Program construction by refinements preserving
correctness

G. A. Lanzarone* and M. Ornaghi

Gruppo di Elettronica e Cibernetica, Istituto di Fisica dell’Universita di Milano, Via Viotti, 5-20133 Milano, Italy

]

This paper deals with the problem of constructing the final version Pt of a flowchart program
through successive refinements P2, . . ., Pt~1 that preserve correctness proved on its first version P,

Correctness conditions are associated with P! in the frame of Manna’s formalism. With each
refinement P* a relational (data) structure % ¢ is associated, and given representation functions T
relate structures &¢, ¥ i*1 of refinements P¢, Pi+l,

Construction of P’+1 from P¢ proceeds as follows: (a) every block of Pi is considered as an
elementary program over &% and its correctness conditions are expressed with terms of .%i;
(b) these correctness conditions are translated by using the representation function 7;; (c) the
translated correctness conditions are transformed into expansion conditions, expressed with terms
of ¥ i+1 only, for every block of P¢; (d) by means of these expansion conditions, expansions of

blocks are constructed and connected to obtain Pi+1,
The constructive character of the above process is emphasised with a detailed example.

In the appendix a discussion relates this paper to other works connecting constructivism and

program theory.
(Received July 1973)

Writing a program to meet some specific demands, one is
faced with two types of problems: (1) how to build such a
program; (2) how to guarantee that the program provides the
required features.

With regard to Point 1, the most recent trend (Dijkstra,
1968a; Mills, 1971; Wirth, 1971; Woodger, 1971; Dahl,
Dijkstra and Hoare, 1972) is to consider the construction of a
program as a process of successive approximations, by means
of a sequence of programs P!, P2, ... P', where P! is an
outline of the solution of the problem in hand, P2?,... P*"!
are progressive refinements of P! and P’ is the final version of
P! in the chosen programming language.

As for Point 2, the approach to the problem has been to
express the behaviour of a given program by suitable conditions
(called correctness conditions), and to give some procedures
which permit correctness verification by proving predicate
calculus theorems (Floyd, 1967; Manna, 1969a; 1969b); for
a more complete reference, see review (Elspas, et al., 1972)
and bibliography (London, 1970).

In this last approach, there is the difficulty of expressing the
characteristics required of the program as correctness con-
ditions, because of the discrepancy between the predicate
calculus language and the programming language. Besides, the
proofs are often cumbersome because the correctness con-
ditions are imposed on the program when it is already written.
A way out of these difficulties is to deal with the two types of
problems mentioned above by making use of both program
construction and program verification methods and by trying
to unify them.

So far, only a few examples have been developed along these
lines (Hull, Enright and Sedgwick, 1972; Jones, 1972).

The following situation appears when dealing with the prob-
lem of proving program correctness in parallel with the con-
struction of the sequence of programs P!, P2, ..., P'.

The correspondence between the characteristics required of
the program and those designed into its first version P! is
verified when proving the total correctness of P! (with respect
to the input and output conditions which express the desired
behaviour). P! must be rich enough to contain explicitly and
precisely all the principal functions identified by the program-

) Pepeojumoq

mer as essential to an adequate solution of the problem. On thé;
other hand, it mustn’t contain details useless for this goal, te:
obtain better intelligibility and simplicity of veriﬁcation, and
not to put unnecessary restrictions on the successive reﬁnem
ments. During the construction of the final version P* througlg
the sequence P2, P3, ..., P!, the proofs no longer aim ag
expressing and verlfymg the correctness of the successively
written programs, but at verifying that each refinemeng
maintains the original characteristics required of the program@

This is in fact the situation examined in the present paper;
which treats a method of construction of the refinement P'+§
of a program P°, maintaining the characteristics required an&
already verified in P°.

