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To make further progress, resolution principle programs need to make better inferences and to make
them faster. Previous papers of the authors have presented a fairly general approach for taking some
advantage of the structure of special theories, for example, the theories of equality, partial ordering
and sets, and described experiments with a program based on this approach. The object of the
approach is to replace some or all of the axioms of the given theory by (refutation) complete, valid,
efficient (in time) inference rules.

In this paper, the approach is used to develop an improved procedure for ‘building in’ partial
ordering and a procedure for total ordering. These results may be stated roughly as follows.

1. If the five (not all independent) partial ordering axioms for {=, <, <} are replaced by the
irreflexivity rule r; and the transitivity rule r: (for <), by an expansion rule, and by an extension to
hyper-resolution, then refutation completeness is preserved.

2, Ifonly the connectivity axiom, {x < y v y < x}, is retained from the five total ordering axioms
for {=, <, <} and if the other four are replaced by r;, r;, and an antisymmetry rule, refutation
completeness ib preserved.

A program using total ordering inference rules is then described. Differences between the rules as
presented in the theoretical development and as implemented in the program are noted. The paper
concludes with a discussion of the program’s successful performance on a large collection of problems

taken from published papers.
(Received April 1973)
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1. Introduction

The purposes of programming a computer to prove theorems
concern Artificial Intelligence (Slagle, 1971), deduction, mathe-
matics, and mathematical logic. See (Slagle, 1972) for a dis-
cussion. The resolution principle (Robinson, 1965b) is an
inference rule used in automated theorem-proving. L. Wos et al.
(1964; 1965), J. Allen and D. Luckham (1970), and others have
written proof-finding programs embodying the resolution
principle. Although quite general, these programs have been
so slow that they have proved only a few theorems of any
interest.

As a step in coping with this problem, a previous paper
(Slagle, 1972) presented a fairly general approach which, when
given the axioms of some special theory, often yields complete,
valid, efficient (in time) rules corresponding to some or all of
the given axioms. In that paper, the approach was applied to
several theories, including the theories of equality, partial
ordering, and sets. The theories of equality and partial ordering
were built into a computer program, and the experimental
results were favourable (Slagle and Norton, 1973). In the
present paper, the approach is applied to partial ordering again
and to total ordering. For partial ordering, the result obtained
is Theorem 1, which is an improvement over Theorem 7 in
Slagle (1972). Theorem 1 can be extended to set theory, etc.
just as Theorem 7 in Slagle (1972) was.

A new application of the approach is to ‘build in’ the theory
of total ordering. Total ordering is important because it is so
frequently found in other important theories, for example,
number theory. The result obtained (Theorem 2) turned out to
be considerably simpler than we had expected beforehand.
This result suggested modifications and additions to make the
partial ordering program of Slagle and Norton (1973), into a
total ordering program. The program departs from the theory
in several significant ways, illustrating issues which arise at the
time of implementation. The new program has performed
successfully on a large collection of problems involving partial
and total ordering.
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Much of the theoretical groundwork for this paper has bee&
presented in Slagle (1972), and the total ordering program xg
similar in many respects to the partial ordering programi
reported in Slagle and Norton (1973). It would require é
large amount of repetition of the material in Slagle (1972) ané
Slagle and Norton (1973) to make this paper self-contained;
We therefore refer freely to these earlier papers, and assumg
famlhanty on the reader’s part with them.

Table 1 is a key to symbols used in this paper. The table i
binding in the sense that, for example, when we use n, wE
implicitly mean a nonnegative integer even though this is not
said explicitly. ‘Rule’ and ‘variable’ are abbreviations fok
‘inference rule’ and ‘individual variable’.

