
Performance evaluation of a process control system
by simulation model

M. Boari, P. Pellizzardi, and R. Rossi

Istituto di Automatica, Facolta di Ingegneria, Universitadegli Studi di Bologna,
Viale Risorgimento 2, 40136 Bologna, Italy

In this paper the problems met with in the performance evaluation of a process computer system are
faced. After pointing out the meaning of performance evaluation for such an application and identify-
ing the set of measurements characterising the behaviour of the controlled physical process and the
computer system, the evaluation method employed is described; this consists of a set of direct
software measurements and a simulation model fed by event trace.
The simulation model structure is analysed and some problems relating to its feeding are illustrated.

To facilitate choice of the set of measurements to be carried out and their interpretation, the
system behaviour is described through a model derived from the Petri net. Finally, the results
relative to the behaviour of a computer system dedicated to the control of a gaschromatographic
laboratory is reported.
(Received January 1973)

1. Introduction
In studying the performance evaluation of time-sharing systems,
which have up to now attracted the greatest interest in this
field of study, the basic measurements typical of its behaviour
are: throughput, turnaround time, availability (Lucas, 1971).
In this kind of work the response to the user must be given in a
reasonably short time with, besides, a good resource utilisation
and a fixed degree of availability.
This kind of environment (Manacher, 1967) is characterised

by soft real time requests. In fact, response time is not the only
characteristic of the system behaviour, thus small variations in
the service may, in general, be tolerated provided they permit
better utilisation of the resources.

In a computing system for process control, the world external
to it, the process, usually presents the computer with a set of
rigid timing bounds. In fact, by calling f,(j) the time in which
the request j is sent to the computer, and t2(j) the resulting
deadline of the service request, the following condition must be
true :

h(j) - /i(y) > 'eiU) ;
where tel(j) is the maximum execution time of the application
program j , depending not only on its own characteristics but
also on the working environment, that is, the computer system
configuration, the number and type of programs, the frequency
of request and, finally, the resource allocation policy.
The basic aim of the performance evaluation in this case con-

sists in verifying whether, and to what extent, (1) is satisfied,
and in pointing out possible causes for ignoring the timing
bounds.
The set of measurements to be carried out must permit

analysis of the dynamics of the interactions between the com-
puter and the process. In such a case the increase in throughput
becomes of secondary importance, presenting itself only if the
computer system is predisposed for off-line work during the
time intervals where process requirements do not exist. In fact,
keeping within the timing bounds it is, in this case, possible to
organise a policy of resource allocation so that the system
performances increase.

2. Evaluation method
The choice of evaluation method depends on the aims to
be achieved by means of performance evaluation and, con-
sequently, on the kind of measurements to be carried out.
In a recent work (Noetzel, 1971) the utility has been shown of

an evaluation method jointly employing a direct software meas-

*This work was supported by CNR (Consiglio Nazionale delle Ricerche) under grant number 70.02149.07 and by ENI (Ente Nazionale
Idrocarburi) under grant numbers 1834 and 1992.

urement technique and a simulation model fed with the
data obtained from the measurements. (Fig. 1).
The use of direct measurement techniques does, in fact, lead

to detailed information on the system behaviour sufficient for
performance evaluation (Boari, Neri and Pellizzardi, 1972).
When, however, by employing the results obtained, it is
desired to verify the consequences on system performance of
modifications in its configuration, both hardware and software,
a simulation model is advisable. Such a model must be fed by
data obtained from the event trace relative to the application
programs resource request.
These data must be independent of the hardware and software

features of the system whose influence on the performance is
investigated by the simulation model; in fact, only in such a case
do the data maintain their validity even if modifications to the
original organisation of the system have been introduced into
the model.

If the system is organised so that a virtual environment is
created for each application program, requests for system
resource utilisation are clearly independent of the procedure
by means of which the operating system satisfies them. When,
however, this type of organisation is not available, as in the
system described in this paper, the events obtained relative to
the application program behaviour are not independent on the
system characteristics. To achieve this independence, the event
trace must be transformed.

