A simple data structure for interactive graphic

design/drafting

A. F. Cardenas* and R. W. Seeleyt

Powerful data structures for interactive graphics systems are tediously intricate, and are indeed
difficult to program, debug, maintain and modify. A simple data structure is presented to represent
two- and three-dimensional objects. One of its great benefits is its ease of implementation and
maintenance. Although because of its simplicity various facilities provided by more complex data
structures are not available, it can be an attractive basis for a class of graphics systems, such as the
operational interactive design/drafting system outlined.

(Received September 1973)

1. Introduction

A number of data structures have been proposed and imple-
mented in interactive graphics systems to provide powerful
facilities for design/drafting. Williams (1971) provides an
introductory overview of various data structures and their
suitability for computer graphics, and of a few selected
(a) languages with some facilities for creating and manipulating
data structures, and (b) existing graphlcs systems and their data
structures. Hamilton’s work (1970) is also a good survey. Both
surveys provide ample bibliographies on the field. Many
structures have been conceived for a variety of applications, e.g.
‘inverted files’ for information retrieval. Some are more
suitable and convenient, and essentially only applicable, to
particular applications, such as object manipulation via
computer graphics.

The data structure described here is purposely a simple one.
Although because of its simplicity various facilities provided by
other more complex data structures are not available, it is the
basis of an effective and attractive interactive graphics system
currently in operation. The great benefit of this simple structure,
compared to any other, is ease of implementation and main-
tenance. Powerful data structures for graphics are tediously
intricate, and are indeed difficult to program, debug, maintain
and modify—a factor too often underestimated. They tend to
grow in an ad hoc and unpredictable manner under the pres-
sure of more and better facilities for users and performance,
and also quite often have to depend upon specific machine
characteristics. Furthermore, basic systems software and hard-
ware facilities provided with graphics terminals for applications
programming are still rudimentary, besides being non-trans-
ferable across machines.

2. The simple data structure
An interactive graphics system for design/drafting called the
Structure Edit Program (SEP), was implemented based on the
simple structure for use by structural engineers to display and
manipulate two- and three-dimensional structures. Structural
engineers, when designing the frame of a building or airplane
fuselage, represent the object as a three-dimensional finite
element structure consisting of points in space called joints and
lines called bars which connect these joints. The program was
written by the author Seeley in FORTRAN IV and GSP
(Graphic Subroutine Package) (IBM, 1971) and uses IBM
2250 Model terminals as the graphic device.

The basis for this system is the simple data structure shown in
Fig. 1. It consists of two sequential arrays. One array, the joint
array, contains the X, Y and Z values of each joint in the

structure. The joint number of a joint is its sequential order in
the array. The second array, the bar array, contains pointers
pointing to the end Jomts in the joint array, deﬁnmg a bar. The
bar number of a bar is the sequential order in the array. Theg
pointers in the bar array are simply the joint numbers of the=
end joints in the joint array. “’
The addition of joints and bars to the arrays is kept simple bya
adding the data to the end of the arrays. Deletion of bars andS’
joints becomes more complicated and time consuming. A bar is3
generally deleted from anywhere in the array. Since the arraya'
can be considered as a sequential list, ‘holes’ in the list cannote
be tolerated. To avoid this complication the list is compactedg
to fill in the hole, and all bar numbers from the deleted bar to%
the end of the array must be decremented by one. Fig. 2(a)§-
demonstrates the deletion of a bar. 2
Slmllarly, when a joint is deleted from anywhere in the array,o
the ‘hole’ is filled by compaction. The joint numbers before the3

S
3
2 2 3 =l
o
OBJECT: 1 3 3
>
8
1 a 4 X
(&)
>
oo
©
©
g
«Q
c
@
x1 || -——->F— 1 . E
o]
\4 1 2 >
z1 2 g
DATA STRUCTURE | — 2z
REPRESENTATION: | x2 - 3 E
OR N
Y2 2 3 N
3~
Z22 / 4
X3 [_~» 4
< 4
v3 3 . 1
z3
x4 BAR ARRAY
Y4 4
24
JOINT ARRAY

Fig. 1 The simple array structure

*Computer Science Department, Boelter Hall 3731, University of California; Los Angeles, Los Angeles, Calif. 90024, USA.
tMcDonnell Douglas Automation Company, Long Beach, California: Current Affiliation: Computer Vision Corporation, Bedford,

Massachusetts 01730.