Lgal100)

vI6Y/LI8 I

2. Brief review of hyper-resolution and paramodulation
We start with a vocabulary of (individual) variables, functlo@:
symbols, and predicate symbols. Terms, atoms, and literals are
introduced next. (See Robinson, 1965b; Robinson, 1967
Slagle, 1971 for a full description.) A clause is a finite disjunction
of zero or more literals. When convenient, we regard a claug
as the set of its literals. To facilitate matters, we take s1m11:g
liberties with the nomenclature later, but what is meant will
always be clear from the context. An mgu (most general
unifier) p for a set of expressions is a substitution with the
property that, for any two members e, and e, of the se
e, = e,u, and there is no more general substitution with this
property}. See Slagle (1972) for precise definitions of deduction,
subsumption deduction, factoring, equality axioms, etc. It is
assumed that factoring accompanies every rule used in the
present paper. A refutation is a deduction of the empty
(contradictory) clause, denoted by false. In what follows, we
assume the presence of a literal ordering L (Slagle, 1972) but
seldom mention L explicitly. Thus, we shall be implicitly
dealing with factored L-electrons, L — r, (L-hyper-resolution),
L — r, (L-paramodulation), L — r; (L-irreflexivity rule), etc.

Definitions
A clause E’ = {av D} is a factored electron of an electron
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1As in this definition, the symbol = with surrounding spaces will be used for the equality (identity) of two expressions. Without surrounding

spaces, it will be used as the equality predicate symbol in an atom.
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Table 1 Key to symbols

Y
<

g
S

Meaning(s)

atom, positive literal, antisymmetry
deduction

expression, expansion
function B
hyper-resolution

irreflexivity, index for integer
literal

nonnegative integer
paramodulation, positive integer
integer

(inference) rule

term

term, transitivity

term

(individual) variable

variable

variable

function

set of binary predicates
clause

clause, disjunction of literals
electron, clause, disjunction of literals
literal ordering

nucleus

set of predicate symbols
countable set of clauses

set of rules

countable set of clauses
countable set of clauses
substitution

most general unifier

most general simultaneous unifier
inclusive or

not

less than or equal

less than

contained in or equal

is a member of

union

if and only if

yields
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E = {D,v D,} where D, is a disjunction of one or more
positive literals and where D, is a disjunction of zero or more
positive literals, if there is an mgu (most general unifier) u for
D, such that

(a) a=2D 1M

b D=Eu-a.

The literal a is the distinguished literal (Kowalski and Hayes,
1969) of E’. In this paper, the use of {av D} implies that a is
not one of the literals in D. If a might be in D, we shall use
{a} U D. A similar convention is used throughout this paper.

Definitions
A clause N' = {~a;v...v~a,vD'} is afactored nucleus
of a nucleus N = {D,v...vD,v D} where D is a disjunction
of zero or more positive 11terals 1f there is an mgsu (most general
simultaneous unifier) o of Dy, ..., D, such that D’ = Do and
fori=1,...,p, ~a; = Do. The literals ~ay, ..., ~a, are
the dzstmgutshed Izterals of N'. Note that a nucleus is a factored
nucleus of itself.

The literals shown first in clauses are the distinguished literals.
We assume that no variable in one clause occurs in another.
‘We shall state our results in terms of hyper-resolution

(Robinson, 1965a), though they can be extended to renamable
clash (or even semantic) resolution.

Definitions

Hyper-resolution with respect to S is the following rule,

denoted by r,. From the (nucleus N € S with) factored nucleus
= {kyv...vk,v D} and from the (electrons E; with)

factored electrons E; = {a;v D;} where

(@) there is an mgsu o such that ~a,06 = ko simultaneously for
all i,

(b) no a,o or ~a;s occurs in N'c except as k;o (This and corre-
sponding conditions are clash conditions.),

(¢) no a0 occurs in Ejo, .. ., Ejo except in Ejo itself as a;o
(This is the electron clash condition, which holds for all rules
in this paper and therefore will not be repeated for sub-
sequent rules.),

infer the hyper-resolvent (resolvent) Do U Do U ...V Dyo.

Definitions
A hyper-deduction is a deduction in which hyper-resolutlon i
the only inference rule used. A hyper-refutation is a hyper=
deduction of false.

O|UM

Definition
The set of {= }-reflexive axioms for S consists of {x=x} an
the functionally reflexive axioms for S.

