
Speeding up programs
R. Bird

Department of Computer Science, University of Reading, Whiteknights Park, Reading,
Berkshire RG6 2AF

A simple programming language L is described with the property that each program in L can be
transformed into an equivalent program in L which executes only half as many instructions. The
transformation is illustrated by speeding up an example program.
(Received May 1973)

1. Introduction
Imagine a programming language L with the following desir-
able property: every program in L can be systematically trans-
formed into another program, also in L and equivalent to the
first, but which executes only half as many instructions.
Programming in L has the pleasant consequence that any
program can be made to run faster by an arbitrary linear
factor. Of course, a more precise statement of the property,
which we shall call speed-up, depends on exactly what con-
stitutes an atomic instruction in L.
It is a surprising fact that non-trivial programming languages

(i.e. languages capable of computing every recursive function)
possessing speed-up can be constructed. The well known
language of Turing machines is one example (see Hartmanis and
Stearns, 1965), but in some respects not a satisfactory one. The
language bears little relationship to what one normally means
by a programming language, and the speed-up property only
holds because Turing machines are not restricted as to the size
of their alphabet of working symbols. In other words, the
underlying hardware can be changed. Unfortunately, the speed-
up property does not hold for the language of Turing machines
which work over a fixed alphabet.
There are, however, more natural examples. It is the purpose

of this paper to describe one such language, which has certain
features in common with machine code, and demonstrate that
the speed-up property holds.

Yes

No

X:=X-1

V=\+1

A2:=A1+1

Ar-=Az
Yes

Ho

A l : = A l - l

Y:=Y+1

2. A simple language
Consider the program P of Fig. 1. P is a program in the
language L which consists of arbitrary flowcharts defined over
the following types of instruction:

assignments: : = Aj + \,A{ := Aj - 1,

F i g . l

tests: A i = 0?

input-output instructions: X := X — 1, Y := y + 1, ^ = 0 ?

where /, y > 1. If P is run with the contents of the input register
X initialised to some non-negative integer x, and all other
registers set to zero, then P will eventually terminate with x2

in the output register Y. The form of the input and output
instructions effectively restrict I to be a read-only register,
and Y to be a write-only register. The reason for this restric-
tion is that in any speeded-up version of P it must still take x2

instructions of the form Y : = Y + 1 to store the answer, and
2x + 1 instructions of the form X : = X - 1 and X = 0 ? to
read the input. Since this constant overhead can never be
avoided, it is simpler not to count instructions involving X and
Y as contributing towards the running time. This assumption
is then balanced by the consideration that such instructions
can only read the input and store the output. With this pro-
vision, L can be shown to possess the speed-up property.
The machine M on which program P is run, is essentially the

URM of Shepherdson and Sturgis (1963), and consists of the
special registers X and Y and an infinite number of work
registers Au A2,. . ., each of which can contain an arbitrary
non-negative integer. The interpretations of the instructions
are the obvious ones, except that an instruction Al:=Ai—\
executed when the contents of Aj are zero, will be supposed to
set A(to zero. The input function of M loads an integer in X,
and sets all other registers to zero. The output function extracts
the final value of Y.
Not all these features are important for speed-up, however.

The particular form of L and M given here has the advantage
of simplicity, but we could have allowed:

(a) an arbitrary number of input registers Xu X2,. .., so that
functions of more than one argument can be computed,

(b) arbitrary integers, positive or negative, to be stored in the
work registers, and supplemented the instruction repertoire
with the extra tests At > 0 and At > 0, etc.

(c) only integers below a certain size to be stored in the work
registers, to make M more like real computers,

{d) certain other simple operations in L, such as the assignment
A, : = 0.

In each case, the proof requires only slight modification.
Each program P in L computes a partial number theoretic

function of one argument, which we denote by fP. Two pro-
grams P and Q are equivalent tffP = fQ, i.e. they compute
exactly the same partial function. The running-time tP of a

Volume 17 Number 4 337

D
ow

nloaded from
 https://academ

ic.oup.com
/com

jnl/article/17/4/337/443710 by guest on 19 April 2024

program P is defined for each x only if the computation of P
with input x terminates, in which case

tP(x) = the number of work-register instructions executed by
P when run on input x.

Thus for the program P of Fig. 1,
fP(x) = x2

tP(x) = 2x2 + 4x .
The main result can now be stated formally.

Speed-up property:
For each program P, an equivalent program Q can be found
such that tQ(x) < tP(x)/2 for all x.