The construction process takes into account the dlﬂ‘eren%
features of each semantic level P, from the one closer to the
problem and dealing with abstract structures, i.e. structure§
which en_]oy general propertles, to the one expressed in a
programming language, concermng itself with computer corgq
management. The question is that of determining how to makB
such a refinement P*! from P’ with respect to the three
aspects implied in every program: data, operations (functlons
and predicates), control flow. ﬂ>

The transition from data structures on which P is defined to
that of P**! is made by means of a representation function thaqt;
expresses the properties of such a refinement, i.e. the choices
made by the programmer. On this basis, and with regard to the.
operations available at the successive level, each block dB
program P is expanded into a subprogram of Pi*1 and the
conditions are given under which such expansion is made
correctly, that is according to the representation function
chosen.

The conditions of correct expansion therefore turn out to be
useful in practice as a guide to refinement constructions, and
the representation function acts as documentation of the
choices made by the programmer in program construction.

It is then shown that, for each level to maintain the correctness
proved at the first level with respect to assigned conditions, both
conditions of correct expansion and interface conditions which
express the retention of the connections between blocks existing
at the first level, must be satisfied.

The present paper is a result of a joint research project sponsored by CNR under contract no. 71.02104/75, and by Honeywell Information
Systems Italia (HISI) (AST project—Quality Assurance Service of Software Engineering Section—Pregnana Milanese).

*Honeywell Information Systems Italia (HISI).

Volume 18 Number1

The representation function here defined for refinements is
similar to the simulation relation between programs given in
Milner (1971). However, the simulation relation (expressed in
an algebraic formalism) serves there to break down the
correctness proof of a given program A into the proof of
correctness (assumed easier) of a program B also given, and the
proof that B simulates A ; in this paper, instead, the method is
centred on showing what procedures must be followed in
constructing step by step the final program so that it is auto-
matically correct (with respect to the characteristics required
and proved at the first level).

The method is presented by using Manna’s formalisation of
program properties in predicate-calculus. It is general in that
it doesn’t consider specific models of data structures (these will
be treated in future work); a case of characterisation of seman-
tic levels and their hierarchical relationships is given informally
in Dijkstra, (1968b).

To illustrate the presented method, an example is shown and
discussed at the end of this paper.

1. Introductory definitions

In the Introduction we said that a program semantic level is
characterised by the structure on which it is defined; more
precisely:

Definition 1:
A structure is a triple: & = {92, #, #), where:
2 is a domain (characterising data on which the program
operates);
Z is a set of functions f: 2 — 2 (total over 9);
Ie & (Iis the identity function);
2 is a set of predicates p: 2 — 2 (total over D).

Definition 2:
A program P on structure & = {9, ¥, #) is a flowchart with
the following four types of statements (or blocks):

START
l ' I}
@: |y «f®) | (feF) ®): [y«<2s()| (geF)
i 1
! {
©@: |) (re?) @:|z<hy) | (heF)
Yr FX

1
HALT

with the condition that in the flowchart there is only one state-
ment of type (a) (initial statement), one or more statements of
type (d) (final statements), and none, one or more statements
of type (b) (assignment statements) and of type (c) (test
statements).

We will call x input variable(s), y program variable(s), z
output variable(s) (2 can be thought of as a space of scalars or
asaspace of n-ples: 2: 9 x I x ... x D).

Execution of program P is defined according to connections
between blocks, in the usual way: given an input value
x = ¢ (¢ € 9), the initial statement assigns value f(£) to y, then
passes control to the next block; if this is an assignment state-
ment, the current value of y is modified accordingly and control
passes to the next block; if it is a test statement, the next block
is selected depending on the value of the predicate p(¢), and so
on.

Computation terminates only if a final block is reached ; in this
case, the final value n = A(&) is assigned to z (& is the current

value of y before execution of final block and # is the function it
performs).

In this fashion, program P computes the function P: 9 — 9
defined in the following way: let & € @; P(&) is defined if and
only if the computation relative to the initial value x = &
terminates with a final value z = 5 and n = P (&) holds.