We shall write e[t] to indicate that a term ¢ occurs in
particular position in e. Later in the same discussion, e[s] wi
mean the result obtained by replacing that particular occurs
rence of ¢ in e by s. 3

In this paper, unlike Slagle (1972), ‘two-way paramodulatlonO
as defined below, is used. The following definition is an extens,
sion of that glven by G. Robinson and L. Wos (1969). Notg
that both premises for paramodulation are factored electrong
and therefore consist of only positive literals.

é?@ﬁ’sdutﬁnou papeo|

Definitions
Paramodulation, denoted by r,, is the following rule. From th
factored electrons {s=t (or t=s)vD,;} and {a[u]lv Dz
where

(a) there is an mgu u such that su = up,
(b) su is not u,
(¢) a[t]u is not (s=1)u (clash condition),

/778 Parone/ulw

infer the paramodulant {a[t]u} v D,p U D,pu.

3. Partial ordering and total ordering
In this section, we state the partial and total ordering axiom
we shall use, two lemmas, the definition of a P-ordering, and
two rules common to the partial and total ordering completer,
ness theorems. The proofs of the lemmas are straightforwarzﬁ
and are not given. Lemma A allows us to dispense with three

axioms (and therefore some rule complications) used in Slagle

(1972). Lemma B simply shows that every total ordering as

given by our axiomatisation, is a partial ordering. For partial

ordering, we used the symbols < and < in Slagle (1972), since

we subsequently discussed set theory. We shall use < and <

here, since we shall subsequently discuss the theory of total

ordering.

1By®B | uo ysenb Aq |L6155h/6Y

Definitions

The set of partial ordering axioms for {=, <, <} with respect
to S consists of {x < x} (reflexivity axiom), {~(x < x)}
(irreflexivity axiom), {~(x < y)v ~(y < z)vx < z} (transi-
tivity axiom), {~(x < y)vx < yvx=y} (expansion axiom),
{~(x < y)vx < y} (less axiom), and the equality axioms for
both S and the above axioms.
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Definitions

The set of total ordering axioms for {=, <, <} with respect to
S consists of {x < x}, {~(x < x)}, {~x <PV~ <2V
x<zh{~(x <y)v~(y < x)vx=y} (antisymmetry axiom),
{x < yvy < x} (connectivity axiom), and the equality axioms
for both S and the above axioms.

Lemma A:

The conjunction of the transitivity axiom, the expansion axiom,
the less axiom, and the equality axioms for the above axioms has
the following valid consequences:

@{~x<yv~@<2vx<z}
B) {~x<y)v~(p<zvx<z}
@ {~x<y)v~(p<zvx<z}

Lemma B:

(a) The expansion and less axioms are valid consequences of the
conjunction of the irreflexivity, tranmsitivity, antisymmetry, and
connectivity axioms.

(b) Therefore, every partial ordering axiom fbr {=,<,<}isa
valid consequence of the set of total ordering axioms for

{=, <, <}

Definition
Let P be a set of predicate symbols. A P-ordering is a literal

ordering (Slagle, 1972) in which every member of P has equal
rank.

Definition
The irreflexivity rule (for <), denoted by r,, is the following.
From the factored electron E’ = {s < tv D} where

(a) E' is not the connectivity axiom,
(b) there is an mgu u such that sy = tu,

infer Du.

Definition

The transitivity rule (for <), denoted by r,, is the following.
From the factored electrons {s < ¢, v D,;} and {t, < uv D,}
where there is an mgu u such that

(@ tip = top = 1,

(b) neither sp nor up is ¢,

infer {sy < up} U D,p L D,pu.

4. Refutation completeness for the theory of partial ordering
For partial ordering, we extend the definitions of hyper-resolu-
tion, factoring, and subsumption, and we define the expansion
rule. We define an irreflexive deduction for the completeness
of total ordering and an extended irreflexive deduction for the
completeness of partial ordering. Our completeness theorem
(Theorem 1) for the theory of partial ordering states that, under
appropriate conditions, there is an extended irreflexive
refutation.

