
An efficient algorithm which determines the output
from a sequential machine for regular inputs*

Kenneth B. Salomon

Department of Mathematics, California State University at Hayward, Hayward, California,
94542, USA

This paper deals with the following problem from automata theory: given a deterministic sequential
machine, calculate its set of outputs when a given regular set is used as input. The output is known to
be regular and various effective methods have been developed in the past to determine it. However
these methods tend to be quite inefficient and ill-suited to either hand or computer calculation.
The procedure developed here is sufficiently efficient and straightforward as to be suitable for
machine implementation and, in fact, makes use of an already-existing SNOBOL IV program.
(Received April 1973)

1. Introduction
The translation of regular expressions by finite-state deter-
ministic sequential machines has been studied by many authors
(e.g. Ginsburg and Rose, 1963; Ginsburg and Hibbard, 1964;
Ginsburg and Spanier, 1966; Ullian, 1967) as a mathematical
model of certain aspects of compiling. In particular, the result
that a given type of sequential machine preserves regular sets
has been proven for various types of machines. In the proof of
these results a procedure (usually effective, though not always)
is presented which converts an input regular expression into the
appropriate output regular expression. Even those which are
effective are inefficient for computer implementation and
definitely unmanageable by hand.
In this paper an effective procedure is presented which will

determine the output from either a deterministic complete
sequential machine or a deterministic generalised sequential
machine in an efficient manner. The procedure makes use of an
algorithm developed by Smith and Yau (1972) for finding the
regular expression defined by a finite automaton. As their
algorithm has been programmed in SNOBOL IV, the method
developed in this paper is clearly available for computer
implementation.
The medium for expressing the method will be a deterministic

generalised sequential machine with accepting states. This
device will be defined and some of its relevant properties
developed in the sequel.

2. The a-GSM model
The model which will be used to formulate the procedure is a
hybrid of the following well-known devices: a deterministic
generalised sequential machine (GSM, for short) and a deter-
ministic finite-state acceptor (FSA, for short). The latter is also
called a finite automaton by many authors. The reader is
referred to the standard literature (e.g. Ginsburg, 1966) for
further development of the properties of these devices. In an
appendix to this paper we review the notation and definitions of
regular sets and regular expressions used in the sequel.

Definition I. A deterministic generalised sequential machine with
accepting states (a-GSM, for short) is a 7-tuple

M = (Q,Z,A,fg,qo,F) ,
where

Q is a finite set of states of M.
Z is a finite set of input symbols to M.
A is a finite set of output symbols from M.
f:Q x E —* Q is the next-state function of M.
g:Q x I -» J* is the output function of M.
<70 e Q is the initial state of M.
F c Q is the set of accepting states of M.

The states in F will be denoted by double circles in graphical
representations of a-GSM's. The functions/and g are extended
to Q x I* in the usual way. We DOW describe how the device
operates.

Definition 2
Let M = (Q, Z, A,f, g, qo,F) be an a-GSM. For each input
sequence w e Z*, and each q e Q, let

Mp(q, w) = g(q, w)
be called the partial output of M when started in state q with
input w. Mp(q, w) will be called the acceptable output, or
simply the output if no confusion will result, if and only if
f(q, w) e F. For sets of input sequences S c I * we will define

Mp(q,S) = {Mp(q,w)\WeS}
and

M(q, S) = {Mp(q, w) | w e S and f{q, w) e F}
Whenever q = q0 we will usually write simply Mp(w), M(w),
MP(S) and M(S) for Mp(q0, w), M(q0, w), Mp(q0,S) and
M(q0, S), respectively. The operation M(S) defined by an
a-GSM, M, processing a set of inputs, S, will be called an
a-GSM translation.
Note that the action of an a-GSM can be likened to a buffer

which must be filled from a certain set before its contents can
be used. The interpretation of an a-GSM as a hybrid GSM-FSA
should now be clear. We formalise it in the following way.

Theorem 1:
Let M = (Q, Z, A,f, g, q0, F) be an a-GSM and R be any
regular set. Then M(R) is regular.

Proof:
Considering M first simply as an FSA and ignoring its output
we see that the set of inputs, /?, <= z*, which are accepted, i.e.
which drive M into any of the states in F, is regular. Now
taking R2 = /?, n R, which is regular, we see that

M(R) = {Mp{y) \yeRand f(q0, y) e F}
{Mp(y)\yeR2}

= Mp(R2) .
But MP(R2) is, considering M now as a GSM, i.e. taking all
states as accepting, just a GSM translation of a regular set.
Hence by Theorem 3.3.2 of Ginsburg (1966), which asserts that
GSM translations preserve regular sets, we have the result.
Q.E.D.