The evaluation method adopted allows satisfactory solution
of the simulation model validity verification problem. In fact, it
is possible to compare the results obtained from the direct
measurements with those from the simulation model reproduc-
ing the original configuration of the system.

p -0CC5S

Compute r ^
» 9 . t « - ^

modification* ^^

Results
analysis

StmulaVton
model

|

Com pu be.r W

tvenk
tract

of CM«.nL braang

Simulated system modVfi<at">en*

Fig. 1 The steps of evaluation method

Volume 17 Number 4 365

D
ow

nloaded from
 https://academ

ic.oup.com
/com

jnl/article/17/4/365/443908 by guest on 19 April 2024

3. Description of simulation model
The computer used is a GE 4020 dedicated to the control of
gaschromatographic laboratory.

The hardware resources available in the present configuration
consist of a CPU, a core memory of 24K words (each word is of
24 bits) with a cycle of 1-6 /^-seconds, and a moving head
disc capable of one million words.
The computer runs under the RTMOS (Real Time Multi-

programming Operating System), the resident part of which
(resource allocator, scheduler, drivers) occupies about 7K
words of the core memory. The remainder of the operating
system is disc resident and consists of:
(a) the logical I/O represented in the system as a set of high-

priority programs;
(b) a small conversational system;
(c) the compiling system and library management at low

priority.
The computer addressing technique permits an elementary
form of dynamic allocation by using the program counter as
relocation register. The programs are allocated as consecutive
memory addresses and the choice of memory areas to assign
them is made in accordance with the best fit technique. In the
present system the possibilities of this technique are not
completely exploited since relocation and software organis-
ation sometimes links a program to a particular memory area.
The simulation model realised represents in detail all the

functions of the operating system relative to CPU scheduling,
I/O scheduling and memory management. These functions are
obtained by means of interacting subprograms, the execution
of each of which, in accordance with the request priority for
activation of the functions, determines simulated system
evolution.

Such a structure, while allowing representation of parallel
activities, confers considerable modularity to the model.
Thus, the modification of the hardware configuration, the
resource allocation techniques and the controlled process
description, are facilitated.
The data necessary for a simulation run may be subdivided

into three categories:
(a) hardware configuration data of the computer system: core

memory size and cycle time; number of channels, I/O
devices, auxiliary memory units as well as their access time
and transmission speed characteristics;

(b) operating system data; execution time of the operating
system modules obtained from direct measurements on the
system and their priority in using CPU;

(c) application program data: description of their behaviour in
terms of hardware and software resource system request.

As regards (c) it should be noted that two representation
techniques are possible: the first one is based on the measured
event trace (Cheng, 1969), the other is based on a behaviour
representation of the generic program, where resource requests
to the system are expressed by probability distribution.
If the possibilities offered by the above techniques are

examined, it will be noted that the first one, allowing a more
faithful description of workload behaviour, is particularly
suitable when using the simulated model, if it is desired to test
hardware or software system modifications, and workload
modifications that do not alter program characteristics.

As it may happen in process control computer systems, when
workload variation, besides modifying the program execution
rate, alters their characteristics (e.g. execution time, number of
I/O operations, etc.) it is necessary to employ statistical repre-
sentations which, in fact, make program behaviour description
possible as a function of the parameters representing the system
workload.
On the basis of the above, since one of the aims of this paper

is to determine the maximum workload to which the system

may be subjected, it was decided to adopt a statistical
representation.
For every program is given:

(a) execution rate;
(b) duration;
(c) execution time between two successive I/O operations;
(d) the number of seconds sent for each I/O operation;
(e) memory occupation;
(/) I/O probability on the channels;
(g) desired response time.
(a), (b), (c) and (d) are supplied by means of normal distri-

bution whose mean value and variance are obtained by direct
measurement on the system, (e) and (f) are given deterministic-
ally on the basis of the results obtained from the direct measure-
ments, whole (g) is a planning datum.
The program description model affects only one simulator

subprogram and can be changed without overmuch
reprogramming.
The time resolution obtainable, of course, depends on the basic

time unit assumed; in the model it is variable and is chosen in
accordance with the time resolution power of the measuring
technique which is of 250 /Li-seconds. Generally, depending on
the workload, it takes 5 -*• 15 /x-seconds of CDC 6600 to simu-
late a minute of GE 4020.