3. Proof of speed-up property
The running time of a program P is the sum of two functions
aP and bP, where
aP(x) = the number of assignments executed by P, when run

on input x.
bP(x) = similarly, the number of tests.
We can always modify a given program P to ensure that in every
execution of P, no test At = 0 is ever obeyed twice without at
least one assignment to At being obeyed in between. Further-
more, because the input convention initialises each At to zero,
we can arrange that no test At = 0 occurs before the first
assignment to At. These observations guarantee the truth of the
following lemma.

Lemma:
For each program P, an equivalent program Q can be found
such that

tQ(x) ^ 2aP(x)
for all x.
This result shows that to prove speed-up it is sufficient to

concentrate attention on reducing assignment instructions,
i.e. to prove Theorem 1.

Theorem 1:
For each program P an equivalent program Q can be found
such that

aQix) *k aP(x)/2
for all x.
If Theorem 1 is applied twice to a given program P, a program
Q is obtained for which aQ < aP/4. By the lemma, we can
then find a program R such that

tR < 2aQ ^ aP/2 < tP/2 ,
and so speed-up is assured.

Rather than give a formal proof of Theorem 1, we shall
indicate the general method by speeding up the program P of
Fig. 1. The translation to the final program is broken down
into a number of stages. The first step is to write P as the
following set of labelled instructions:

1 : ^ = 0 ^ 0 , 2 5: ,4 = 0-*8, 6
2: X
3: A
4: B

= X -
= A +
= A +

1
1
1

- • 3
-> 4
— 5

6:
7:
8:

y4 : =

y : =
A : =

y4 -

y +
#->

i
1
1

- 7
-> 5

where to avoid subscripts, registers A± and A2 have been
renamed A and B. An instruction such as A = 0 -> 8, 6 is
equivalent to the ALGOL statement if A = 0 then goto 8 else
goto 6. Termination occurs when label 0 is reached.
The second step is to convert P into a program Q which

executes half as many assignments, but which makes use of the
more general instruction types

At := Aj + d, At := Aj - d, At = rf? for some d 5* 0 .
At a later stage these instructions will be replaced by the legally
allowed set.

Roughly speaking, Q simulates P in a step by step manner,
except it delays the execution of assignment statements. Each
such instruction executed by P is saved in the label structure of
Q until a sequence of sufficient length has been built up to
enable an equivalent sequence (over the extended instruction
types) of no more than half the length of the original to be
defined. Q then executes this equivalent sequence. It is, of
course, important to know that an equivalent sequence with
the desired property can always be found. For our example,
any sequence of 4 instructions from the set

A := A + \, B := A + \, A := A - \, A := B

can be replaced by an equivalent sequence of length 2 over a
suitably extended set. This follows as the special case n = 2
of the following general result.

Theorem 2:
Let L be a finite sequence of assignments of the form
A i : = Aj + d, A i : = A} — d, where d ^ 0, and 1 < /, j < n.

It is possible to construct a similar sequence L', equivalent to L
such that

\L'\ ^ min l\L\, n +

where \L\ denotes the length of L. In particular, if \L\ = 3«(or4,
if« = 2), then|L'| < \L\/2.
The proof of Theorem 2, which is straightforward but rather

long, is given in Bird (1973).
The first two instructions of Q are

1: X = 0 -» 0, 2
and 2: X := X - 1 -> 3

since no assignments have yet to be remembered. The next two
instructions are the unconditional jumps

3 : - (a , 4)
and (a, 4):-»(<!&, 5) ,

where a is used as shorthand for A : = A + 1, and b as short-
hand for B : = A + 1. At the label (ab, 5), for example, Q is
remembering the sequence ,4 := ,4 + l ; i ? := ,4 + lfor later
execution. These unconditional jumps will later be eliminated.
The next instruction is

(ab,5):-+(ab,6),

since it can be determined from the remembered sequence ab,
that A cannot be zero at this point. Continuing, we define

(flb,6):->(abc,7)
(abc,7): Y := Y+ 1 ->• {abc, 5)

(abc, 5):A=0^ (abc, 8), (abc, 6) ,

where c is shorthand for A := A — 1. The effect of the sequence
abc is to leave A unchanged, so the test A — 0 must be per-
formed. Since the sequence abcc is equivalent to the sequence
B := A + 2; A := A — 1, the next instructions are

(abc,€):B := A + 2-+lx
li'.A-^A-l-*!

