A permutation generation method

C. T. Fike

IBM Systems Research Institute, 219 East 42nd Street, New York, N.Y. 10017, USA

This paper describes a new method for generating permutation sequences. Timing experiments
indicate that the method is competitive with the interchange methods of Wells, Johnson and Trotter.
It is therefore among the fastest available. The method has the advantage that it generates permu-

tations in what Lehmer calls an orderly listing.

(Received June 1973)

Introduction

The purpose of this note is to describe a new method for gener-
ating permutation sequences. A number of permutation gener-
ation methods already exist, and there is an extensive literature
on the subject (see for example, Ord-Smith; 1970, 1971). There
are two reasons for adding this method to the already long list
of known methods. First, it is fast. Second, like any method, it
may be specially advantageous for some applications, such as
certain types of optimisation problems. The applications of
permutation generation methods include problems like the
travelling salesman problem, the assignment problem, and
Latin square enumeration; see Ord-Smith (1970) and Wells
(1971, Chapters 4 and 7).

Let n denote an integer such that n > 2. The problem is how
to generate all the n! permutations of n marks 123...n
Consider the set S of sequences (d,,d;, .. .,d,), where d,
denotes an integer such that 1 < d, < k. The set S contains n!
sequences, and a computer program can easily generate them
all. To invent a permutation generation method, it is only
necessary to invent a one-to-one correspondence between the
n! sequences in S and the n! permutations of the » marks
123 ... n. (This observation is the starting point for many
permutation generation methods; see Lehmer; 1960).

Let the permutation corresponding to a sequence (d,, d, . .
d,) be that one obtained with the following interchange rule:

Starting with the original arrangement of the marks 123 . . . n,
interchange the mark in position k with the mark in position
dy, for k =2,3,...,n. (When d, = k, a mark is inter
changed with itself, so no real rearrangement occurs.)
It can be verified readily that this correspondence between
sequences and permutations is one to one.

*

Example 1:

Suppose n = 5. Find the permutation corresponding to the:

sequence (2, 1, 3, 2). Start with the initial arrangement 12345,
and perform interchanges in positions 2-2, 3-1, 4-3, and 5-2.
The resulting permutation is 35412. This process is reversible,
and one can just as easily construct the sequence from the
permutation.

Program implementation

To generate all the n! permutations of n marks, generate the n! -

sequences in .S, and for each sequence construct the correspond-
ing permutation. This process, which might appear to be
inconvenient, can actually be performed in a backtrack program
of great clarity and simplicity. A backtrack program is just a
program whose purpose is a systematic search or enumeration
and which is organised as a nest of iterations. Such a program
is a fundamental tool of combinatorial computing; see Wells
(1971, Chapter 4) for a thoroughgoing treatment of such
programs. The PL/I backtrack program in Fig. 1 generates the

Volume 18 Number 1

4! permutations of the integers 1234. The program uses
recursion, which is a natural device for backtrack programming.
Since the purpose of the program is simply to illustrate the
generation method, the program does nothing with the pe;o
mutations except to print them.

The general idea of the program in Fig. 1 is this. The progra@
generates all the sequences (d,, ds, . . ., d,), varying d, moﬁ
rapidly. In the process of constructing a permutation it 1ntep
changes P(K) and P(D(K)) in the way that the interchange rule
prescribes. Later it interchanges them again to restore the
status quo; this second interchange is the backtrack step in the

GO: PROCEDURE OPTIONS (MAIN) REORDER;S
EDECLARE N FIXED3 ~ BN = 43
DEFAULT RANGE (%) FIXED BINARY3
DECLARE P(N),y D(2:N)3
DO I=1 TO N; P(I) = I; END;

CALL PERMUTE (2};
STOP;

PERMUTE:
PROCEDURE {K) RECURSIVE;
DECLARE TEMP;
TEMP = P(K)3
DO DI(K)=K TO 1 BY -13
P(K) = P{D(K))3
P{D(K)) = TEMP;
IF KKN THEN CALL PERMUTE (K+1);,
ELSE PUT EDIT (P) (COL{1),(NIF(1))
P{D(K)) = P(K)3
P(K) = TEMP3
END3
RETURNj3
END 3
‘END GO3
Fig. 1 A PL/I backtrack program that generates and prints the
permutations of the integers 1234

20z lbdy gluo 1senb Aq 6.8¥81/1z/1/8|/aI01He/|ulWod/wod dno-olwepeod)/:s

permutation sequence permutation sequence
1234 @, 3,4) 2134 (1, 3,4)
1243 @,3,3) 2143 (1, 3, 3)
1432 ,3,2) 2431 (1,3,2)
4231 @2,3,1) 4132 1,3, 1)
1324 2,2,4) 2314 (1,2, 4)
1342 @,2,3) 2341 (1,2,3)
1423 @2, 2,2) 2413 (1,2,2)
4321 2,2,1) 4312 (1,2, 1)
3214 @, 1,4) 3124 (1,1, 4)
3241 2 1,3) 3142 (1,1, 3)
3412 @ 1,2) 3421 (1,1,2)
4213 21,1 4123 1,1,1)

Fig. 2 The 4! permutations of the integers 1234 in the order they are
produced by the program in Fig. 1, together with the corres-
ponding sequences in set S

