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1. Introduction

Recursion is the technique of defining procedures or functions
in terms of themselves. Conventional implementations of
recursion use a single stack for holding temporary results,
return addresses, etc. This stacking mechanism incurs serious
storage overheads. To reduce storage overheads work has been
done to characterise recursive definitions which could be
flowcharted and to devise suitable algorithms to perform the
transformation—see McCarthy (1962) and Strong (1971).

The approach we take is different from previous approaches.
Instead of trying to reduce storage overheads by transforming
recursive definitions into a flowchart we devise a new technique
of stacking and erasing arguments to solve this problem. It is
shown that with this method, go-to (or iterative) type recursive
definitions require only bounded stack storage for their
evaluation.

This study of recursion is made within the framework of a
functional language (Section 2) and its associated stack
language (Section 3). In Section 4 go-to (or iterative) type
functions are defined. In Section 5 a stack minimisation method
for a single stack is described and in addition the bounded
storage theorem is proved. In Section 6 an efficient method of
evaluating recursively defined functions which requires at least
two stacks is described. The bounded storage theorem also
applies to this method.

2. The functional language

The objective in this section is to define a suitable language for
studying recursively defined functions and the stacking mechan-
ism. The language we define uses the postfix (reverse polish)
notation for writing functions and is thus convenient to describe
the evaluation and stacking processes (See Barron (1968)).

2.1. BNF syntax of the functional language

The usual BNF notation is used with the additional convention
that ‘abc,,,” is used to represent any repetitive sequence of zero
or more occurrences of the syntactic type ‘abc’ suitably
delimited by commas, e.g. sequences such as ‘abc’ or ‘abe, abc,
abc, abc’. Furthermore the tacit use of blanks as a separator is
taken for granted and is not explicitly specified in the syntax.

1(a) function-specification ::= LET (argument, ,,) function-
name BE BASIC

1(b) ::= LET (argument,,,) function-
name BE expression END

2(a) expression ::= constant (which depends on the data

domain)

2(b) 1= argument

2(c) ::= (expression , , ,) function-name

2(d) ::= IF expression, expression ARE EQUAL

THEN expression ELSE expression FI
The three syntactic types ‘constant’, ‘argument’ and ‘function-
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name’ have not been specified in detail. All we shall assume
about them is that they are mutually distinct. We shall also
assume that a function has only one specification.

moQ

3. The stack language
The stack mechanism for handling recursion is based on that og
Barron (1968). We assume that the reader is conversant w1tlj%
this and only present the concepts in outline.

When a function G is to be applied to arguments a, b, ¢ sayg
the calling sequence is as follows.

1. a, b, c are loaded onto the stack.

2. The link information is loaded on the stack—namely thes
return address and backpointer to the previous link.

3. The evaluation of G is then initiated.

There are two pointers T and L associated with the stack. The

pointer 7 points to top of the stack. L points to the lmkg

information of the most recently activated function.

The operation of returning from the function G consists oé
reinstating the stack to its previous status from the linkg
information; copying the result back over the arguments of G
and returning control to the return address.

A test operation is required which compares the top two 1tems5
of the stack for equality, erases them, and then evaluates;o‘
different expressions dependmg on whether or not the 1tems:
are equal This operation is used in evaluating IF . . . THEN .
ELSE. .. FI type expressmns in the functional language We“1
summarise these ideas in the syntactic definition of the stack%
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3.1. BNF syntax of the stack language &

Program ::= Statement-List RETURN S

Statement-List ::= Statement 2

::= Statement Statement-list z

1. Statement ::= LOAD constant =

::= LOAD argument §

2. ::= ENTER function-name =
3. ::= IF EQUAL THEN Statement-list

ELSE Statement-list FI

The translation process from function-specifications to stack
language programs is trivial. The reader requiring further
details is referred to the appendix.