3. Use of the a-GSM as a generator of regular sets
We are now in a position to show that given an arbitrary non-
empty regular expression R, one can effectively design an
a-GSM M, such that M(I^) = R, where we use the notation

•Some of the results reported in this paper were developed when the author was attending the Cambridge University Summer Logic School
under a NATO study grant.

Volume 17 Number 4 349

D
ow

nloaded from
 https://academ

ic.oup.com
/com

jnl/article/17/4/349/443732 by guest on 19 April 2024

Z2 = {0> 1 }• It is interesting to note that in this sense a-GSM's
are more powerful than GSM's since Ginsburg (1966),
Problem 6, p. 102, indicates that no GSM exists which translate
Z* to R = (a + b)*c.

Theorem 2:
Let R be any non-empty regular expression over the alphabet
A. One can construct an a-GSM M = (Q, Z2, A,f,g,q0, F)
such that M(Z*2) = R.

Proof:
We proceed by giving an inductive construction.
Basis: If R = x where xe A*, then the 2-state a-GSM of
Fig. l(a) satisfies M(Z*) = R. Note: qt will be denoted a 'null'
state.
Induction step: Assume that Rv and R2 are any two non-empty
regular expressions over A and that M^ and M2 are a-GSM's
such that Mt(Z*) = Rt and M2{Z*2) = R2, then:

(i) the a-GSM of Fig. 1(6) satisfies M{Z*) = R*. (N.B. In

0,1/x
0,1/A

(a)

0,1/A

(b)

(O

(d)

Fig. 1 Constructions for Theorem 2

0,3/x

(b)

Fig. 2 Rule 2. x, ye A*

Figs. l(b), l(c) and \{d) any branch directed into a box is
obtained by breaking the branch loop associated with the
null state(s) within the box and redirecting it (them) as
shown). Note: qt will be denoted a 'null' state,

(ii) the a-GSM of Fig. l(c) satisfies M(I*J = Rt + R2.
(iii) the a-GSM of Fig. \{d) satisfies M(Z*) = R ^ . (N.B.

In Fig. \(d) the accepting states of Mt are retained, i.e.
not returned to single circles, if and only if A e R2, which
is decidable).
Q.E.D.

While it is not strictly necessary in obtaining the results of this
paper to minimise a-GSM's, some obvious rules will be given to
reduce the size of the machines used in the examples. We give
three rules which may be applied to the a-GSM constructed in
the preceding theorem without changing the regular expression
it outputs.

Rule 1
Any two states joined by a branch labelled 0, I/A may be
merged into one state. If either of the states is in F, then the
resulting state is also. The branch which connected the states is
deleted.

Rule 2
When the situation of Fig. 2(a) obtains, it may be replaced by
that shown in Fig. 2(b). If qt e F, then the resulting state q\ is
also.

Rule 3
When the situation of Fig. 3(a) obtains, it may be replaced by
that shown in Fig. 3(6), providing that if x # X, then q2 $ F.
If qt e F, then so is q[.

Rule 1 follows since this situation occurs only when two sub-
machines have been joined, as can be seen by reviewing the
proof of Theorem 2, or a star has been implemented via step (/).

350 The Computer Journal

D
ow

nloaded from
 https://academ

ic.oup.com
/com

jnl/article/17/4/349/443732 by guest on 19 April 2024

(a)

z/xy

(D)

Fig. 3 Rule 3. x, ye A*, ze {0, 1} or z = {0, 1}

ca

Fig. 4 An a-GSM which outputs (a + b)(ca)*

In either case it is seen that no output sequence has been changed
by the merger, since under any input the machine merely
changes state and outputs the null sequence. For Rules 2 and 3
it is clear that no output sequence is changed.
The procedure indicated by Theorem 2 (including state merg-

ing) applied to

R = (a + b){ca)*
results in the a-GSM of Fig. 4.

4. An application of the a-GSM
To describe the procedure for determining the output from a
GSM when it translates a regular expression it will be con-
venient to define the composition of two a-GSM's. This corres-
ponds to their cascade connection, i.e. the output of the first is
used as input by the second.