Now let ¢: 2 - {T,F} and ¢: 2 x 9 — {T, F} be two
(total) predicates such that: Vx3z (¢(x) = Y(x, z)); they express
the required input/output behaviour of the program. We use the
following definition of total correctness given in Manna
(1969a):

Definition 3:

A program P is totally correct with respect to the input pre-
dicate ¢ and the output predicate y if and only if, for every &
such that @(&) = T, P(¢) is defined and, making n = P(¢&),
V(& n) = T holds.

The theorem of correctness given in Manna (1969a) holds,
which states that total correctness of a program can be reduced
to the unsatisfiability (on structure & on which the program
is defined) of a predicate-calculus formula uniquely associated o
with the program.

The usual techniques of both formal and informal verification &
(given for example in Floyd, 1967; Manna, 19696; Maurer,
1972) hold too.

We assumed functions fe & and predicates p € 2 total over
92, however, the correctness theorem and the quoted veri- =
fication techniques can easily be extended to functions and
predicates having domains

Umo

Yy woJj pape

D(f)yc 2, D(p) = 2

decidable, by introducing the special statement

LOOP

(see Manna, 1970). This is important from our point of view,
because in developing programs by successive refinements
functions and predicates are generally partial at each level; we ® ®
are however allowed (since we consider only total correct- g
ness, not partial correctness) to assume that a suﬁic1ently
wide (possibly maximal) domain can be determined, over which o
functions and predicates are total.

Being that D(f) < 2, we must consider, in the block by block
expansion process, some interface conditions, as will be speci-
fied in the following.

6|:)!J,J€/|U[UJO()/LUO:)'an'O!LUGpEOB//ZSdJ,

L

L

2. Relation between P’ and Pi*!
The aim of this section is to give a precise definition, based on
the concept of representation function t;, of what is meant by:
‘Pi*t! js a correct refinement of P” (when passing from one
structure to another); we will use the expression: ‘Pi+1 ™
represents P with respect to (wrt) 7;”. Let P be a program
over 9; (i.e. on a structure &; having domain 2,) with input
variables x‘, program variables y’ and output variables z‘; let
P’ be totally correct wrt a given input predicate ¢’(x?), and
to a given output predicate yi(x’, z); let P*! be a program
over 9,;,, with input variables x'*!, program variables y‘**
and output variables z'*!; in addition, let the followmg
function be assigned:
1. D1 2 D, .

We will call t; representation function, in the sense that each
element 1 € 9;,, represents by means of 7; a unique element
Ti(n) € 9;.

We have assumed that 7;: 9;,, — 9, is a total function over
D,;..; if 1, is a partial function over a domain D(t)) € 9;,,,
we will extend 7; over 2;,, by stating that:

z |udv 61 uoisenb Aq £0ZSS

-

The Computer Journal

VXt ¢ D(t) < 0 = 1(x™Y) ,
assuming that the domain of 7; is decidable. We will also
assume that the ‘undefined’ element o is such that: o ¢ 2; and
that for each predicate ¢': 9; —» {7, F};
V92, x 9; —»{TF} etc. ,
it is:

¢i(@) = F; VxVy'(y'(x’, o) = y¥(@,y") = F); etc .
In this way, results about total functions t; will also hold for
partial functions t; extended in the above fashion.

Definition 4:
Pi*! represents PY wrt the representation function 7; if and
only if there exist two predicates @'*!(x'*!) and y'*1(x'*?,
z'*1), wrt which P**! is totally correct and such that:
(a) ¥x' I (pi(x’) = (x' = 1 (x") A @™ I (xTT)));
(b) in+1 Vzi+1 (((Pi+ l(xi+'1) A I//_i+ l(xi+ 1? zi+1)) =

(@' (X AP (x), 1,z)) .
The preceding (a) and (b) formulae express the relation which
must exist, by means of t;, between the input conditions of P
and those of P ***! (expression (a)) and between the input/output
relations which must be satisfied by P‘ and Pi*! respectively
(expression ()). Such relations correspond to that required in
Milner (1971) for simulation.