Example 1:
Here the data domain is the set of character strings of the form
‘ABC’, etc. including the null string. The functions HEAD and
TAIL are basic and behave as their name suggests.
e.g. CABC) HEAD = ‘A’
(‘ABC’) TAIL = ‘BC’
We also assume that HEAD and TAIL are defined for the null
string by HEAD () = TAIL () = ©
We now define a function LAST recursively which will have as
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‘ABC'@ On entry to ('ABC’) LAST
‘ABC@‘ABC’'@ On entry to TAIL
‘ABC’@‘BC’,* Equals test fails
‘ABC'@ Execute ELSE part
‘ABC’'@‘ABC’'@ On entry to TAIL
‘ABC@‘BC’'@ Re-enter (‘BC’) LAST
‘ABC@‘BC’@‘BC’'@ Enter TAIL
‘ABC@‘BC'@‘C, © Equals test fails
‘ABC@‘BC’'@ Execute ELSE part
‘ABC’'@‘BC’'@‘BC’@ Enter TAIL
‘ABC@BC@‘C@ Re-enter (‘C’) LAST

‘ABC@BC@C@° C’@ Enter TAIL
‘ABC@BC@C@”,” Equals test succeeds

‘ABC'@‘BC'@° C’@ Execute THEN part
‘ABC@BC@C@‘C’  Return from (‘C’) LAST
‘ABC@‘BC’@°‘C’ Return from (‘BC’) LAST
‘ABC'@‘C’ Return from (‘ABC’) LAST

«C Value found
Fig. 1 Stack behaviour in evaluating (‘ABC’) LAST

value the last character of the string.
i.e. CABC’) LAST = ‘C’; (") LAST = ©
LET (X) HEAD BE BASIC
LET (X) TAIL BE BASIC
LET (X) LAST BE
IF (X) TAIL, ® ARE EQUAL THEN X

ELSE ((X) TAIL) LAST
FI

END
Program to compute (X) LAST

LOAD X

ENTER TAIL

LOAD °

IF EQUAL THEN LOAD X

ELSE LOAD X

ENTER TAIL
ENTER LAST

FI

RETURN

The behaviour of the stack in computing (‘ABC’) LAST is
shown in Fig. 1. The link information is denoted by @ and the
rightmost symbol represents the top of the stack.

Example 2:

We assume the data domain to be the unsigned integers includ-
ing zero and the define using recursion the highest common
factor HCF of two integers. The basic functions are (M, N)
DIFF the difference of M and N, i.e. [M — N| and (M, N)
MIN minimum of M and N.

LET (M, N) MIN BE BASIC
LET (M, N) DIFF BE BASIC
LET (M, N) HCF BE
IF M, O ARE EQUAL THEN N
ELSE (M, N) DIFF, (M, N) MIN) HCF

FI
END
Program to compute (M, N) HCF
LOAD M
LOAD O

IF EQUAL THEN LOAD N
ELSE LOAD M
LOAD N
ENTER DIFF
LOAD M
LOAD N
ENTER MIN

FI
RETURN

ENTER HCF

The behaviour of the stack in evaluating (9, 6) HCF is shown in
Fig. 2. The link information is denoted by @ and the rightmost
symbol represents the top of the stack.

9, 6@
9, 6@9, 0

9, 6@

9, 6@9, 6@

9,6@3, 9, 6@

9, 6@3, 6@

9, 6@3, 6@3, 0

9, 6@3, 6@

9, 6@3, 6@3, 6@

9, 6@3, 6@3, 3, 6@

9, 6@3, 6@3, 3@

9, 6@3, 6@3, 3@3, 0

9, 6@3, 6@3, 3@

9, 6@3, 6@3, 3@3, 3@

9, 6@3, 6@3, 3@0, 3, 3@
9, 6@3, 6@3, 3@0, 3@

9, 6@3, 6@3, 3@0, 3@0, 0
9, 6@3, 6@3, 3@0, 3@

9, 6@3, 6@3, 3@0, 3@3

On Entry to (9, 6) HCF
Equals test fails
Execute ELSE part
Enter DIFF

Enter MIN

Re enter (3, 6) HCF
Equals test fails
Execute ELSE part
Enter DIFF

Enter MIN

Re enter (3, 3) HCF
Equals test fails
Execute ELSE part
Enter DIFF

Enter MIN

Re-enter (0, 3) HCF
Equals test succeeds
Execute THEN part
Return from (0, 3) HCF

9,6@3, 6@3, 3@3 Return from (3, 3) HCF

9, 6@3, 6@3 Return from (3, 6) HCF
9,6@3 Return from (9, 6) HCF
3 Value found

Fig. 2 Stack behaviour in evaluating (9, 6) HCF
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4. Go-to (or iterative) type definitions
Examples 1 and 2 are known as go-to (or iterative) types
functions. This concept was introduced by McCarthy (19625
to describe the class of recursive functions which are in one to-
one correspondence with iterative type programs, i.e. program@
consisting of assignment, go-to’s and conditional statementsQ
Indeed it has been shown that every go-to (or iterative) typexs
function definition may be transformed into an equivalents
iterative program and vice-versa (see McCarthy (1962),b
Barron (1968) and Strong (1971)).