Definition

Extended hyper-resolution, denoted by r,,, yields everything
yielded by r, and, in addition, the distinguished literal s, < ¢,
or s, =t, or t;=s, in a factored electron may be unified with
a distinguished literal ~(s, < ¢,) in a factored nucleus just as
if the distinguished literal in the factored electron were
5 < 8.

Definition
The expansion rule, denoted by r,, is the following. From the
factored electron {s < tv D}, infer {s < tvs=t} u D.

For the deduction by {r,, r,, ;, r,, r.} mentioned in Lemma
C and Theorem 1, factoring is extended so that the predicate
symbols < and < as well as = and < may be combined in the
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obvious way. For example, a positive literal containing < may
be unified with a positive literal containing < just as if the <
were <. Similarly, a negative literal containing < may be
unified with a negative literal containing < just as if the <
were <.

Definition

An (extended) irreflexive deduction d is a deduction having the
following property. If E’ is a factored electron in d and if E” is
the instance of E’ used as a premise in an inference in d,

(a) {x < x} does not subsume E”,
(b) if {x=x} subsumes E”, then either E’ is {x=x} and the
inference is an (extended) hyper-resolution or E’ is a func-

tionally reflexive axiom and the inference is a paramodu-
lation into E’.

Definition

C less-equal-subsumes E if some clause obtained from C by
replacing zero or more literals s; < ¢;, s;=t;, and t;=s; by
the corresponding literals s; < ¢; subsumes E.

The proof of the following lemma is similar in spirit though
simpler than the lemma preceding Theorem 7 in Slagle (19725
Theorem 1 is proved from Lemma C in much the same way 8
Theorem 7 is proved in Slagle (1972) Note that, unlike 1g
Slagle (1972), the reflexivity axiom {x < x} is not in T ig
Lemma C and Theorem 1. Recall that an electron consists of

one or more positive literals. %
Lemma C: S
Let Bbe {=, <, <}. Let T be the set of {=}-reflexive axioms

Jor S. Let Q be the set of partial ordering axioms for B. Let g
be a B-ordering. If there is a subsumption L-hyper-deductlon
from S U Q of an electron (or the empty clause) E, there is @

extended irreflexive deduction from S u T by ]
={L_ ens L — rp’L r, L — r, L _re} %

o]

of some clause C which less-equal-subsumes E. %
Theorem 1: %
Let Bbe {=, <, <}. Let T be the set of {= }-reflexive axionis

for S. Let Q be the set of partial ordering axioms for B. Let E
be a B-ordering. S is Q-unsatisfiable iff there is an extend
irreflexive refutation from S O T by {L — ro,, L — r,, L —
l"'rn - e}

Aq L6L99§7 g’u

5. Refutation completeness for the theory of total ordering
For total ordering, we state the antisymmetry rule. Next \@
extend the definitions of factoring and subsumption in @
different way than we did for partial ordering. We then prove
our main result, Theorem 2. This completeness theorem for the
theory of total ordering states that, under appropriate co@
ditions, there is an irreflexive refutation.

Y202 I

Definition

The antisymmetry rule, denoted by r,, is the following. From
the factored electrons {s;, < ¢, v D,}and {¢t, < s, v D,} where
there is an mgsu o such that s,6 = 5,6 = sand t,0 = 1,0 = ¢,
infer {s=t} U Do U D,o.

For the irreflexive deduction mentioned in Lemma D and
Theorem 2, factoring is extended so that the predicate symbols
= and < may be combined in the obvious way. For example, a
positive literal containing = may be unified with a positive
literal containing < just as if the = were <. Unlike the partial
ordering case, the predicate symbols < and < need never be
combined, roughly because the less axiom is not in the set of
total ordering axioms. C equal-subsumes E if some clause
obtained from C by replacing zero or more literals s;=¢; and
t;=s; by the corresponding literals s; < ¢, subsumes E. Sis a
set of clauses without negative inequalities if no literal of the
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form ~(s < ) nor of the form ~(s < 1) occurs in S. Note
that any set of clauses can be transformed into a logically
equivalent (in the presence of the set of total ordering axioms)
set of clauses without negative inequalities. To do this, the
connectivity axiom is used to transform ~(s < 7) into ¢ < s
and ~(s < t) into t < 5. We now prove the following lemma,
whose proof is similar to that of Lemma C. The proof of
Theorem 2 then follows from Lemma D in much the same way
as Theorem 1 is proved from Lemma C.

