumoq

COMMON Identifier tabies
DATA list of i
1200 WORDS tist of patches
Intermediate code
File buffers
STEERING
PROGRAM
500 WORDS
OVERLAY
COMMAND 3 AREA ERROR
DECODER 1700 WORDS HANDLING
PASS 1 PASS 2 PASS 3
LEXICAL PRECEDENCE CODE
ANALYSER ANALYSER GENERATOR

PATCHING COMPILER

Fig. 2 Structure of debugging program

processor time, and the interpreter would have to be kept with
the user program permanently. As it is, the debugging program
can be rolled out when the user is not typing commands. An
interpretive scheme would also have involved keeping a larger
amount of information in core for each patch.

The patching compiler takes three passes to compile each
statement. The first pass is a lexical analyser, which reads in the
source statement (including continuation lines) and produces a
string of internal symbols. This pass also handles labels, and
looks up in the program map any identifiers (except labels)
which have not been declared in the patch. The first time such a
non-local identifier is encountered, its associated attribute
information is read into the local identifier table. Thus each
identifier need only be looked up once. This scheme avoids
needless disc transfers, since the same identifier often occurs
more than once in a patch. Any labels used and not defined in
the patch are looked up non-locally at the end.

The second pass performs an operator precedence analysis
on the line of internal symbols produced by the first pass, and
also carries out type checking of identifiers. The third pass is
concerned with code generation from the precedence tree
produced by the second pass. About 512 words are allotted for
the patching compiler’s identifier tables, attribute tables and
intermediate code areas, allowing patches of upwards of 20 lines
to be compiled.

The storage allocation mechanism adopted for the patching
compiler is extremely simple. The user patch area is laid out as
in Fig. 3. There are eight base registers in the Argus 700, of
which register 0 is the stack pointer. DDS requires exclusive
use of base register 7, and so when compiling a program for
DDS, the compiler uses the remaining six registers for the
object program. The use of a single base register for patches
enables 128 words to be directly addressed by base-displace-
ment addressing. This area is used for identifiers, labels (which
must be indirectly addressed), array headers and constants.
The first part of the area is used for the 8 breakpoint return
addresses, and other housekeeping information takes up a
further 16 words. The user is thus able to use about 100 identi-
fiers, constants and labels. The rest of the patch area is used for
the compiled code for patches, array elements and
housekeeping.

4. Program map

The program map forms the sole interface between the CORAL
compiler and DDS, and consists of five tables produced by the
compiler at various stages in the compilation. The format of
these tables is largely determined by the need for simplicity of
production and interrogation. There is insufficient space

316

available in the debugging program for complex searching
algorithms, or in the compiler for the creation of elaborate
data structures.

The program map consists of’:

1. Scope table

2. Identifier table (IDENT)

3. Identifier information table (IDINF)
4. Statement number table

5. Stack position table

One set of such tables exists for each segment in the CORAL
program. Keeping segments short will clearly reduce the search
time for the tables.

Scope table

The scope table is used to determine which block contains any
given source statement. Each block is assigned a serial number,
and the table consists of pairs of words as in Fig. 4. The table is
used in the process of looking up identifiers. It is searched
linearly to determine the innermost block in which to look for
the required identifier.

Given a statement number:

1. Search forwards until a ‘BEGIN’ statement number is
greater than the given statement number. This ensures that
the required block starts before the given statement.

2. Search backwards from the point reached in 1 until an ‘END’
statement number is greater than the given statement number.
The position of the entry reached is the serial number of the
required block.

The procedure in 2 is repeated to find the block enclosing that
one previously found. This may be done several times if the
identifier sought is not in the inner blocks.

Identifier table

The identifier table is produced by the first pass of the compiler
All entries with the same block serial number are contiguous.
To look up an identifier, the table is scanned until the appro-
priate section is found, and thereafter each identifier entry is
compared with the identifier sought until a match is found or
the end of the block section is reached. If the search must be
continued in outer blocks, it need only start from after the
section previously reached, since innermost blocks appear in
the table first and the outer block last.

| Debug I
i
! : USER PATCH AREA
0
USER PROGRAM | |
1 Lo — 3 _instruction removed Breakpoint
| jump back o program return area
| :
16
Insert
Jump & Link \
Save ACC
PATCH
INSTRUCTIONS
Reload ACC Patch
Alter nstruction removed C::de
Jump \ RETURN Area
Sasve ACC
PATCH
restore ACC
'Eump bock |
7 7 7
0] breakpoint return Ease 7
addresses
8 ACC dump word
Used for
variables, constants,
Iabels and array
pointers
Preset Data
128!
.
Fig. 3 Store layout of patch area

The Computer Journal

¥202 Iudy 61 U0 1s8nb AQ $S9EY/E L E/P/ L L/BIoIE/|UlWwoo /W00 dno-ojwapeode//:sdiy wolj papeojumoq

1DINF holds property

- information for each
31 15t segment pointers SEGMENT identifier in IDENT
DIRECTORY
2nd segment pointers -~
/
~ [BLOCK NUMBER |
IDINF PTR
/ IDENTIFIER
IDINF -
- -
IDENT -
—
e
STATEMENT - T|MACHINE ADBR |
POSITION hd
TABLE B Statement
- Number
SCOPE =,
TABLE ~
STACK ~ ~
POSITION ~
TABLE S ~ Statement Statenent Block
~N no. of ‘BEGIN" no. of ‘END* serial
~N number
SECOND ~
SEGMENT'S ~ ~
TABLES ~ ~ Statement Stack
Number Pasn.