30

The Computer Journal

x1
Y1
zZ1
X2
Y2
z2

|
=
|

-

N

w

BEFORE DELETION OF
BAR NUMBER 2

o

|
S
|
|

N
=Wl WININ| -

Z3
X4
Y4
z4

JOINT BAR
ARRAY ARRAY

X1
Y1
21
X2
Y2
22
X3
Y3
23
X4
X4
Z4

1 3 4

=SS W[IN|=

AFTER DELETION OF
BAR NUMBER 2

H—-IH_JHN_J ———

Fig. 2(a) The simple array structure—bar deletion

X1

Y1

21
X2
Y2
22
X3
Y3
z3
X4
Y4
24

2. 3

—— ;.ﬁ_:_a
-
w
N »

dlelalwflw]| =

}3 BEFORE DELETION OF
JOINT 2

—
w

JOINT BAR
ARRAY ARRAY

X1
Y1
21
X3

[———
-
wWliN|fN]=
——
-
-

-l
N W

2

AFTER DELETION OF
JOINT 2

Z3
X4
Y4
z4

&
H—JH—IN
W -
H—Jw ——

Fig. 2(b) The simple array structure—joint deletion

deleted joint are decremented by one due to their shift in the
array and the joint numbers in the bar array greater than the
deleted joint number must be decremented by one. It is a
rather time consuming process for the deletion of one joint.
Fig. 2(b) demonstrates the deletion of a joint.

A second method for deletion reduces the time required to
delete an element. Instead of compacting the bar array to
eliminate a ‘hole’, the hole can be ‘plugged’ with the last bar
element in the array. A joint may be deleted in a similar manner;
however, the numbering scheme in the bar array must be
updated. This requires one pass through the bar array searching
for all occurrences of the last joint number (joint element used
to fill the ‘hole’). This joint number is replaced by the joint
number of the deleted joint. This second method has not been
implemented. Since the data structure is core resident, the
decrease in computer time would be insignificant to the
observer.

3. Advantages and disadvantages

The great benefit of the simplicity of the data structure is ease
of implementation. This ease is relative. The implementation of
interactive graphic systems is inherently intricate and costly.
SEP consists of about 8,000 source statements. It is written in
FORTRAN IV H and graphic communication is accom-
plished through GSP. It is made up of 130 subroutines, 63
overlay segments, and runs in a region of 164K bytes of core.
Among these subroutines are the subroutines to carry on the
basic data manipulation function: define and insert a joint into
the joint array; delete a bar and compress the bar array;
retrieve the coordinates of a joint; etc. Another group of

Volume 18 Number1

| /o19nJe/|ulwod/woo dnoolwepese//:sdiy Woll papeojumod

subroutines performs other essential tasks such as provides
convenient error messages to users, indicate dialogue optlonsi
to users, etc. This type of task is often not regarded enough byO
system designers. The remaining subroutines may be termed ash

‘overhead’ (but essential) subroutines; they support the system,5 S
often glue it together’ in actual practice. Other structuresO—
reported in the literature (starting with SKETCHPAD;Q
CORAL, etc. (Williams, 1971; Hamilton, 1970)) requu'e‘I>
sophisticated routines to allocate storage, deallocate storage,o
trace pointers for insertion and deletion of blocks, format eacha
block type, update pointers, and carry on other overhead’
tasks. Graphics systems based on these structures involve=.
larger and more intricate programs. S

Another advantage of the simple structure is the speed of'\)
retrieval. A joint or bar can be retrieved directly by computing
the location in the array. With other structures, retrieval time
will be longer since usually long lists of pointers or rings must
be traced. On the average, half of the blocks on a ring in ringed
structures have to be searched to retrieve a specific block.

The array structure uses no pointers to indicate the next
logical block (joint or a bar). Without the use of pointers, the
array structure has no ability to form hierarchies or share
common data. In fact, no subpictures can be defined. There is
only one picture and that is the entire data structure. Oper-
ations such as scaling, rotation and translations must be
performed on the entire structure. This is where sophisticated
structures show their advantages. However, the user is often
unaffected by some of these internal factors since the simple
structure does permit such functions, although at a higher
processing cost.