Definition 3:
Let Ml = (Gi, Z, AJu g» <7o,> *"i) and M2 = (Q2, r, Q,f2,
g2, qOl, F2) be a-GSM's such that J s f . The composite of Mx
and M2, written Mt » M2, is defined to be the a-GSM

Mx o M2 = (6 t x Qi, Z, Q,fc gc, foOl, ?o2), Fi x F2) ,
where for every (glt q2)e Qx x Q2 and every ae I

fc((iu 1z), a) = (fi(qi, a), f2{q2, g^qu a))) ,
gJtili, <li\ a) = Si(q2, Si(?i, a)) •

It should be noted that Mt ° M2 is an a-GSM and that it
possesses the property that for any R s I*,

M, o M2{R) = M2{M^R)) .
As the procedure to be given in this section is an adaptation

of the algorithm of Smith and Yau (1972) which determines the
regular expression defined by an FSA, and as their method uses
the concepts of the derivative and integral of a regular expres-
sion, the appendix briefly outlines these terms. For a more
thorough treatment consult their paper.
We now review some terms employed in the algorithm to be

presented shortly. The first involves the concept of associating
derivatives with states of an FSA. (Again this is more fully
developed in Smith and Yau). Letting M be an FSA and R be a
regular expression denoting the regular set it accepts, it can be
shown that each state, q3, in M can be represented by a regular
expression which is a derivative of R with respect to some input
word w in the sense that M started in q} accepts DWR. One then
calls DWR a derivative for state qy Thus one can formulate the
following.

Definition 4:
A derivative DWR for state q} is minimal if and only if there
exists no other derivative DXR for state q} such that x is less
lexicographically than w. In this case we shall occasionally
write DWR = qJt where q} is understood to represent both the
state and the regular expression representing the state.
Thus given an FSA one can effectively find a unique list of

minimal derivatives to represent its states. This allows one to
form a tree from the list of minimal derivatives in the following
manner: starting from the minimal derivative for the start
state, DXR, draw a branch to each Da.R, where at is an input
symbol. If DOiR is not minimal, then no branches need be
drawn from it. If DaiR is minimal, draw a branch from DOlR to
each DaiajR, where a, is an input symbol. Apply this process
repeatedly until the list of minimal derivatives is exhausted.
The corresponding state is next associated with each of these
derivatives. (If the FSA contains any null states and the
derivative is associated with a null state, the corresponding
state is replaced by 0).
Finally, as a convenience to the reader we summarise four

rules for manipulating integrals developed by Smith and Yau
(1972) which are used in the following algorithm.

Rule 1:
Combinatory rule. If we have the integrals over the input
alphabet {ab aj}

and

f DwatR dax = aiS1

then we have the integral DWR = a ,^ + ajS2.

Rule 2:Rule 2:
Output rule. If the state represented by this integral is an accept
state, add X to the integral.

Rule 3:
Substitution rule. If state qk is associated with the regular
expression Sl and the state q} with the regular expression S2qk,
then qj corresponds to 525,.

Rule 4:
Star rule. If a state qk is associated with Stqk + S2 + S3, then
the integral of qk corresponds to 5i*(52 + S3).
We are now in a position to present the procedure promised

earlier.

Volume 17 Number 4 351

D
ow

nloaded from
 https://academ

ic.oup.com
/com

jnl/article/17/4/349/443732 by guest on 19 April 2024

Algorithm 1:
Let R be any non-empty regular expression over a subset of A
and M = (Qu A, Q,fu gu qOl, FJ be any a-GSM. Then the
following steps determine a regular expression for M{R):

1. Apply the procedure of Theorem 2 to R producing the
a-GSM N = (Q2, X2, A,f2, g2, qOi, F2) satisfying
N{Z%) = R.

2. Construct the composition a-GSM
N o M = (T, Z2, Q,fc, gc, t0, F2 x FJ.

3. Considering No M as an FSA (i.e. ignoring outputs) form
the lexicographical list of minimal input derivatives begin-
ning with DkRu where Rt is the regular set driving N ° M
into any of its accepting states.

4. Construct a labelled tree from the minimal derivatives,
include the appropriate output on each branch of this tree.

5. Take the branches from the node corresponding to the last
minimal derivative in the list of Step 3 and integrate the input
derivatives of the terminal nodes of the branches. Also
record the output expression corresponding to this integral;
it can be read directly off the tree.