Fig. 4 Program map file format

Identifier information table

The second word of the IDENT table contains a pointer to the
relevant entry in this table, which contains property information
for all the identifiers in the program. The table is written by the
third pass of the compiler, by which time all relevant inform-
ation about the identifier is known, and addresses are in their
final base-displacement form.

Statement number table

This is a simple list of the address of the machine instructions
corresponding to each statement number. It is used directly to
find the address at which to insert a patch, etc. When a fault is
detected in the user program, the address of the fault is handed
back to the debug, and the statement number table is searched

References

to find the corresponding source statement so that the user may
be informed.

Stack position table

The need for the stack position table arises because the Argus
700 has a hardware stack. Items on the stack such as para-
meters of procedures are addressed relative to the stack pointer
register SPR. Thus the displacements of such parameters may
vary from place to place within a procedure (e.g. due to ‘FOR’-
loop control words which are held on the stack). The table
gives the number of words on the stack at the start of each
source statement. Statements for which this number is zero
(the majority) are not listed in the table.

5. Conclusion

The DDS system was written in CORAL, and was initially
implemented on the Ferranti Argus 500. Testing was carried
out in an environment which simulated the software system of
the Argus 700. These tests demonstrated that the fundamental
design of the system was sound, but at the time of writing the
final versions had not been tested on the Argus 700 due to the
absence of certain other necessary pieces of software. Thus it is
not possible to describe any practical experience gained with
the system.

The design and development of DDS to the stage described
above has occupied one man-year of effort. It is expected that
the system will be fully operational by the time this paper
appears.

Acknowledgements

The author wishes to thank his friends and colleagues at
Ferranti for their help and advice during the project and in the
preparation of this paper. Particular thanks are due to P.
Bayley, D. J. Pearce, and H. B. Williams.

The referee’s helpful comments and advice were also much
appreciated.

Benson, D. (1973). Modular Organiser for an On-line Computer, IEE Conference Publication Number 102.
Curr, R. N. (1972). A conversational compiler for full PL/I, The Computer Journal, Vol. 15, p. 99.

EYRre, D. M., and WiLL1ams, H. B. (1973).

The Application of CORAL 66 to Control Computers, IEE Conference Publication Number 102

Book review

Computational Methods for Matrix Eigenproblems, by A. R. Gourlay
and G. A. Watson, 1973; 132 pages. (John Wiley and Sons,
£3-50.)

This book is based on lectures given by the authors to M.Sc. and
undergraduate students at the University of Dundee. Its aim is to
provide a suitable text for courses on the numerical solution of
matrix eigenproblems. The intention is to present the more commonly
used and reliable techniques in a concise, straightforward manner,
without any detailed error analysis but stressing where necessary the
dangers of unsuitable methods. The student thus obtains a good over-
all view of the subject which, for a fuller appreciation of any topic,
would need to be supplemented by further reading in more advanced
texts.

The book contains fifteen short chapters. The first three illustrate
how eigenvalue problems can arise in practice and give the required
background theory and transformations for later use, including
material on the solution of linear equations. The next three discuss
the power method (including inverse iteration and simultaneous
iteration using a number of trial vectors) and these are followed by
three further chapters dealing with the methods of Jacobi, Givens
and Householder for Hermitian matrices, and the Sturm sequence
and inverse iteration procedures for calculating the eigensystem of
areal symmetric tridiagonal matrix. Application of the QR algorithm

Volume 17 Number 4

to the latter problem is discussed in Chapter 10 (the LR algorithm
gets only very brief mention here) whilst Chapter 11 touches on
extensions of Jacobi’s method to general matrices. Reduction to
upper Hessenberg form and use of subsequent techniques, including
in particular the QR algorithm, are considered in Chapters 12 and 13.
Generalised eigenvalue problems are mentioned in Chapter 14 and
the last chapter discusses (very briefly) available implementations
of the methods described in the book.

The ground covered by the book is conventional and the treatment
of necessity rather terse due to the book’s shortness. A number of
exercises are given for the student at the end of each section and the
methods discussed are frequently illustrated by simple examples
involving matrices of order three or four. (In one of these examples
(on page 125) spurious elements appear somehow to have crept into
the last row of the matrix during the final stage of a reduction to
upper triangular form which preserves information on the deter-
minants of the principal minors.) Little prior knowledge is assumed
of the reader apart from a basic familiarity with the fundamental
concepts of matrix algebra, such as multiplication, inversion and
determinants The book is therefore suited to a wide audience and
provides a short and uncomplicated introduction to the numerical
techniques which have proved most successful for the matrix
eigenproblem. In so doing the authors’ goals have been well achieved.

E. L. ALBASINY (Teddington)

317

¥202 Iudy 61 U0 1s8nb AQ $S9EY/E L E/P/ L L/BIoIE/|UlWwoo /W00 dno-ojwapeode//:sdiy wolj papeojumoq