Lemma D:

Let T consist of the connectivity axiom and the {=}-reflexive
axioms for a set S of clauses without negative inequalities. Let (0]
be the set of total ordering axioms for {=, <, < }. Let L be a
{=, <}-ordering. If there is a subsumption L-hyper-deduction
Jrom S U Q of an electron (or the empty clause) E, there is an
irreflexive deduction from SUT by R = {L—rn,L~r,
L—r,L~—r,L —r,} of some clause C which equal-subsumes
E.

Proof:

The proofis by induction on the depth n of the given deduction.
The case when 7 is zero is trivial. The only point worth noting
is that, if the given deduction consists of {x < x}, the irre-
flexive deduction d consists of {x=2x}. Assume that the lemma
is true for n = 0, . . ., q. Let the deduction have depth g + 1.
Let the final inference be E;, . . ., E, N+ Ewhere E|, . . ., E,
are the corresponding factored electrons. Let E; = {k;vD;}.
If E'o is the instance used in the inference and if {x=x} or
{x¥ < x} subsumes Do, which is contained in E, we let d
consist of {x=x}, which equal-subsumes E. (The cases when
{x=x} or {x < x} subsumes ko are handled later.)

Except in the above case, we use the inductive hypothesis. For
eachi = 1,..., p, there is an irreflexive deduction from S U T
by R of some clause C; which equal-subsumes E;. If some C;
equal-subsumes E, we are done. If there is no such C;, there is
at Jeast one literal in each C; corresponding to the distinguished
literal in E7. Hence, for each i there is a factored electron C;
corresponding to E; such that C; equal-subsumes E’, and such
that the distinguished literal in C’, is the only literal in C;
corresponding to the distinguished literal in E|. Here, as else-
where, the {=, <}-ordering L presents no difficulties and so
will not be mentioned again in this proof. The remainder of the
proof is divided into cases depending on the nucleus N. The
clash and the electron clash conditions are easily verified in all
cases.

Case 1:

If Nis {~(x < x)}, then N’ is N. The factored electron is
E{ = {s < tv D}. The resolvent E is Do. If E; were the
connectivity axiom, E would have been subsumed by {x < x}.
If E] is not the connectivity axiom, applying r; to C| yields a
clause which equal-subsumes E,

Case 2:

If Nis {~(x<y)v~(y <z)vx <z}, the treatment is
similar to that of transitivity of < in Theorem 6 in Slagle
(1972).

Case 3:

IfNis {~(x < y)v ~(y < x)vx=yp}, then N’ is either N or
{~(x < x}vx=x}. The latter case is impossible. The fac-
tored electrons are E{ = {s; < t,vD,}and E] = {t, < s, v
D,}. The resolvent E is {s=t} U D,6 U D,6 where 5,0 =
5,0 = s and t,0 = t,0 = t. Note that s # ¢, since otherwise
{x=x} would have subsumed E. If the predicate symbol in the
distinguished literal in C{ or C; is =, then C or C} respectively
would have equal-subsumed E. Hence, both predicate symbols
are <. Applying the antisymmetry rule r, to C/ and C) yields
a clause which equal-subsumes E.
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Case 4:

If Nis {x; # xoVv ~(x; < x,)VX, < X,}, then N’ is N. The
factored electrons are Ej = {s;,=s,v D,} and E;={t <t,
v D,}. The resolvent E is {so0 < t,0} U D,0 U D,s. If
510 = 590 or if t;0 = t,0, then C; or C/ respectively would
have equal-subsumed E. Whether ¢, < t, or t,=t, is an
instance of the distinguished literal in C,, a paramodulant of
C{ into C; equal-subsumes E. The arguments given in the
previous two sentences provide special treatment for the pred-
icate symbol <, which cannot be treated like other predicate
symbols as in Case 6 below.