4. Definition of the set of measurements
As previously seen the basic aim in the performance evaluation
of a process control system consists of verifying whether, and
to what extent (1) is satisfied for a given workload, and in
pointing out the possible causes which lead to ignoring of the
timing bounds.
Satisfaction of condition (1) depends on the controlled process

characteristics, that is, on the behaviour of the application
programs and the dynamics of their interactions, as well as on
system resource availability and the management policy
adopted.
By analysing the ratio:

p _ tel(j)

between real execution time tel(j) (measured from activation to
the end of program j) and the time tp(j) (the sum of the times
during which the program occupies each resource) it is possible
to have some indication as to the extent of the delay in execution
caused by resource competition between the programs.
Further information can be drawn from the level of hardware

and software resource utilisation. Yet such information is
insufficient if it is decided to investigate to what extent the
response time is affected both by the process characteristics,
and by the system hardware and software organisation. It is
necessary, to this end, to have a model of the system which
allows its work to be described with the desired accuracy, thus
facilitating both the choice of the set measurements to be
effected and the interpretation of their results.
This model, based on the computer system hardware organi-

sation and the operating system structure, must indicate how
program flow develops through the system, keeping possible
parallelism of the operations in mind as well as the sequence
and conditions in which the resources are occupied.
It has been shown (Noe, 1971) how a model based on a

modified Petri net can be used to represent a highly parallel
system and how this representation leads itself to measurement
planning. Although the present does not belong to the high
parallel system category there are two important features of the
Petri net which are of considerable interest: the representation
of concurrent events and the easy modification of the level of
detail being displayed.
The elements of a Petri net are: the conditions existing in a

366 The Computer Journal

D
ow

nloaded from
 https://academ

ic.oup.com
/com

jnl/article/17/4/365/443908 by guest on 19 April 2024

job inocktvc
bulk

job rcquok

job activated

(memory
available

(di.k channel
available

r
/ Job meet* \ J [external
\ rollout criter-.o./J I Interrupt

< »babe of \

(state "f
resource

tran&itton

6.R. = Buffered R.qucet

Fig. 2

certain time interval and the events (transitions) which, de-
termined by the existence of a set of conditions, cause the pas-
sage to another set of conditions. In the present case the con-
ditions show that the programs and resources remain in
particular states, while the transitions indicate the passage from
one set of states to another.
A transition takes place when all the necessary logical

conditions are simultaneously satisfied. Two or more parallel
conditions between two transitions are considered concurrent
even if a more detailed representation of the working system
shows them to be differently placed in time.
For the present system we have obtained the model in Fig. 2.
On examining the Petri net it is clear that, by measuring the

number of times a transition takes place and the time interval
between two successive transitions, one can evaluate the dur-
ation of the stay of each application program in a particular
state and the frequency with which the necessary logical con-
ditions take place to originate a transition. It is possible
through these measurements to learn how the flow of each
program through the various states is conditioned by its
characteristics and the state of the system. In particular, it is
therefore possible to know the extent to which the non-
availability of resources is responsible for the stay of each
program in some states, thus modifying the response time.

5. Result analysis
Verification of the hypotheses on which definition of the
simulation model is based, has been obtained by means of
comparison, in the same workload conditions, of the results
obtained from the model itself with those measured directly on
the real system. These results, limited to the response times of
each application program and the extent of resource utilisation,
are given in Table 1 and show satisfactory agreement.
During the measuring phase, the off-line workload on the

system engaged it completely. The value obtained for the off-
line calculations thus represents the maximum work the system
can do compatible with the load imposed by the process.
One of the aims to be reached by the simulation model is the

maximum value of the process workload that the computer

system can tolerate without exceeding the response time bounds
imposed by the process on some application programs. Besides,
at such value, it is desired to verify the quantity of off-line
work that the system can still develop.
In the particular process controlled, the workload consists of

a set of different gaschromatographical analyses.
Workload variations are realised by acting on the number of

analyses carried out in a unit time keeping constant the pro-
portions between different kinds of analyses.
The gaschromatographical package operates as follows: the