Informally the go-to (or iterative) type recursive deﬁmtlong
have the property that defined functions must never occurz
‘inside’ other functions in the expression which defines a2
function value. Neither must they occur in the test for equalityt
in any conditional expression.

More formally we specify this concept as follows.

1. A complete set of function definitions is said to be of go- t(%>
type if the value of every non-basic function is defined by a;
go-to type expression.

2. A go-to type expression (g-expr) has the following syntax
g-expr ::= constant

::= argument
::= (basic-expression, , ,) function-name
::= IF basic-expression, basic-expression
ARE EQUAL
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THEN g-expr
ELSE g-expr FI.
3. A basic-expression is any expression constructed from con-

stants, arguments, basic functions, and IF-THEN-ELSE-
FIs only.
The behaviour of the stack in Examples 1 and 2 have one
important point in common, i.e. the RETURNS from the
defined functions were performed consecutively. Thus we see
that when for example (‘ABC’)LAST calls (‘BC’)LAST the
arguments of (‘ABC’)LAST are never used again and so need-
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lessly occupy the stack. This is repeated when (‘BC’)LAST calls
(‘C)LAST, i.e. the arguments of (‘BC’)LAST are not accessed
again. So by the time the RETURN operations are executed,
the stack contains mainly useless information. The same re-
marks apply to the function HCF. In fact it may be shown that
the above remarks apply to all go-to type definitions.

This is wasteful in stack storage space and in the following
sections we shall show how to reduce this wastage.

5. Storage reduction for a single stack

In Examples 1 and 2 we have highlighted the problem of
needlessly preserving arguments on the stack. This problem
is particularly acute with go-to type definitions but is also
present in other recursive definitions. What we shall do in this
section is find (certain function calls) where arguments may
be erased (5.1) and describe a crude method of erasing argu-
ments for a single stack implementation (5.2). In addition the
bounded storage theorem (5.3) and a corollary (5.4) will be
proved. The problem of erasing arguments efficiently will be
tackled in Section 6.

5.1. Identifying function calls

Consider a function (A, B, . . .)F whose value is defined by the
expression e. Consider those functions in e which do not occur
‘inside’ other functions and which are not involved either
directly or indirectly in a test for equality. Let (e,, e,, . . .)G be
such a function. Clearly if G were to be evaluated it would be
immediately followed by a return from F. Thus as the argu-
ments of F would not be accessed after entering G there is no
harm in erasing the arguments of F at this stage. This describes
those function calls in e where the arguments of F may be
erased. To help the reader to identify these calls and to prevent
any possible misinterpretation of what we have said we also
describe these calls using BNF syntax. Square brackets are
added to the functional language and the syntax is designed so
that any function name whose arguments are in square brackets
is of the type required.

1(a) function specification ::= LET(argument, , ,) function-
name
BE BASIC
1(b) ::= LET(argument, , ,)function-
name
BE expr END
2(a) expr ::= constant
::= argument

[expression, , ,] function-name

expression ARE EQUAL

THEN expr

ELSE expr FI

3(a) expression ::= exactly as before in 2.1 and so contains no
square brackets.

It is easy to transform the old form of function definition (2.1)
to this new form. The reader requiring further details is referred
to the Appendix.

::= IF expression,

5.2. Extending the stack language

Let F, e, G be as in 5.1 and let us say F is being evaluated.
Suppose it is necessary to erase the arguments of F and enter G.
We achieve this by:

1. copying the link of F to the top of the stack,

2. erasing the arguments and original link of F by copying the
link and arguments of G over them and adjusting pointers as
appropriate, (there is no harm in doing this as the arguments
of F will never be accessed again.)