Case 5:

If Nis {x, # xov ~(x; < x,)vx, < X,}, the treatment is
similar to that in the previous case.

Case 6:

If N is a member of Q and has not been treated in a previous

case, N is an equality axiom, and the treatment is similar to
that in Theorem 4 in Slagle (1972).

Case 7:

If N is in S, the treatment is similar to that in Theorem 4 irf

Slagle (1972). This completes the proof. s
o

Theorem 2: ;ﬁ

Let T consist of the connectivity axiom and the {=}-reflexive-
axioms for a set S of clauses without negative inequalities. Let (5
be the set of total ordering axioms for {=, <, <}. Let L be &
{=, <)-ordering. S is Q-unsatisfiable iff there is an irre:ﬂexivez
refutation from SOT by {L—r,L — rpyL —ry, L —r,g
L—r,}. a

Proof:

LetRbe {L —r,L —r,, L —r,L—r,L—r,}.
A. Suppose there is an irreflexive refutation from S U T'by R3
Since every member of Ris Q-valid, S U T U Qs unsatisﬁable%
Since every member of T is in Q or is an instance of {x=x}3
which is in Q, S U Q is unsatisfiable; that is, S is Q-unsatis=
fiable.
B. Suppose that S'is Q-unsatisfiable. By Theorem 2 in Slagle2>
(1972), there is a subsumption L-hyper-refutation from S U 0.
Hence, by Lemma D, there is an irreflexive deduction from=
S U T'by R of some clause C which equal-subsumes the empty®
clause, false. Since false is the only clause which equal-subsumes§
false, this deduction is a refutation.

dnoolwep
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6. A total ordering computer program

In Slagle and Norton (1973) we described a computer program§
which uses a modified version of the partial ordering rulesg
described in Slagle (1972). The reader familiar with Slagle and”.
Norton (1973) will observe that the program represents ai
modification of this paper’s partial ordering rules as well. TheZ.
program was used to prove a set of 32 problems adapted from!3
Hoare (1971). Foley and Hoare, in (1971), continued the®
analysis of the Quicksort algorithm begun in Hoare (1971), and
we were able to convert the additional analysis more or less
directly into twelve new problems, five of which require the
hypothesis of total ordering. Thus we obtained a set of 44
problems on which we could test the performance of a total
ordering program.

The new program was created directly from the old one, rather
than developed from the theoretical basis for dealing with total
ordering by inference rules presented in this paper. The changes
necessary to the old program turned out to be minimal. We
simply replacéd the treatment of the expansion axiom with a
restricted use of the connectivity axiom. Recall that the partial
ordering program had an expansion rule allowing the inference
of {t;y <t,vt;=t,vE} from a clause {t, < t,vE} (if
t; # t,}. The new clause was allowed to participate only in
resolution steps (on the literal #, < ¢,, since all steps were
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{t)<t, VE } { x<y Vy<x } {s<uVD}
expansion
{"suVvD} {ty<t, V=t VE } {DVuss } {t<t, VE}
antis try
Du U { (ty=ty)u } U Ex Du U { (ty=ty)u } U En
Fig. 1a Fig. 1

restricted to first literals of clauses). The total ordering program
dispenses with the expansion rule. Instead, the connectivity
axiom {x < yvy < x} is automatically included in the set of
input clauses for a problem, but it is restricted to participation
in resolution steps only, in the same way that clauses inferred
by the expansion rule were restricted in the old program. Thus
the connectivity axiom does not ever become a premise for the
transitivity rule or the antisymmetry rule, which in our pro-
gram are combined into a single rule (which also carries out
transitivity for both < and <; i.e. embodies the clauses of
Lemma A).

In view of Lemma B it should not be surprising that the total
ordering program dispenses with expansion. Unfortunately, the
discrepancies between theory and implementation make us
unable to prove that the program is as ‘strong’ as the old one.
That is, we would like to demonstrate that any inference made
by the old program which involved the expansion rule could be
replaced by a chain of inferences using only rules in the present
program. However, consider the following ‘heuristic justi-
fication’.