gaschromatographical data are stored directly on the disc by
the analogue input drivers: every 24 seconds an application
program (program 2) orders and packs them in the files related
to each gaschromatographical.
At the end of the analysis the identification of the chemical

components is performed together with the relative quantita-
tive determinations (program 4). The results of this step are
sent to programs 5 and 6 which carry out further calculations
and print the analysis report.
While the constraint on program 4 response time is due to the

filling up of the disc memory available for the data to be worked
out and must be not more than a few minutes, programs 5 and
6 have no rigid bounds imposed by the process by the system
dynamic but only those connected to the laboratory needs which
requiie a response time of about 30 minutes.
During these operations program 1 checks the correct working

of the gaschromatograph every two seconds while program 3
time constraints closely depend on the 'control procedures'
used with the same instruments; the actions carried out by this
program must not be delayed for more than 10 seconds.
All the programs are disc resident and their length varies from

4-5K for programs 4 and 6 while the others have lengths
between 1-3K.
Fig. 3 shows the results obtained by varying workloads, for

the response time of the application programs which are more
critical to time bounds.
Measures based on Petri's net give for each program the

average time spent in each state and the frequency at which
they are engaged.

Volume 17 Number 4 387

D
ow

nloaded from
 https://academ

ic.oup.com
/com

jnl/article/17/4/365/443908 by guest on 19 April 2024

From an analysis of these results we can know which states
affect the real execution time of the programs in a decisive
manner.
Results relative to such measures, shown in Table 2, underline

a high permanence time for the central memory waiting state,

Table la Execution

Program 1
„ 2
„ 3
„ 4
„ 5
„ 6

Table lb Resources

CPU:

times

Real system

(seconds)
0-53
1-82
3-26
9-45
0-87

19-40

utilisation

Real system

(per cent.)

Application programs 10-5
Programs off-line
Overhead
Idle time

Central memory
Disc channel

82-4
4-6
2-5

33-4
20-3

Simulated system

(seconds)
0-54
1-89
3-42
8-78
0-83

2118

Simulated system

(per cent.)

9-9
80-7

5-2
4-2

34-2
20-7

essentially due to the non-availability of one or both resources,
memory and channel.

As the waiting time in the I/O queue state (Fig. 2), essen-
tially determined by channel waiting-time, is within acceptable
limits, the hypothesis may be advanced that the bounding
resource is the memory which, on the other hand, is employed
to an extent greatly inferior to its capacity.

It is therefore reasonable to suppose that the cause of exces-
sive program permanence in the central memory waiting state,
is to be found in the memory management technique adopted
in the computer system.
To verify this hypothesis in the simulation program a form of

management has been realised allowing, when necessary,
compacting of the memory areas occupied by the programs.

The managing technique adopted produces a remarkable
reduction in waiting time of the considered state (see Table 2);

Table 2 Average time of the programs in the various states

Without compacting With compacting
Average Relative Average Relative
time fre- time fre-
(ms) quencies (ms) quencies

Job activated in bulk 1560
Job in CPU queue 19-7
Job running 30-2
Job in I/O queue 208
Job in I/O 93-6

The results are relative to a workload of 3-95 analyses/minute.

0-295
120
120
4-2
4-2

985
21-4
34-6

163
86

0-26
110
110
4-2
4-2

4,5 ••

el
i»
Oa_
6

-tl
§

c
o

'Ji
3
o
CJ

A-

C

o

1.0

0.5-•

Fig. 3

(analyses /mln ~)

368 The Computer Journal

D
ow

nloaded from
 https://academ

ic.oup.com
/com

jnl/article/17/4/365/443908 by guest on 19 April 2024

Table 3 Comparison of resource

CPU utilisation:
application programs
off-line programs
overhead
idle time

CPU average waiting time:
Memory utilisation:

application programs
off-line

Memory average waiting time
Disc channel utilisation:

application programs
off-line programs
overhead

Disc channel average time
Maximum time spent in channel
queue

utilisation

Without compacting
and fixed priority

18-5%
47-5%
29-1%
4-9%

19-7 ms

51-4%
16-0%

1560 ms

54-0%
2-9%

11-2%
141 ms

887 ms

With compacting
and fixed priority

18-1%
59-4%
15-1%
7-4%

21-4 ms

48-2%
16-0%

985 ms

58-7%
3-7%
6-8%

133 ms

897 ms

The results are relative to a workload of 3-95 analyses/minute.