6. Combine the separate input integrals of Step 5 according to
the integral manipulation rules 1 to 4 to form the complete
integral of the last minimal derivative. Also record the
corresponding output expression. Then delete this last
minimal derivative.

7. Repeat Steps 5 and 6 for each minimal derivative in the
reverse order of the list in Step 3 until all the integration is
complete.

Denoting the output expression last recorded (which corres-
ponds to state t0) by R2, we have R2 = M(R).

Justification:
First it should be pointed out that M(R) is regular by Theorem
1. Now since Steps 3 through 7 are simply a restatement of the
Smith and Yau algorithm in which one records not only the
integration of the inputs but also that of the corresponding
outputs, it follows from their paper that upon completion of the
process i?t will be a regular expression denoting the regular set
driving N ° M into any of its accepting states. In precisely an
analogous manner then, R2 will be a regular expression denoting
the acceptable output from N o M when T.% is input, i.e.

R2 = No M(Z*) = M(JV(I«)) = M(R) .

The last equality following from Step 1.
Q.E.D.
Since a GSM is an a-GSM in which every state is an accepting

state and a complete sequential machine (CSM, for short) is a
GSM in which g: Q x Z -> A, we can state the following result
as a special case of the preceding algorithm.

Corollary 1:
There is an algorithm which, given an arbitrary non-empty
regular expression R and either a GSM or a CSM, M, deter-
mines M(R).

As an example, take R = (a + b)(ca)* and M to be the GSM
of Fig. 5.
Step 1 has already been performed, resulting in the a-GSM

of Fig. 4, which is called N in Algorithm 1. In Step 2 we con-
struct N o M as shown in Fig. 6.
Applying Steps 3 and 4 to this machine results in the labelled

tree of minimal derivatives shown in Fig. 7.
Using this tree we then integrate the minimal derivatives in

reverse order as specified in Steps 5, 6 and 7. (The correspond-
ing output expression is recorded adjacent to the integration of
the inputs).

Fig. 5 GSM M of the example illustrating Algorithm 1

O/BB ~ X/X

Fig. 6 Composite a-GSM No M obtained by Step 2 of Algorithm 1

Fig. 7 The labelled tree of minimal derivatives for No M obtained
by Steps 3 and 4 of Algorithm 1

tA dO = 0/4

t3d\ = l/3

k + lf3 + A

BBt4

ji?! tfO = f r4 JO = Or4

^ r f l = Jr4c/1 = l/4

t4 + Xt3 + X

BBt4

352 The Computer Journal

D
ow

nloaded from
 https://academ

ic.oup.com
/com

jnl/article/17/4/349/443732 by guest on 19 April 2024

BBt4 + Xt4 + X
(BB + X)*
BB(BB + X)* + Xt3 + X
X*(BB(BB + X)* + X)

/4 = D0Ri = 0/4 + l/4 + X
/4 = (0 + 1)*
t3 = 0(0 + 1)* + l/3 + X
t3 = l*(0(0 + 1)* + X)

[DORX dO = [/4 dO = 0t4

\ DXRX d\ = \ t3 d\ = \t3 Xt3

t0 = DxRl = 0/4 + l/3 At4 + Xt3

t0 = 0(0 + 1)* + l(l*(0(0 + 1)* + A))
A(BB + X)* + XX*(BB(BB + X)* + X)

Thus M(R) = A(BB)* + (BB)* after removal of redundant
T's.
It is clear that the algorithm is quite manageable by hand for

many problems. For machine implementation one would need
to modify the Smith-Yau program to record output expressions
as well as short routines to produce the a-GSM generating R
in Step 1 and to produce the composite a-GSM of Step 2.

Appendix
The notation, definitions and properties of regular sets and
regular expressions are briefly reviewed here. It will be assumed
that the reader is familiar with the usual definitions and pro-
perties of deterministic finite-state acceptors (FSA's, for short).
Also some pertinent notions of the derivative and integral of a
regular expression will be summarised.

Definition Al:
An alphabet is a finite non-empty set of symbols. The set of all
finite sequences of symbols drawn from the alphabet I is
denoted I*. Any element of I* is called a word (or sequence)
over I. In particular, the word consisting of no symbols, the
null word, denoted by X is in I*.
We now define some operations on sets of words.