Any use of expansion by the old program was restricted to be
of the form shown in Fig. 1(a). Here we assume s < u is
unifiable with #; < 7, by u. D can be assumed to contain only
positive literals. In Fig. 1(b) we show a derivation of the same
result from the same input clauses, using the connectivity
axiom and the antisymmetry rule. The program cannot quite
perform this chain of inferences, due to the restriction of the
first literal strategy. Thus our argument is only suggestive, and
we must fall back upon the observation that the first literal
strategy, though incomplete, has never presented any difficulties
for our purposes; i.e. all of the theorems we have been con-
sidering have proofs compatible with this restriction.

We added one heuristic to the total ordering program. The
user may specify function symbols which may not be nested.
At the same time that each literal of a new clause is checked to
see that it does not exceed the literal length bound, it is also
checked to see that it does not contain any forbidden nestings.

We now contrast our program with the theoretical develop-
ment presented in the first part of this paper. We will mention
only the major differences. Finer details can be inferred from
Slagle and Norton (1973) and the above description.

The program implements hyper-resolution by sequences of
Pl-deductions. It augments this by allowing IMPRES
(IMPlication RESolution) steps, which permit inferences via
resolution from input clauses of the form {~a;v...v ~a,v
@,4+1} and arbitrary unit nuclei which unify with a, ., ,. If any
of the literals ~a;o in the resolvent are complements of existing
electrons, they are immediately deleted from the resolvent.
IMPRES steps add an element of ‘working backward’ to the
‘working forward’ character of proofs produced using hyper-
resolution. '

Paramodulation is used in the program without the presence
of functionally reflexive axioms. This necessitates paramodu-
lation into nuclei aswell as into electrons. However, the program
prohibits paramodulation into free variables. This last point
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eliminates the justification for the irreflexivity rule. We can
simply use the axiom {~x < x} in all problems.

Other differences particular to total ordering are the already
mentioned rule combining transitivity and antisymmetry, and
the use of the connectivity axiom only in resolution steps. We
include the axiom {x < x} in all problems when using the
program, and use a literal evaluation scheme based on implicit
subsumptions and resolutions with {x=x}, {x < x}, and
{~x < x}. When formulating problems we do not convert to
clauses without negative inequalities. We did, however, alter
the formulation of the axioms assumed for the ‘plus one’ and
‘minus one’ functions.

The program uses general subsumption to discard newly
generated clauses which are subsumed by existing clauses. This
is more restrictive than the property of being an irreflexive
deduction. Finally, and most important, the program uses the
first literal strategy for all rules (except IMPRES), even though
it is known to be incomplete.

7. Experimental results
As an example of the program’s performance, we present the
proof obtained (in 13 seconds) for the final lemma corr%—
sponding to the analysis of Foley and Hoare (1971). This may
be axiomatised as: 3
i<}

{m < p}

{r<q}

{g<n}

{~m<xv~x<iv~j<yv~y<nvAX < A()}
{~m<xv~x<yv~y<jvAX) < A(»)}
{~i<xvA~x<yv~y <nvAx) < A()}

{~A(p) < A(9)}

(The notation reflects that of Foley and Hoare (1971).)

In addition, we have available {x=x}, {x < x}, a
{x < yvy < x), the connectivity axiom.The proof begins wi
three IMPRES steps:
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9. {~q <j} 6 IMPRES 8, followed by 2 and 3
10. {~i < p} 7 IMPRES 8, followed by 3 and 4
11. {~p<iv~j<gq} 5IMPRES 8, followed by 2 and 4
The connectivity axiom is then used twice to obtain %
12. {~j<gqvi < p} (the intermediate P1-resolvent) &
13. {i<pvqg <j} ©

Clause 13 resolves with clause 10, and the result with clause?
to complete the proof. <