Without compacting
and 'least time to go'

18-3%
46-9%
29-4%
5-4%

20-1 ms

53-4%
160%

1341 ms

54-8%
2-8%

10-9%
127 ms

9260 ms

With compacting
and 'least time to go"

18-1%
53-0%
12-8%
16-1%
191 ms

500%
160%

987 ms

57-0%
3-2%
7-0%

169 ms

28620 ms

4,5-•

1.0

1

u
X

i
a
ca
i
.o

o

*s

0 , 5 - -

Fig. 4

however the low frequency at which programs engage the state
limits the effect on their real time of execution.
On the other hand, results reported in Table 3 show that the

resource exploitation is considerably improved. This is essen-
tially due to the reduced number of program transfers between
the central memory and the disc, ensuing from better memory
utilisation.

Therefore, the system can, with the same process workload,
effect off-line work 25 per cent higher than before.
The notable reduction of the overhead obtained by compact-

ing the memory can be justified by the few unsuccesful attempts
of the operating system to allocate in the core the non-resident
programs. This improvement however is in part reduced by the
longest period of time in which there are no programs to be

Volume 17 Number 4 369

D
ow

nloaded from
 https://academ

ic.oup.com
/com

jnl/article/17/4/365/443908 by guest on 19 April 2024

executed in the central processing unit.
These results and the high degree of overall resource exploit-

ation obtained, make it reasonable to consider of limited
efficacy any further attempts to improve program time per-
formance on the basis of improved resource exploitation.

In the present system CPU and I/O management are realised,
respectively, by fixed priority assignation and by a first-in
first-out technique. Since program criticalness depends both
on the state of the system and on the behaviour exhibited in the
runs, it may be thought that an improvement in system time
performance is possible by means of a management technique
dynamically assigning priority in the use of CPU and I/O.
To this end a 'least time to go' technique has been employed

which, as is known (Fineberg, 1967), assigns instant by instant
maximum priority to the program with the most critical time
bound.
The results obtained, shown in Fig. 4 confirm the validity of

the hypothesis; the response times for critical programs,
remarkably reduced, are now within limits imposed by the
process.
Naturally this improvement brings an increase in the response

times of the non-critical programs, which are not discussed in
this paper, and a lower level of resource utilisation.
A further investigation has been carried out to examine the

effects due to the introduction of the 'least time to go' algorithm
alone leaving unchanged the memory allocation policy.
The results relative to the utilisation of the resource are

reported in Table 3 and show again the trend in increasing the
overhead and decreasing the time available for off-line work.
However,in this situation the introduction of the'least time to

go' algorithm has not brought any noteworthy variations in the
response times which substantially remain the same as those in
Fig. 3 unlike what happened with the memory compaction
policy.

References
BOARI, M., NERI, G., and PELLIZZARDI, P. (1972). Performance evaluation of process control systems, XII Convegno internazionale dell'

automazione e strumentazione, 1972.
CHENG, P. S. (1969). Trace, driven system modelling, IBM System J., Vol. 8, No. 4, pp. 280-289, 1969.
FINEBERG, M. S., and SERLIN, O. (1967). Multiprogramming for hybrid computation, Proc. AFIPS, FJCC 1967.
LUCAS, H. C. (1971). Performance evaluation and monitoring, ACM Computing Surveys, Vol. 3, No. 3, September 1971.
MANACHER, G. K. (1967). Production and stabilization of real-time task schedules, JACM, Vol. 14, No. 3, July 1967.
NOE, J. D. (1971). A Petri net model of the CDC 6400 - Workshop on system performance evaluation, Harvard University, April 1971.
NOETZEL, A. S. (1971). The design of a meta-system, SJCC.

Book reviews
Topics in Numerical Analysis, edited by J. J. H. Miller, 1974; 348

pages. {Published for the Royal Irish Academy by Academic
Press, £700.)