31

Fig. 3 Photograph of author using the structure edit program SEP on
an IBM 2250

Fig. 3 is a photograph of the author Seeley using SEP on the
IBM 2250. Hardcopy of displays is obtained (a) instantly by
means of a Polaroid camera attached to a swing-down hood or
(b) by means of a Stromberg Datagraphix 4060 plotter or a
Gerber plotter. Simple as the basic structure is, the implemented
SEP offers powerful and useful facilities to conveniently build
and manipulate complex object structures. Users may, for
example:

1. Design and modify frame structures through facilities to add,
modify and delete joints and line (bar) segments via light pen
and keyboard.

2. Rotate, scale and translate objects to acquire better viewing,
and correct such errors as missing points and lines, lines
connecting the wrong points, etc. often incurred in design-
ing complicated objects.

3. Mirror structures about a plane, by light pen detecting on
three joints or typing-in their coordinates; this is a powerful
operation in building up a structure from basic building
blocks.

Figs. 4(a), 4(b) and 4(c) demonstrate the mirroring techniques.
Fig. 4(a) shows an object with two bottom bars divided into five
bars each. In Fig. 4(b) it has been scaled down and mirrored
about the vertical plane. The object in Fig. 4(c) was built by
simply mirroring Fig. 4(b) about its top horizontal plane.

The SEP has been developed to the limits of the capabilities
of the array type data structure. Further development is not
warranted. Other more powerful data structures would have to
be implemented to provide more facilities than current ones in
SEP.

4. Concluding remarks

Graphics systems are tediously intricate and difficult to imple-
ment, debug, maintain and modify. The use of the simple data
structure as the basis for the operational and satisfactory inter-
active graphics system outlined was prompted by its ease of
implementation and maintenance compared to other more
complex structures. The simple structure formalised here is a
practical and attractive basis for a class of graphics systems.

Acknowledgement

Thanks are due to Dr. Robin Williams, IBM Research Labora-
tory, San Jose, California, for his helpful comments in this
article. The authors appreciate also the criticism of Mr.
Malcolm Atkinson, Computer Laboratory, University of
Cambridge.

32

Fig. 4(a) Bars divided into bar segments

’

AN

Fig. 4(b) Structure mirrored.

Fig. 4(c) Structure mirrored

20z udy 61 U0 1s9n6 Aq B68YSH/0E/1/81/I0IE/UlWOD/W0d dNO"dIWspEo.)/:SAY WO} PAPEOJUMOQ

The Computer Journal

References

HawmiLToN, J. A. (1970). A Survey of Data Structures for Interactive Graphics, The Rand Corporation, Report RM-6145-ARPA, April

1970, Santa Monica, California.

IBM System/360 Operating System Graphic Subroutine Package (GSP) for FORTRAN 1V, COBOL and PL/I, Form C27-6932, IBM Corpor-

ation, Programming Publications, Kingston, New York.

WiLLiAMmS, R. (1971). A Survey of Data Structures for Computer Graphics Systems, Computing Surveys, March 1971, Vol. 3, No. 1, pp.

1-21.

Book reviews

Computer Data Processing, by G. B. Davis (2nd edition), 1973;
662 pages, (McGraw-Hill, £6-35.)

This is a text-book of data processing aimed at students having their
first encounter with computing. Substantial changes have been made
to the original edition.

The book is clearly-written and copiously illustrated. There are
simple exercises at the end of every chapter and three self-test
quizzes. The claim that it is suitable for self-study is justified.

Until I reached page 122, I read every word and mentally answered
the exercises. This diligence was founded more on a desire to be
scrupulously fair than any other reason. I then realised, with dismay,
that there were still 540 pages to go and the Journal would be lucky
to get my review before the 3rd edition appeared, unless I changed
my tactics. I therefore apologise in advance for the less intense ex-
amination of the balance of the book.

This experience serves to emphasise the encyclopaedic proportions
of the work. There are very few topics, relevant to the subject, which
do not receive at least a mention. In his preface, Professor Davis
argues that ‘given the rate at which we forget, it is usually better to
err on the side of telling too much than too little’.

The result of this philosophy might be catalogued as follows:
unit record equipment and systems—45 pages; computer hardware
and number systems—122 pages; information system design and
development—108 pages ; programming—138 pages ; management—
108 pages; miscellaneous—121 pages.