In Definition 4, ¢ and ' are given predicates and the exist-
ence of ¢'*! and of Y'*!, wrt which P*? be totally correct, is
required. It can be seen that the problem of deciding whether
Pi*1 represents PP wrt 1;, stated in the above fashion, is a
second-order problem; however, from our constructive point
of view, this problem is irrelevant.

The following result can be immediately proved.

Theorem 1:

If P? represents P! wrt the representation function 7, and if
P3 represents P2 wrt the representation function 7,, then P3
represents P! wrt the representation function 7,.7,.

In the following section we will show how to pass from a
program P’ over 9, to a program Pi*! over 9,,, in such a
way that P*! represents P wrt a given representation function
7;; the transitivity of the representation relation given by the
above result guarantees that, passing from P’ to P!
(1 £i<t— 1), weare allowed to ignore what was previously
done in passing from one to the other of the preceding levels.

3. Building P'*! from P’

To abbreviate notation we will examine in this section only

programs P! and P2 of the sequence P!, P2, ..., P*; however,

the following is valid for any P and P*!. The construction of

P2 from P! is done in the following way:

1. Statements of P! are numbered. For example, let P! be the
following program (on first-level structure {2,, #,, 2,)):

0: [y« FixH

with: fLe #F,pi € Py

! and
1: piyY x!, y!, z! variables over 9,
JT F
2: [yt £IY | 30 | 2t < £300
L | 1}

HALT

In what follows, for simplicity, we will refer to program P!
above.

Volume 18 Number 1

2. Statements 0, 1, 2, 3 are considered as the following element-
ary programs P}, P}, P}, P} respectively:

Pi: Pl Pl PL:
(STARJ (START)
]
y' < i) y' < yi y' <y} y' <y}
l 1 ! !
viey | (peY) |2 esioh| e rioh
! Y \ ! 1!
‘ HALT > yi <y |y} <yt (HALT) yley!
1

i 1)
(HAL"E) G—IALT)

The dummy variables yi(1 < j < 3) have been introduced to
express formally the mput and output predicates of programs
P/(0O<j < 3). Such predicates are clearly the following:
for Pl: x'e D(f!) (input predicate); y! = fl(x') (outp@t
predicateg;
for P1: yl e D(p}l) (input); yi = yl Api(y}) (output of Trlg

yé = yiATIn(yl) (output of False path);

for P}: y2 € D(f}) (input); y1 = f1(y}) (output); _%’
for Pi:y! e D(f}) (input); z! = f 2(ya,) (output); 2
3. Each elementary program P1 is expanded into a corré%-
sponding program P? on (@2, F,, P,.> The structu@
{Dy, Fy, P,y is deﬁned by the programmer’s choices and tl%
relation between 2, and 9, is stated by the choice and corg-
struction of the representation function t,: 2, — ;. hse
This relation constitutes a guide to the construction of
expansions (in a sense that will be made more precise in thg
appendix) by means of the following predicates which assur%
correctness of step 3. (we postpone the treatment of this subje<§
to the next section, so as not to interrupt the present exposmon)gr
For expansion P2

¢0(x2) = 1,(x*) € D(f});
P52, Yf)d—r 1) = fim &)

For expansion P?:
¢f(yf) = rl(yl) € D(p});

‘zr(yl, 2) = 7,(y2) = 7,(y2) A pl(7,(y?)) (output True);

def.

b3e(y2, ¥2) = 1,(y2) = 1,(y3) A T1p1(ry(»3) (output False).
def.

Analogously for predicates ¢}, |//2, ¢!, w;, the dummy var1>

ables y?, y2 etc. have been introduced in order to formalEI
express the input and output predicates of the expanswng
which are therefore programs of the following type: =

L uo 1s8nb Aq 20Z5S/SS/L/8L/AI

57

yley? 22 < fAy?)