3. initiating the evaluation of G.

rLet us now add to the stack language the statement ‘ERASE
AND ENTER function-name’ and let us define it to behave as

Volume 18 Numberl

‘ABC'@ On entry to LAST

‘ABC@‘ABC'@ On entry to TAIL

‘ABC’@‘BC’,” Equals test fails

‘ABC’'@ Execute ELSE Part

‘ABC@'ABC'@ Enter TAIL

‘ABC@'BC'@ ERASE & ENTER LAST

| 1 Link copied here.

‘BC,@

‘BC@BC'@ Enter TAIL

‘BC@C.,” Equals test fails

‘BC@ Evaluate ELSE part

‘BC@BC'@ Enter TAIL

‘BC@C@ ERASE & ENTER LAST
| 1 Link copied here

‘C, @

C@C@ Enter TAIL

‘C@”,” Equals test succeeds

‘C@ Evaluate THEN part

‘C@C Return

‘C Value found

Fig. 3 Stack behaviour in evaluating (‘ABC’)LAST—Two methods
entry .

above. We now use it to enter all functions whose argumen
are enclosed in square brackets. (See 5.1)
Let us look at Examples 1 and 2 again.

Example 1 (Continued)
Functional definition of LAST using square brackets

LET (X) LAST BE
IF (X) TAIL, “ ARE EQUAL
THEN X
ELSE [(X) TAIL] LAST
FI
END
New stack language program for (X) LAST
LOAD X
ENTER TAIL
LOAD °
IF EQUAL THEN LOAD X
ELSE LOAD X
ENTER TAIL
ERASE & ENTER LAST
FI
RETURN

The behaviour of the stack in evaluating (‘(ABC)LAST when
both entry methods are used for entering a function is shown i
Fig. 3.
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Example 2 (Continued)
Functional definition of HCF using square brackets.

LET (M, N)HCF BE
IF M, O ARE EQUAL THEN N
ELSE [(M, N) DIFF, (M, N) MIN] HCF

FI
END
Program for HCF

LOAD M

LOAD O

IF EQUAL THEN LOAD N

ELSE LOAD M

LOAD N
ENTER DIFF
LOAD M
LOAD N



ENTER MIN

ERASE & ENTER HCF
FI
RETURN

The behaviour of the stack in evaluating (9, 6) HCF when both
methods of entry are used is shown in Fig. 4.

It is clear that if recursion is implemented by using two
methods of entering a function then a great saving of stack
storage can be achieved. To make estimates of storage require-
ments let us make the simplifying assumption that each data or
link item can be represented on the stack using a single cell.
While this is not strictly true it is a convenient measure of stack
storage required which is independent of the values of the
arguments under consideration. Another possible measure of
stack storage required is the number of links on the stack. This
measure is also independent of the values of the arguments
under consideration.

The function LAST (see Example 1) requires a maximum
stack of four cells if both methods are used as opposed to
2 x (length (X) + 1) cells, if only one method is used. Thus if
X is a long character string the storage saved is very great.
Similarly in Example 2 the storage saved is considerable if the
depth of recursion is high.

Examples 1 and 2 are functions which require a bounded
stack if both methods of function call are used. This result holds
for all functions of go-to type and not just for the examples
illustrated. We shall now proceed to prove the general theorem.
We first note, however, that when Examples 1 and 2 were
executed using both methods of function entry, there were at
most two links on the stack. This property will play a key part
in proving the result.

5.3. The bounded storage theorem:

Let S be a complete set of function definitions of go-to type
and assume that every link or data item can be represented by
using one stack cell. Then any function in S requires a bounded

9, 6@ On Entry to HCF

9,6@9,0 Equals test fails

9,6@ Execute ELSE part

9,6@9, 6@ Enter DIFF

9,6@3,9, 6@ Enter MIN

9, 6@3, 6@ ERASE & ENTER HCF
| 1 Link copied here

3,6@

3,6@3,0 Equals test fails

3,6@ Execute ELSE part

3,6@3, 6@ Enter DIFF

3,6@3, 3, 6@ Enter MIN

3,6@3,3@ ERASE & ENTER HCF
| ) Link copied here.

3,3@

3,3,@3,0 Equals test fails

3,3@ Execute ELSE part

3,3@3, 3@ Enter DIFF

3,3@0, 3, 3@ Enter MIN

3,3@0, 3@ ERASE & ENTER HCF
| 1 Link copied here.