Definition A2:
Let S, and S2 be sets of words over the alphabet I, i.e. St e z*
and S2 £ X*. Then in addition to the usual set-theoretic
operations of union, intersection and complementation on St
and S2 we define the product of Sj and S2, denoted by SlS2,to
be

•̂ 1-̂ 2 = iw I w — W\W2 such that wl e Sl and w2 e S2}
and the star of 5,, denoted by S*, to be

S* = U S ? ,

andwhere we define inductively S° = {X}, S\ =
SI = SlS

n
l~

i for all n ^ 2.
One can then establish the following algebraic properties for

sets of words: union and intersection are associative and com-
mutative, product is associative but not commutative, product
is distributive over union and intersection, X serves as the
multiplicative unity and 0 (the empty set) serves as the multi-
plicative zero.

Definition A3:
A set of words, S, is called regular if there is an FSA which
accepts exactly S.
One can conveniently characterise regular sets in the following

way (due to Kleene): the class of regular sets is the least family
which contains the finite sets and is closed under the operations
of union, product and star. It is also true that intersection and
complementation preserve regularity. This characterisation

allows one to define the language of regular expressions which
denote regular sets in a convenient manner.

Definition A4:
A regular expression over the alphabet X = {a0, ax, . .., an_!}
is defined inductively as follows:
1. The symbols a0, au . . ., an_t are regular expressions as are

0 and X.
2. If /?! and R2 are regular expressions, then so are Rt + R2,

RtR2 and R^.
3. Nothing else is a regular expression unless it follows from

repeated applications of 1 and 2.
The connection between regular expressions and the regular

sets they denote is made by merely associating' + ' with ' u ' and
interpreting the other operations as they were defined above.
The terms 'regular set' and 'regular expression', while formally
denoting different objects are many times used interchangeably
in the future if no confusion will result.
In the description of the algorithm presented in this paper the

notions of the derivative, the integral, and the complete integral
of a regular expression are used. We now briefly describe these
terms; see Smith and Yau (1972) for a more thorough treatment.

Definition A5:
Given a set of words S over the alphabet I and a word w over
I, the derivative of S with respect to w, denoted by DWS, is
defined to be

DWS = {x\wxe S} .

Definition A6:
Given a set of words S over the alphabet I which is a derivative
of the regular set R and a symbol at e I, the integral of S with

' S dah isrespect to at, denoted by | S da,, is defined to be

S da-t = {S' | S" = a(S, S' <= R} .

The integral of S with respect to a non-null word
w = atlah, . . ., ain, each ofj. e I is defined recursively to be

J
Finally, before we present the definition of the complete

integral of a regular expression we must define the -l-integral.

Definition A7:
The X-integral, denoted by Z, for the complete integral DWR is
defined to be

X if w e R
0 otherwise.

Definition A8:
Given the regular expressions over the alphabet I Da[R, one
for every a; e I, the complete integral over I is defined to be
the regular expression

n - l

R = DkR = \ Da.R dat + Z .

If we substitute any word w over I for X in the above equation,
the complete integral DWR over £ becomes

n — i

DWR = V f DwaiR da{ + Z .

Volume 17 Number 4 353

D
ow

nloaded from
 https://academ

ic.oup.com
/com

jnl/article/17/4/349/443732 by guest on 19 April 2024

References
GINSBURG, S. (1966). The Mathematical Theory of Context-Free Languages. New York: McGraw-Hill Book Co.
GINSBURG, S., and HIBBARD, T. N. (1964). Solvability of machine mappings of regular sets to regular sets, JACM, Vol. 11, p. 302.
GINSBURG, S., and ROSE, G. F. (1963). Operations which preserve definability in languages, JACM, Vol. 10, p. 175.
GINSBURG, S., and SPANIER, E. H. (1966). Finite-turn pushdown automata, / . Soc.for Industrial and Applied Math., Vol. 4, p. 429.
SMITH, L. W., and YAU, S. S. (1972). Generation of regular expressions for automata by the integral of regular expressions, The Computer

Journal, Vol. 15, p. 222.
ULLIAN, J. S. (1967). Partial algorithm problems for context-free languages, Information and Control, Vol. 11, p. 80.

Book reviews
A Practical Approach to Computer Simulation in Business, by L. R.

Carter and E. Huzan, 1973; 298 pages. (George Allen and Unwin,
£5-95.)