GO: PROCEDURE OPTIONS (MAIN) REORDERS
ZDECLARE N FIXED; 3N = 43
DEFAULT RANGE (*) FIXED BINARY;
DECLARE P(N), D(2:N)y, MORE BIT (1) ALIGNED;
DO I=1 TO N3 P(I) = 1; END;
PUT EDIT (P) (COL(L)9ANIF(1));
DO I=2 TO N3 D(I) = I; END;
MORE = '1°'8;
DO WHILE (MORE);
DO K=N TO 2 BY -1 WHILE (D(K)=1);

TEMP = P(K);
PIK) = P(1);
P(1) = TEMP;
DIK) = K;
END;
IF K=1 THEN MORE = *0°B;
ELSE DO;
TEMP = P(D(K));
PIDIK)) = P(K);
P(K) = P(D(K)=1);
P(D(K)~-1) .= TEMP;
D(K) = D(K) - 13
PUT EDIT (P) (COL(1),(NIF(1));
END;
END;
STOP;
END GO;

Fig. 3 A nonrecursive PL/I program that generates and prints the 4!
permutations of the integers 1234

program. The table in Fig. 2 shows (1) the permutations in the
order they are listed by the program, and (2) the corresponding
sequences in S.

One can, of course, also program the generation method with-
out recursion. The program in Fig. 3 does exactly the same thing
as that in Fig. 1, but without using recursion. The generation
method is, however, not so obvious in this second program.

Timing experiments indicate that this method compares
favourably with the interchange methods of Wells (1961),
Johnson (1963), and Trotter (1962). In my tests, programs
similar to those in Figs. 1 and 3 generated the 10! permutations
of the integers 1 to 10 in less time than comparable programs
based on the Wells, Johnson and Trotter methods*. Such a
comparison of methods is not definitive, because it depends on
programming skill, compiler performance, and machine
performance as much as it does on permutation methods, but
it does indicate that the new method deserves to be classified
with the fastest methods previously available. In a way this is
surprising, for the following reason. The program in Fig. 1
performs over 2n! interchanges in the process of generating n!
permutations. On the other hand, each of the three methods
mentioned above performs only n! — 1 interchanges. The

*Actual timings for the new method are these. A recursive test program with no print statements generated 10! permutations in 9-25 minute
on an IBM System/360 Model 50; a nonrecursive program, in 10-76 minutes.

References

reason why the new method performs well in comparison to
them seems to be its simplicity. It does perform more inter-
changes but, on the other hand, does hardly anything else.

Serial numbers
Let the n! permutations of » marks be numbered from 0 to
n! — 1 in the order they would be produced by the two pro-
grams in Figs. 1 and 3. The serial number of a permutation is
its number in the list. This method generates permutations in
what Lehmer (1964) calls an orderly listing. This means two
things. First, one may find the serial number of a permutation
without generating any other permutations. Second, one may
obtain the pth permutation in the list directly from its serial
number p.

For this method these manipulations with serial numbers
involve representation of an integer p such that0 < p < n! — 1

in the form
d2 d3 dr:
O

where d; denotes an integer such that 0 < dy < k — 1. Such_é,o
a representation is unique for each p. This number represen-g
tation, which is related to the more familiar factorial represen-g
tation of integers (Lehmer 1964), is not new and was, in fact—~
used by Johnson (1963) in his description of his 1nterchang@
method.

The serial number of a given permutatlon may be obtained asn
follows. Find the sequence (d,, ds, . . ., d,) corresponding tov
the permutation, and letdy = k — d,fork = 2,3, ..., n The
the serial number p for the permutation is given by (1).

Example 2:

Suppose n = 5. Find the serial number of the permutatio
35412. The corresponding sequence is (2, 1, 3, 2). (See Exampl
1.) Therefore, the serial number is

540/2! + 2/3V'+ 1/4! + 3/5!) = 48 .

The permutation having a given serial number p may bex
formed as follows. Construct the representation (1) for p,i
Let dy = k — dy for k = 2,3, ..., n, and form the sequence>
(d,, ds, ..., d,). Then the permutation sought is the onq’?1
correspondmg to this sequence.

65 LEOO'an'o!LueBe

(Ferone/ufw

6 Aq 687

Example 3:
Suppose n = 5. Find the permutation whose serial number 1%
109. Since 109 = 5!(1/2! + 2/3! + 1/4! + 4/5!), the sequence
corresponding to the permutation is (1, 1, 3, 1), and the per<

mutation is 51423.

202 1udy 61

JoHNsON, S. M. (1963). Generation of permutations by adjacent transposition. Mathematics of Computation, Vol. 17, pp. 282-285.

LEnMER, D. H. (1960). Teaching combinatorial tricks to a computer. Chapter 15 in Bellman, R., and Hall, M., Jr. (Eds.), Combinatorial
Analysis, Proc. Sympos. Applied Math. 10, American Mathematical Society, Providence, R. 1., pp. 179-193.

LenMER, D. H. (1964). The machine tools of combinatorics. Chapter 1 in Bechenbach, E. F. (Ed.), Applied Combinatorial Mathematics,

Wiley, New York, pp. 5-31.

ORD-SMITH, R. J. (1970). Generation of permutation sequences: part 1. The Computer Journal, Vol. 13, pp. 152-155.
ORD-SMITH, R. J. (1971). Generation of permutation sequences: part 2. The Computer Journal, Vol. 14, pp. 136-139.

TROTTER, H. F. (1962). Algorithm 115, Perm. CACM, Vol. 5, p. 434.

WELLS, M. B. (1971). Elements of Combinatorial Computing. Pergamon Press, New York.
WELLS, M. B. (1961). Generation of permutations by transposition. Mathematics of Computation, Vol. 15, pp. 192-195.

The Computer Journal