0,3@

0,3@0,0 Equals test succeeds

0,3@ Execute THEN part

0,3@3 Return

3 Value found

Fig. 4 Stack behaviour in evaluating (9, 6)HCF—Two methods of

entry

stack for its evaluation providing both methods of function
entry are used as indicated. This bound depends on S but is
independent of the values of the arguments of the function in
question.

Proof:

In a go-to type function definition non-basic functions do not
occur ‘inside’ other functions in the expression defining a
function value. Neither are they involved in a test for equality.
(See 3.1). Hence all non-basic functions will be entered by the
ERASE & ENTER statement (See 5.1, 5.2).

We first show that during execution there are at most two
links on the stack. Let S consist of the functions, Fy, .. ., F, of
ny, Ny, . . ., n, arguments respectively.

Initially say F; is just entered. Then the stack configuration
will be:

arg,, arg,, . . ., arg,, @

Now if a constant or an argument is loaded onto the stack this
will increase the stack length but will not produce a new link.
If a basic function is entered (by either method) this Wlllo
produce a second link which will be erased after the bas1cs
function returns a value. The only other possibility is that ao
defined function say F; will be entered. If this happens then 1tQ
must be entered by the ERASE & ENTER statement. Hence aZ;
second link will appear at the top of the stack, then the argu-
ments and original link of F; will be erased and execution of F,
will be commenced with the stack as below.

arg}, ... argnj @
This leaves us in a position to apply the same analysis to F; andS

establishes that there will be at most two links on the stack. &

We now show that the stack is bounded. Suppose F; is beings
evaluated. When can a new value be added to the stack?3
Clearly this can only occur when a constant or argument is%
loaded on the stack or when a basic function returns a value onS
the stack. We know that initially there are n; arguments on thes
stack. Also, there can be at most two links on the stack. Thus ifS
k; is the number of constants, arguments and basic functionsz
occurring in the expression defining F;, the stack can grow to at;
most (n; + k; + 2) cells. Of course after F; is entered by the\
ERASE & ENTER statement there will be n; arguments andw
one link on the stack and the same analysis can be applied tov1
F;. Hence since any function in S may be entered during theoo
evaluatlon process, the storage required is at most

M = max (n, + k; + 2) (Note this is just a bound, nofo
FieS necessarily the best bound.)

This proves the theorem.

In the discussion leading to 5.3—The Bounded Storagt%>
Theorem—we mentioned that we could get a measure of the=
storage space requlred which was independent of the values otg
the arguments in question by either:

1. assuming that each data or link item can be represented in
one stack cell, or

2. taking the number of links on the stack as a measure of the
stack storage required.

The bounded storage theorem is phrased in terms of the first
measure. The next corollary is phrased in terms of the second
measure.

peoe//:sdy
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5.4. Corollary:
Let S be as in 5.3. Then any function in .S when executed will
cause at most two links to appear on the stack.

Proof: See proof of 5.3.

We can calculate bounds (not the best bound) for Examples 1
and 2 using the methods described in 5.3.
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A bound for Example 1 is 6 which is consistent with the
behaviour of LAST in Fig. 3.

A bound for Example 2 is 9 which is consistent with the be-
haviour of HCF in Fig. 4.

The reader may ask how does the method described in Section
5 compare with that of Section 3 as far as storage requirements
are concerned. It may be shown that if the method of Section 3
is used, go-to type definitions would:

1. require storage roughly proportional to ‘»’, the number of
defined functions called during the evaluation,
2. require n + 1 links on the stack, » as above.

This demonstrates that if the two methods of entering a function
are used, then a great deal of space on the stack can be saved,
particularly with go-to type definitions. The author’s ideas
have been implemented by T. J. Pierre—his student, and these
findings have been confirmed. Pierre (1972) used a single stack
and implemented the ERASE & ENTER command by actually
copying the link and arguments on the top of the stack over the
previous arguments and adjusting the stack pointers
accordingly.

Using this simple approach is not really satisfactory as it is
rather inefficient in execution. The efficiency problem has been
solved and we now present a technique of implementing the
ERASE & ENTER command which eliminates the need for
copying information down the stack. Two (or more) stacks are
used and the bounded storage theorem applies to the method
which will be described in the next section.