This text is sub-titled 'Proceedings of the Royal Irish Academy
Conference on Numerical Analysis, 1972'. Of the nineteen papers
published in the text, sixteen were given as one-hour invited papers
at the conference. The remaining three are contributed by workers
who were invited to speak but were unable to attend. Two invited
papers are not included and are to appear elsewhere. These are
'Schwarz Functions and Iteration Theory' by P. J. Davis and 'The
Hypercircle Method' by J. L. Synge. All papers are in English with
the exception of that in French by R. Glowinski. This, at fifty pages,
is also the longest.

Those who attended the conference were fortunate to hear two talks
by Cornelius Lanczos. In addition to his invited paper 'Legendre
versus Chebyshev polynomials' he gave a delightful evening lecture
of a non-technical nature entitled 'Computing through the ages'.
The full text of this excellent talk is presented as an introduction to
this volume of research papers.
The overall standard of this collection of papers is high. They are

arranged by alphabetical order of authors. As usual, partial differ-
ential equations are well to the fore, with papers by L. Collatz,
E. G. .D'jakonov, E. Schechter, R. Glowinski, P. A. Raviart, V.
Thomee. The latter three papers are concerned with the finite element
method. Ordinary differential equations are also well represented,
with papers by R. K. Brayton and C. C. Conley, J. C. Butcher,
J. Douglas and T. Dupont (a Galerkin approach, using splines),
L. Fox et al., H. O. Kreiss, H. Stetter. The latter paper is on dis-
cretisation theory, as is the paper which follows it, by F. Stummel.
There are two papers on numerical linear algebra: one is by R. S.
Varga with applications to the finite element method; the other is
an attractive paper by G. H. Golub concerning the Lanczos algor-
ithm for finding eigenvalues. There remain three papers: one on
quadrature formulae by G. Freud, one on control theory by J. L.
Lions and one on Fredholm integral equations, a notable paper by
B. Noble.
The editor has done his job well, although some would wish to have

seen more material on linear algebra and rather more than the
solitary contribution (from Lanczos) on approximation theory.

G. M. PHILLIPS (St. Andrews)

The Skyline of Information Processing. Proceedings of the Tenth
Anniversary Celebration of IFIP, edited by H. Zemanek, 1972;
146 pages. (North Holland Publishing Co., $7.00.)

In Amsterdam in October 1970, IFIP celebrated its tenth anniversary
by means of a set of eight lectures given by speakers, most of whom
had been prominent members of the IFIP organisation during its
formative years. This book records those lectures in print.
The lectures fall primarily into two categories, historical and

philosophical. In the first category fall topics such as 'Ten years of
IFIP' and 'Computers and Technology', into the second come 'Need
for an information systems theory' and 'Some philosophical aspects
of information processing', while one paper 'IFIP and the expanding
world of computers' falls neatly into both camps.
The majority of lecturers are from non-English-speaking countries,

yet the style is uniform and the use of English is immaculate; one
must assume that an excellent job of editing has been done. The style
also is one that makes the entire book very easy to read. Nevertheless,
it is difficult to see who would want to buy the book or where it
would fit on one's bookshelves. The historical information is too
lacking in detail either to be useful as a definitive account of the
early history of IFIP or to provide a textbook in any aspect of
computer science. The philosophical offerings again, are too general-
ised to show the direction in which one should direct one's efforts in
the future, while the information content about current practice is
not such that any on-going project is likely to be changed as a
consequence. Although the sets of references given at the end of two
of the lectures are comprehensive, many better ones have appeared
before.
Naturally, if one wishes to have a printed record of a historic event,

or to refer to the current thoughts of some of our most distinguished
colleagues, or even to be given some hints on how to begin a new
approach to computing's problems, then here is a purchase well
worth making. I fear, however, that the potential market in this
area is likely to be small.

Some of the papers could serve as introductory reading for executive
appreciation although here, again, the cover is not sufficiently wide
to be valuable.

p. HAMMERSLEY (Cambridge)

370 The Computer Journal

D
ow

nloaded from
 https://academ

ic.oup.com
/com

jnl/article/17/4/365/443908 by guest on 19 April 2024