The authors' purpose in writing this book is stated to be 'to introduce
managers, systems analysts, industrial engineers and operational
research workers to simulation in a practical manner'. To do this the
book begins with chapters introducing the basic principles of simu-
lation and its place in the field of management science and oper-
ation research. This is followed by a review of some necessary
statistical concepts and a discussion of the methodology to be
employed in building simulation models. Two chapters describing
the use of FORTRAN and CSL (both for ICL 1900 series machines)
for computer simulation are followed by three chapters which
consider specific application of simulation models; in particular,
queueing systems and forecasting and inventory control. The book
concludes with a series of twenty-two appendices, the first fourteen
of which are listings of various computer programs referred to in
the text, and the remainder contain the usual statistical tables.
Unfortunately the content and coverage do not meet the stated

objectives and the book falls into the trap of trying to be all things
to all men. The first four chapters do provide a useful review of
current management science techniques and the potential areas for
the application of simulation methods. However, too often the
authors indulge in rather sweeping statements for which no expla-
nation is given, and although they laudably provide many examples
as an integral part of the text, the authors' choice and discussion of
the examples tends to be at a very low level (for example, on page 23
the algebraic operators for greater than or equal to, and less than or
equal to, are explained). Despite this I feel that these chapters do
form a useful introduction for managers, but I am afraid that for
many systems analysts, industrial engineers and operational
researchers the content and exposition will be far too low.
As in many books of this type, the inclusion of chapters on specific

programming languages is a failure. The manager seeking an intro-
duction to the subject does not need to acquire computer program-
ming capabilities; the professional will either already possess such a
capability or, if not, will find the material in these chapters inade-
quate for any real applications (even assuming he is using ICL
equipment), and will have to have recourse to the usual program-
ming texts. What the book lacks from the point of view of the
professional is a rigorous treatment of simulation methodology
(particularly emphasising the experimentation and inference aspects
of simulation), together with a comparison of the usual high-level
scientific programming languages with several of the more common
simulation languages, from the particular viewpoint of implementing
a simulation model (i.e. generating random variables; handling
standard theoretical statistical distributions or user given discrete

distributions; automatic recording of simulation variables and
tabulation or plotting of them; automatic handling of simulation
entities and their attributes; and so on).
To summarise, the book contains much that is useful and relevant,

but fails as a text suitable for both managers and professionals.
Managers will find the first four chapters useful, but there are other
better (and cheaper) introductory texts on simulation. For the
professional, he will require a text which has a much more rigorous
and comprehensive approach to simulation methodology and its
implementation.

j . R. EATON (London)

Integrated circuits in digital electronics, by A. Barna and D. I. Porat,
1973; 483 pages. (John Wiley, £11-25.)

Because all integrated circuits are encapsulated in standard package
forms and their internal arrangements are not only highly compli-
cated but quite inaccessible to the user, it is necessary to describe
them in great detail to market them. For this reason the manu-
facturers of microcircuits have all gone to considerable expense and
commendable effort to publish the most intimate details of their
wares. Not only do they publish the circuits and performance
specifications in great detail but most manufacturers back up these
descriptions with Application Notes and most careful instructions
for the use of the devices. These are usually given to users and
potential users gratis. Some manufacturers have also produced
truly useful books on the use and applications of their products;
some of these are also given away and those that must be paid for
are good value for money.
This very expensive book—in comparison with those produced by

manufacturers—contains little, if any, real information about
microcircuits that is not available in the manufacturers' books.
As a reference document it is not as good as they are.
As a teaching document likewise it is not very good. It has chapters

on Number Systems, Combinational and Sequential Logic, Arith-
metic Circuits, D to A and A to D Converters, and the like, which
are normal contents of most text books on 'Logic'. These are no
better than the corresponding chapters in these text books and add
nothing of value to the presently available range. There are exercises
and examples with answers to some of them, but so there are in most
books on the subject.
Possibly it might be a good idea to combine the basic technique with

its application in microcircuits in one book; that is obviously what is
intended by the authors. It makes a thick and unnecessarily expensive
book but it adds rather little to what is readily available elsewhere.
For the sake of the record, technical libraries should have a copy
for reference. I cannot in my heart recommend it to anyone else.

B. s. WALKER (Reading)

354 The Computer Journal

D
ow

nloaded from
 https://academ

ic.oup.com
/com

jnl/article/17/4/349/443732 by guest on 19 April 2024