6. The two stack (or multi stack) method

Instead of implementing recursion using a single stack which is
the conventional approach we use two (or more) stacks.
Roughly speaking, at any stage only one stack is active and
wherever a function is to be entered (by either method) the
active stack is changed. By doing this we ensure that the link
and arguments of the function being currently evaluated must
always be on the top of the inactive stack. So the ERASE &
ENTER command can now erase them by merely resetting a
pointer. There is no copying involved any longer.

An important consequence of handling function entry in this
way is that the back pointer to the link of the previous function
is no longer required. This is because at all stages in the com-
putation the link of the function being currently evaluated must
be on the top of the inactive stack. There is thus no need to chain
all the links on the stack together. Therefore by using this
method of switching stacks on function entry we are able to
simplify the link information and thus speed up the stacking
mechanism. Furthermore, as we are merely describing a new
way of executing the ERASE & ENTER command, it follows
that the bounded storage theorem also applies to the two stack
method.

Our description is based on using a single block of sequential
storage for the implementation and letting one stack grow
from the left hand end and the other stack grow from the
right hand end. Of course there are other methods that may
equally well be used for implementing two (or more) stacks but
this one is particularly convenient for our purpose.

Left Stack Free Space Right Stack

This completes the outline description of our method. (A two
stack method has been used by Hassitt e al (1971) for handling
storage allocation in APL, However they did not use it for
handling function calls.)
The actual mechanisms required and the behaviour of the
various operations are as follows.
1. Two stacks called the left stack and right stack and two
top of stack pointers.
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2. An indicator giving the current active stack, i.e. stack on

which arguments, constants, links will be loaded and test
operations performed.

3. The ENTER statement firstly creates a new link on the top
of the active stack consisting of:
(a) The return address
(b) The value of the active stack indicator.
Secondly the active stack is changed.
Thirdly the function evaluation is initiated.

4. The ERASE & ENTER statement firstly creates a new link
on top of the active stack by copying the link of the current
function from the top of the inactive stack onto the top of the
active stack.

Secondly the link and arguments of the current function are
erased from the top of the inactive stack.

Thirdly the active stack is changed.

Fourthly the function evaluation is initiated.

5. The RETURN statement in addition to its normal actions
(see Section 4) will now also use the link on top of the
inactive stack to reinstate the correct active stack.

The value to be returned is put on top of the activated stackg

6. The LOAD and IF EQUAL-THEN-ELSE-FI statement§
work exactly as before. They use the active stack only. (Se%
2). o

We now illustrate the behaviour of the two stacks for Example_?r
1 and 2. The symbols L or R at the start of each line mdlcate;
which stack is active. The links are now written as L or Rso
that we can tell which stack was active when the appropriat§
function was entered. The link and arguments of the functiofx
being currently evaluated are on top of the inactive stack.

Example 1 (Continued)
The two stacks’ behaviour in evaluating (‘ABC’) LAST i
shown in Fig. 5. We assume that initially the left stack is active:
and that the function is initially entered by executing LOALZ
‘ABC’, ENTER LAST.

W@d°dno-oIw

Example 2 (Continued)
The two stacks’ behaviour in evaluating (9, 6) HCF is shown i

/e gByajonue)|ul

ENTER HCF. §
g

L | ‘ABC’ Load ‘ABC’ 2

R | ‘ABC’'L : Enter LAST =

L | ‘ABC’'L R ‘ABC’ | Enter TAIL 2

R | ‘ABC’L “, ‘BC’ Equals test fails i

R | ‘ABC’L Execute ELSE part 13

L | ‘ABC'L R ‘ABC’ | Enter TAIL N

R | ‘ABC’L ‘BC N

L | ‘ABC’ L linkcopiedhere T, ‘BC* | ERASE & ENTER LAST

L L’BC

R | ‘BC’'L L ‘BC’ | Enter TAIL

L |‘C,° L ‘BC’ | Equals test fails

L L ‘BC’ | Execute ELSE part

R | ‘BC'L L ‘BC’ | Enter TAIL

L |‘C L ‘BC’