- —-— Py - —— = YAyl 2
HALT HALT

4. The various expansions of the single statements of P! are
merged into one program P2 as follows:

(a) the exit of P2 is connected to the entrance of P2, elimina-
ting the dummy assignments y? « y? and y? « y?; such
an elimination is symbolically indicated by:

|

- |
(b) the exit of P2 is connected to the entrance of P2 in the
same way;

¢) the exit of P2 is connected to the entrance of P2 by the
>Xit of 7y 2
elimination:

{ START
+

y;«y?

(d) the exit of P is connected to the entrance of P by the
elimination:

1

y: < y? yVeyl | = l

HALT

A program P? with input variables x2, program variables y2
and output variables z? is thus obtained.

4. Conditions of correct expansion
Note that:

(a) If block expans1ons are such as to satisfy the correctness
conditions ¢2, ¥, the obtained program P? represents P!, and
therefore one is sure not to have overlooked any connection
between the original blocks (in the opposite case, errors can
arise, since the domains of the various blocks are different);

(b) On the other hand, in practice a strict requirement like this

can lead in particular cases (especially in programs of great size)
to a superfluous increase in the number of variables and/or
instructions;
(¢) To proceed in a more flexible way, it is preferable to adopt
the condition that each block expansion be a representation of
the block itself, according to Definition 4. However, this will
also imply verification of interface conditions (i.e. that each
exit from one expansion is accepted as input by the next one).
We will then show, first, what are the interface conditions
mentioned in point (¢) above; as a consequence we will demon-
strate the validity of statement (@). Here also we refer to expan-
sion of program P! given in the previous section.

Definition 5:

Program P} is a correct expansion, wrt 7, of statement j of
P! if and only if P2 represents the elementary program P h
wrt 7,, according to Deﬁmtlon 4,

Definition 6:

Given that (p Y20 < j < 3) are the correctness predicates
assigned for the expansions P} (they represent the elementary &
programs P1 wrt 1), the 1nterface conditions between expan- S
sions are the following:

(@) interface between P2 and P2:
Ci(93, o,%) = VX Vx? Vy}H{(x' € D(f) A fi(x") e D(PY))

= [(X = 7,(x*) A p3(X®) AYF(X%, ¥D) = @2(yD]} -
(b) interface between P2 and P2:

Ci(03, ¥ir, 03) = Yyl Vy? VyZ{(yl e D(p}) A

def.
1Y) Ay € D(f3)) =
[61 = 0D A1) A 0101, ¥D) = 036D1} .

The interface conditions between P} and P and between P2
and P? are obtained in a similar way.

The following theorem can be proved, by induction on the
execution sequences of P; (for the definition of execution
sequence see for instance Manna, 1969b.)

9/[/8L/6|:)!J,J€/|U[UJO()/LUO:)'an'O!LUGpEOB//ZSdJ,N WioJ) POPEO|UM

Theorem 2:
If program P! is totally correct wrt the input predicate ¢'(x") T
and the output predicate ' (x!, z'); if all the expansions P2 of &
the statements j of program P1 are ‘correct expansions’ in the O
sense of Definition 5; if all the interface conditions 2 o
C(02, V2, 0?), Ci(p3, Y3, ¢2) etc. are true; and if P2 1s‘°
constructed connecting to each other the different expanswns &
P} as stated in Point 4 of previous section; then P? is totally S
correct wrt the input predicate (p‘(‘rl(xz)) A @%(x?) and the
output predicate y(z,(x?), 1,(z?)).

20z Iudy

Corollary 1:
P? represents P! wrt 1,.

The proof of corollary 1 is immediate, when considering that:
(a) ¢! is the input predicate of P!, for which the condition:

vx!(p'(x') = x* € D(f!)) must hold;
(b) P2 is a correct expansion of P{, for which the condition:
vx! Ix3(x! € D(f1) = (x' = 1,(x*) A p3(x?))) must hold
(because of Definitions 4 and 5).

Considering that the program P!, to which we have referred
till now, contains every type of statement, the expansion
procedure, Theorem 2 and Corollary 1 given above hold in
general. Since the representation relation is transitive (Theorem
1), the following corollary holds.