It is reasonable to expect that a total ordering program wou]éﬂ
take longer to prove partial ordering problems, since the
introduction of connectivity allows extra inferences. In pag
ticular, the number of these extra inferences will differ for our
program depending on which literal is placed first in the COB;T
nectivity axiom. For a large and diverse collection of problems;
the difference may not be as pronounced, but for our problem
set the choice was clear. In fact, the new program took sig-
nificantly longer than the partial ordering program on only one
of the 39 partial ordering problems when we entered the con-
nectivity axiom as {x < yvy < x}. This problem was one of
the new ones adapted from Foley and Hoare (1971), and the
increase was from 28 to 91 seconds of cpu time. For the other
problems, the times were comparable; in particular, the original
32 problems of Slagle and Norton (1973) were proved in
approximately the same amount of time as before. Of course
the new program could also prove the 5 problems requiring
total ordering. Each of two of these required as much effort as
the previous hardest problem (around 6 minutes of cpu time to
generate proofs using 27 clauses derived from 15 input clauses),
and also for these we needed the new heuristic restricting
function nesting. The entire set of 44 problems when proved
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using the total ordering program required about 35 minutes of
cpu time.

It should be emphasised that the total ordering inference rules
as used in the program are not merely equivalent to the use of
the corresponding chains of resolutions and paramodulations
involving the corresponding total ordering axioms. The
absence of the axioms prevents their appearance in a prolifer-
ation of other, unneeded, resolution and paramodulation
inferences. In addition, the intermediate clauses of the chains of
inferences are not present to participate in yet more excess
inferences. The theoretical development in the first part of this
paper reveals that only a fraction of the resolution and para-
modulation steps involving some of the total ordering axioms
are necessary to preserve completeness. The rules have the
effect of ‘compiling’ the restrictions thus allowed into valid
procedures which are efficient in time.

In Slagle and Norton (1973) we related how it was necessary
to treat partial ordering by rules. Using partial ordering axioms,
only the simplest of the examples could be proved, given a time
limit of 400 seconds per problem. This was true even though
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we used all the heuristics which were not dependent on the
partial ordering rules, in particular the first literal strategy (but
not the IMPRES mechanism).

For the case of total ordering, we tried to use the partial
ordering program as described in Slagle and Norton (1973),
simply including the connectivity axiom with the statement of
each problem. Thus we were using partial ordering rules,
retaining all heuristics, but treating the extension to total
ordering by axiom. The example at the beginning of this section,
which is the simplest of the five total ordering problems, could
not be proved in 400 seconds. What happened was that the
connectivity axiom participated in transitivity steps involving
axioms 1 through 4, and the clauses produced by these infer-
ences participated in further unnecessary transitivity steps, etc.
Once the connectivity axiom was restricted to participate only
in resolution steps, i.e. once we used the total ordering rule, the
situation was brought under control, and the proof produced
in 19 seconds. Deleting the expansion rule, once we observed
that it apparently was superfluous, further reduced the time to
13 seconds.
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Book review
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An Introduction to Digital Logic, by A. Potton, 1973; 144 pages.
(Macmillan, £2-40.)

would help, since it is not until Chapter 8 that real-life problems are;
introduced which give a feel for the subject. Further, a glossary3
should have been included in a book such as this, which is aimed at@
physicists, electrical engineers and computer scientists. Finally, the
sections on transistor logic in the early chapters should have been%
put in an appendix together with a more complete description ofQ
their operation, since they added little to the understanding of*™
principles.
Because there are a number of gaps in the subjects covered, (Gray

At first sight this looks to be a very useful introductory book,
especially since a glance through the contents reveals chapters on
combinatorial logic, boolean algebra, Karnaugh maps, bistable
systems, counters and registers, binary arithmetic operations and
practical logic design considerations. The book is aimed at readers
with no previous logic design or electronics experience.

Although such basic material is presented, the criticisms are that
for a novice, the presentation appears dry, with a number of terms
undefined and a few references to transistors which add nothing to

code and race hazards are only mentioned in passing), I feel this
book would only be useful as an adjunct to a lecture course and
would not be suitable for self-study by novices.

the reader’s understanding. An introductory chapter outlining the
goals of logic design and the history and variety of logic elements

S. R. WiLBUR (London)
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