R | ‘C L oseanae L ‘BC’ | ERASE & ENTER LAST

R |‘CL

L |‘CL R ‘C’ | Enter TAIL

R [‘CL “r Equals test Succeeds

R |‘CL Execute THEN part

R |‘CL ‘C’ | Return

L |C Value found

Fig. 5 Two stacks’ behaviour in evaluating (‘ABC’)LAST




L 9 Load 9

L [96 Load 6

R [9,6L Enter HCF

R [9,6L 0,9 | Equals test fails

R |9,6L Execute ELSE part
L [9,6L R 6,9 | Enter DIFF

R |9,6L 3

L |9,6L R 6,9, 3 | Enter MIN

R |9,6L 6,3

L | 9,6 L Tireopeanae L6 3 | ERASE & ENTER HCF
L L63

L |30 L 6, 3 | Equals test fails

L L 6,3 | Execute ELSE part
R [3,6L L 6,3 | Enter DIFF

L |3 L63

R |3,36L L 6,3 | Enter MIN

L |33 Le6,3

R | 3,3 L opeanae L 6,3 | ERASE & ENTER HCF
R |33L

R (33L 0, 3 | Equals test fails

R |33L Execute ELSE part
L {33L R 3, 3 | Enter DIFF

R |33L 0]

L |33L R 3, 3,0 | Enter MIN

R [ 3,3L 3,0

L | 3,3 L Tikeopeanae. L 3,0 | ERASE & ENTER HCF
L L3,0

L {00 L 3,0 | Equals test succeeds
L L 3,0 | Execute THEN part
L |3 L 3,0 | Return

L |3 Value found

Fig. 6 Two stacks’ behaviour in evaluating (9, 6) HCF

Example 3

Examples 1 and 2 have been go-to type function definitions.
To illustrate the generality of the two stack method this
example is of a function which is highly recursive and which
always has value one. The data domain is the same as Example
2. The function (N) SUB—subtract one from N—is now basic.

LET (N) SUB BE BASIC
LET (M, N) H BE
IF M, 1 ARE EQUAL THEN 1
ELSE [(N, (M)SUB)H,

(M)SUB] H
FI
END
Two stack program for (M, N)H
LOAD N
LOAD 1
IF EQUAL THEN LOAD 1
ELSE LOAD N
LOAD M
ENTER SUB
ENTER H
LOAD M
ENTER SUB
ERASE & ENTER H
FI
RETURN

The Stacks’ behaviour in executing (2, 2)H is shown in Fig. 7.
We assume the left stack is initially active and that the function
is entered by executing LOAD 2, LOAD 2, ENTER H.

Example 4
Examples 1, 2 and 3 have illustrated our method for direct

recursion. This example is of an indirect recursive definition
which is of go-to type. The data domain and basic function are
as in Example 3. The functions to be defined by mutual recur-
sion are:

(N) MODO = N modulo 3
(N) MOD1 = N + 1 modulo 3
(N) MOD2 = N + 2 modulo 3
The definitions are:
LET (N) SUB BE BASIC
LET (N) MODO BE
IF N, O ARE EQUAL THEN 0
ELSE [(N) SUB] MOD1

—See Example 3.

FI
END
LET (N) MOD1 BE
IF N, O ARE EQUAL THEN 1
ELSE [(N) SUB] MOD2
FI
END
LET (N) MOD2 BE
IF N, O ARE EQUAL THEN 2
ELSE [(N) SUB] MODO
FI
END

The two stack program for (N) MODO is given below. Th

@01} PapeojUMOQ

programs for (N) MODI1 and (N) MOD2 are similar. =
LOAD N @
LOAD O N
IF EQUAL THEN LOAD O 2
ELSE LOAD N 3
ENTER SUB o
%
L |2 Load 2 %
L |22 Load 2 8
R |22L Enter (2,2) H 2
R |2,2L 1, 2 | Equals test fails o
R [22L Execute ELSE part &
L [22L R 2,2 | Enter SUB %
R |22L 1,2 2
L |22L R1,2| Enter (2,1) H N
L |2,2L21 R 1, 2 | Equals test fails 5
L |22L R 1,2 | Execute ELSE part ]
R [2,2L1,2L R 1,2 | Enter SUB ©
L |22L1,1 R1,2 2
R [2,2L1,1L R1,2| Enter (1,1) H s
R |2,2L1,1L 1,1R 1,2 | Equals test succeeds =
R |2,2L1,1L R 1, 2 | Execute THEN part 2
R |2,2L1,1L 1R 1,2 | Return from (1, 1) H ~
L |22L1 R 1,2 | Resume (2, 1) H =
R | 2,2L1,2L R 1,2 | Enter SUB N
L [22L1,1 R1,2 N
R |2,2L1, 1R %5 R1,2| ERASE & ENTER (1, 1) H
R [2,2L1,1R
R |2,2L1,1R 1, 1 | Equals test succeeds
R (2,2L1,1R Execute THEN part
R [2,2L1,1R 1| Return from (1, 1) H
R (2,2L 1| Resume (2,2) H
L (22L R 2,1 | Enter SUB
R |2,2L 1,1
L | 2,2L eopeanae L' 1,1 | ERASE & ENTER (1, 1) H
L , 1
L (1,1 L 1,1 | Equals test succeeds
L L 1,1 | Execute THEN part
L |1 L 1,1 | Return from (1, 1) H
L |1 Value found