7: Y:= 7 + 1 ^ 5 ,

where /; is some new label. Continuing in this fashion, the rest
of Q is found to be
(abc, 8): B : = A + 2 -» l2 (cda, 4): A : = B + 1
l2:A:=B-*\ := B

8:
6:-(c,7) (d,l):X 0(d,0)
(c, 7): 7: = 7 + 1 -» (c, 5) (d, 2): X := X - 1 -
(c, 5): A = 1 -» (c, 8), (c, 6) (d, 3): - (da, 4)
(c, 6): A := A - 2 - 7 (da, 4): -* (dab, 5)
(c, 8): - (erf, 1) (rfofr, 5): -» (rfoft, 6)
(erf, 1): X = 0 - (erf, 0), (erf, 2) (rfofc, 6). ̂ : = 5 -> /3

(,)
(d, 3)

338 The Computer Journal

D
ow

nloaded from
 https://academ

ic.oup.com
/com

jnl/article/17/4/337/443710 by guest on 19 April 2024

Fig. 2

(cd, 2): X := X - 1 - (a/, 3) l3: B := A + 1 - 7,

where d is shorthand for A :— B. The unconditional jumps can
now be eliminated, leaving the following 21 instructions for Q:

1: X = 0
2: X
3: Y
4: A
j * x?

6: /I

0, 2
•3
4

= 0 - 12, 5
= ,4 + 2 - 6
= A - 1 - 7

7: y
8: /I = 0
9: y

10: y4
11: A

= F + 1 - 8
14, 9

+ 1 - 10
= 1 - 18, 11
= /I - 2 -

12: 5
1 3 : y4
14: X
15: X
16: ,4
17: B
18: X
19: X
20: A
21: 5

16

= A + 2 - 13
= 5 - 1

= 0 - 0, 15
= X - 1 -
= 5—17
= i4 + 1 - 7

= 0 - 0, 19
= X - 1 - 20
= 5 + 1 - 2 1

At this point, we know that Q is equivalent to P and aQ < aP/2.
On the other hand, g makes use of the extra instructions

B := A + 2, A := A - 2, B := 5 + 2, A = 1? ,
which must be eliminated. This is achieved by converting Q
into a program i?, which simulates Q, but v/hich stores only half
the contents of the registers. Each label in R is of the form

(«/*, 0
where / is a label of Q, and 0 ^ a, /? «S 1. The guiding principle
behind the design of R is that if at some stage during an
execution of R, a label (<x/?, /) is reached with contents (a, b) of
the registers A and 5, then at the same stage during the corre-
sponding execution of Q, the label / will be reached with con-
tents (2a + a, 2b + /?) of the registers.
The first instruction of R is

(00, 1) :X=0-(00 ,0) , (00 ,2) ,
since by the input convention, both A and B are initialised to
zero. The other instructions are

(00,2): X : = X - 1 - (00 ,3)
(00,3): Y := Y + 1 - (00 ,4)
(00, 4): A = 0 - (0 0 , 12), (00, 5)
(00, 5): 5 := A + 1 - (00 ,6)
(00, 6): A :=A - 1 - (10 ,7)
(10,7): Y:= Y+ 1 - (10 ,8)
(10, 8) : - (10 , 9)
(10,9): Y := Y + 1 - (1 0 , 10)
(10, 10): , 4 = 0 - (10, 18), (10, 11)
(10, 11): ,4
(00, 12): B
(00, 13">:^
(10, 18): A-
(10, 19): X
(10, 20): ,4
(10, 21): B

:=A- l - (1 0 , 7)
:=,4 + 1 - (0 0 , 13)
:= 5 - (0 0 , 1)
= 0 - (10, 0), (10, 19)
:= X - 1 -(10,20)
:=5-(10, 2H
:= 5 + 1 - (10 ,8) .

The program R is given as a flowchart in Fig. 2. R satisfies
the conditions of Theorem 1, since R is equivalent to P and
aR ^ aP/2. Actually, R has a running time given by

tR(x) = x2 + 2x - 1 for x < 2
= 0 for JC = 0
= 3 for x = 1,

and so ?.R < /P/2. In this particular case, the lemma does not
have to be invoked.

References
BIRD, R. S. (1974). Languages with Speed-up, University of Reading, Department of Computer Science Technical Report (in preparation)
HARTMANIS, J., and STEARNS, H. E. (1965). On the computational complexity of algorithms, Trans. Amer. Math. Soc. pp. 285-306.
SHEPHERDSON, J. C. and STURGIS, H. E. (1963). Computability of recursive functions, JACM, pp. 217-255.

Volume 17 Number 4 339

D
ow

nloaded from
 https://academ

ic.oup.com
/com

jnl/article/17/4/337/443710 by guest on 19 April 2024