In achieving this breadth, it is understandable that depth has
suffered. I do not think the treatment of most of the topics included
would satisfy a specialist in that area, even as an introduction, at any
rate because of what is omitted if not for what is said. For this
reason, I cannot see students of, say, a degree level course with a
major data processing content being advised to buy the book; they
would be better served by a collection of more specialised books.

A weakness in the text is its inadequate exposure of practical,
human problems facing data processing personnel, whether in their
dealings with each other and users or in the design of man/machine
interfaces. Also, to a reader who is accustomed to the elegant sim-
plicity of the NCC standards, the ANSI/ISO flowcharting symbols
used throughout the book will appear cluttered and cumbersome.
A small point is that to understand some examples and exercises a
knowledge of American terms is required (e.g. ‘sophomore’, ‘non-
alumni contributors’, ‘FICA-tax’).

A particular strength of the book is its description of hardware
devices; I cannot put my finger on another work which explains
such a variety so well. The whole book is also commendably up to
date.

As a text-book, then, it might be set for someone not specialising
in the area but who needs a wide appreciation of data processing;
for example, a student of business subjects. As general reading, it
would interest a newcomer to the computing profession who wished
to broaden his knowledge. A teacher might want a copy on his
library shelves for his students specialising in data processing, if only
for the factual hardware content and the well selected bibliography.
For all these uses, the price per page gives good value for money.

ANDREW PARKIN (Leicester)

Volume 18 Number1

Automated Analysis of Drugs and Other Substances of Pharmaceu-
tical Interest, by C. T. Rhodes and R. E. Hone, 1974; 291 pages.
(Butterworths, £5-95 hardcover, £3-95 paperback.)

This book gives a wide and brief coverage of automated analysis of
drugs, which is of great value to analysis in the pharmaceutical
industry, to pharmacologists and to clinical chemists. There is a
growing demand for such analyses with the rapidly increasing
number of drugs, and with the increase in statutory requirements for
quality control of drug manufacture. o

The scope of application of automated analysis of drugs (or2
metabolites) in biological fluids is wide; it includes studies on new=
drugs, on new formulations (for bloavaxlablhty), and on all drugs2
where a delicate control of dosage is required.

The book provides a general outline of the principal approaches, 3
citing only a few examples of each. Thus, it first deals with scopeB
of the subject, then the use of automated apparatus for chemical =
and physical measurements, data processing, evaluation of dosage @
forms, and the scope of automated procedures in drug analysis ins
biological fluids. This is followed by a narrower but deeper coverage 2
of analysis of selected groups of drugs, particularly antlblotlcsg
(including specialised microbiological techniques), steroids and_o
vitamins. Specific examples of the methods of estimation of certain 2 g
elements such as halogens, drugs containing certain chemical groups
(e.g. amine groups), and certain enzyme analyses are cited. 3

The concluding chapter partly answers the expected questions from &
those who wish to make the best of their presently available facili- 3
ties for the development of some kind of automated drug analysis. = E
Many interested research workers would have liked to see some :_
coverage of analysis of a few new or relatively new groups of drugs, 2
of automated biological and 1mmunoassay procedures, and of the—\
comparison of drug analysis by various methods.

J. W. BLack (London)

1} pape!

An Introduction to Automated Electrocardiogram Interpretation, by
P. W. MacFarlane and T. D. V. Lawrie, 1974; 115 pages.
(Butterworths Computers in Medicine Series, £2-20.)

sonb Aq 668751/0€/1/8

This short book makes an admirable introduction to the present {
state of the art. The authors describe briefly the principles of o 9
electrocardiography and techniques of ECG recording and data”.
transmission, and then go on to explain the general prmcnples of ©
economical analogue to digital conversion. They discuss in some-
what greater detail the algorithms underlying the automatic interpre- v,
tation of the trace and illustrate this in particular by the technique S N
of analysis of arrhythmias.

The reader should not assume that there is any detail in the text
which would be sufficient to help someone to program a computer
to analyse electrocardiograms. However the book can be strongly
recommended to cardiologists and hospital administrators who are
concerned with the economics and cost/benefit aspects of automated
electrocardiographic interpretation, and the book contains at the
end some realistic assessment of what this technique has to offer to
a group of cooperating hospitals.

C. J. DickinsoN (London)