Fig. 7 Two stacks’ behaviour in evaluating (2, 2) H
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3 Load 3

3L Enter MOD1

3L 0, 3 | Equals test fails

3L Execute ELSE part

3L R 3 | Enter SUB

3L 2

3L ~Tikeopieatee > L2 | ERASE & ENTER MOD2
L2

2,0 L 2 | Equals test fails

L 2 | Execute ELSE part

2L L 2 | Enter SUB
1 L2
IL< L2 | ERASE & ENTER MODO

Link copied here

1L
0, 1 | Equals test fails
Execute ELSE part
R 1 | Enter SUB

ok pd d
cocoer

0
Link copied here > }:8 ERASE & ENTER MODI
0,0 L 0 | Equals test succeeds

L 0 | Execute THEN part
1 L 0| Return from MODI1
1 Value found

Fig. 8 Two stacks’ behaviour in evaluating (3) MOD1
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ERASE & ENTER MODI
FI
RETURN
The stacks’ behaviour in executing (3) MODI1 is shown in Fig.
8. Initially we assume the left stack is active and that the
function is entered by executing LOAD 3, ENTER MODI.

Conclusion

The importance of the methods of evaluating recursive definit-
ions we have described is that go-to (or iterative) type definitions
require bounded stack storage for their evaluation. This means
that go-to type definitions can be used for long iterative cal-
culations without excessive storage requirements.

In addition the two stack method has simpler link information
than the single stack method. This provides an additional
saving in space required.

The question of execution time is one where it is difficult to
give a definitive answer. Consider the problem of comparing the
execution time of a non-recursive program with its equivalent
go-to type recursive definition which say is evaluated by the
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two stack method. With a software implementation of the
stacks the recursive definition would operate slower than its
equivalent non-recursive program because of the overheads
involved in stacking and unstacking arguments on function
entry and exit. On the other hand with a hardware implement-
ation of the two stacks with say several fast top of stack registers
for both stacks this speed degradation may not occur in some
cases and perhaps an increase in speed could result. This is
because if the stacks are short they may both reside in fast
registers—consider example 1 for instance. Thus it is difficult to
give a definitive answer to this question because of the variety
of feasible implementations of the two stack method. Perhaps
this is an area where further research would be useful.
Finally, the author believes that further useful work could be
done to evaluate the usefulness of purely recursive programming
languages, i.e. languages with no assignment statement. There
are many arguments for and against such languages and it is
recognised that the basic method described here to make such a
possibility practical would have to be extended. Nonetheless,
the establishment of the bounded storage theorem suggests that
this scheme may be more than just an interesting theoretlcag
possibility.
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Appendix Transforming function definitions
In this appendix we describe how to transform functiory
definitions with round brackets only (see 2.1) into an equivalen
stack language program (see 3.1) and into an equivale
function definition which utilises round and square brackets:
(see 5.1). )
To transform a function definition in form 2.1 into a staclg
language program in form 3.1 the expression defining thé
function value is processed as follows.

1. Prefix all constants and variables by the word LOAD.
2. Prefix the word ENTER to all function names.
3. Delete all occurrences of (), IF’.
4. Replace all occurrences of ARE EQUAL THEN
by IF EQUAL THEN.
5. Replace the word END by RETURN.

To transform a function definition in form 2.1 into form 5.
proceed as follows.

1. Set a counter C to zero.

2. Scan from left to right the expression defining the functio
value.

3. Whenever ( or IF is encountered, increase C by 1.

4. Whenever ) or THEN is encountered, decrease C by 1.

5. If just before encountering (, C is zero then change ( to [.

6. If just after encountering ), C is zero then change ) to ].
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