Corollary 2:
If in the sequence P!, P2, .. ., P* of programs, P**1 is obtained
from P! (1 < i<t — 1) according to Steps 1, 2, 3, 4 given

The Computer Journal

above, then, 7; being the representation function 2;,; - 2,,
P! represents P! wrt the representation function:

Ty Ta® eee '11-1:91—’ @1 .
The correctness predicates of P* are of the form:
input predicate: (p‘(‘rl Tyt e Ty 1(x'))/\y'(x')
output predicate VA (L ST S ¢'<) NE FET PR S (4))]

where y'(x’) is a predicate whlch depends on the 7 — 1
refinements made; for example, for ¢ = 3, y3(x®) =
(‘/’o("z(xs)) A @3(x%).

Some remarks are at this point opportune with regard to the
validity of Theorem 2:
(@) we have now to prove that if expansions are totally correct
wrt the predicates ¢?, 1/12 then verification of the interface
conditions is not necessary. In fact, let
Cs(9}) = Vyi(r,(vD € D(p}) = 91(vD)

def.

Colg}) = Vx! V(" € DUFD ALK € D(p)
' = (f1x") = u,(2) = 93()

Gi(e)) = Ca(9))
and if P2 is totally correct wrt @32 and y2, then

Cy(9?) = Cy(93, V3, 03)

(and analogously for expansions of the other blocks). On the
other hand, conditions C; are automatically satisfied when the
expansions are correct wrt the predicates (2)2 gl/z therefore, in
this case, all the conditions of Theorem 2 are verlﬁed Note that
C; and C, are sufficient conditions weaker than C; and it is
often easier to verify them.

(b) C, also are conditions sufficient but not necessary for the
validity of the theorem. Necessary conditions can be determined
on the basis of ¢, Y% only when these express a functional
connection, that is, are such that: Vx3!z (¢3(x) = Y3(x, 2));
in general the connection is a relation because of the con-
structive character of the procedure, i.e. the fact that the correct-
ness conditions (pﬁ., 1113. of the expansions are determined before
making the block expansions themselves.

then

5. Example

In this example we will drop some of the assumptions about
formalism that were used in the previous exposition. Speci-
fically, instead of considering domains 9, = D x...%x D,
Dy =9, x ... X @2, we will consider several variables, of
different types, over 9, and 9, and the representation function
will therefore also express the relationship between those
variables. The necessary modifications will be specified as they
appear.

1. First-level program P*

The problem is the following: ‘A symmetric matrix with positive
or null elements has to be multiplied by itself until the maximum
of its elements is greater than or equal to an assigned number
a e R* (R* is the set of positive reals)’.

The minimum requirement to do this is that in the space S of
symmetric matrices N x N an internal product is defined and
that with each matrix s € S a number ||s| € R* (max of elements)
is uniquely associated, to be compared with « € R*.

The first-level structure is therefore:

= (Sv R+s {“ I '}, {>}>
with the following properties:
1. {(R*, =) is the structure of positive or null reals with the
ordering >;
2.Vsy,5,€8:5,°5,€8S;
3.VseS: |s| e RY;
4. a non-empty subset S, < S exists, such that:

Volume 18 Number1

VseS,: lim |s"] > o .

n— o

Point 4 corresponds to the requirement of a non-empty
solution of the problem.
Let’s now consider the following program P* on &, :

(START ’

0: | (a.b. ¢y « (vl xl i)

1: c>

T F

t9

(=1, 21,) « (a. ¢) 3| @) = (ab, la-bi)

HALT

where (x1), (a, b, ¢), (z1;, z1,) are input, program and outpuﬁ
variables, respectively. fD

The properties of structure &, given above are sufficient t(g
demonstrate that P! is totally correct with respect to the3

|umoQ

following predicates: 6»
1(xl): xlesS,; %
lp (XI 211, 212) = 8
Jn(zl; = x1"Azl, = [x1I"|AVmM(l <K m < n= ||xI"] < @) g
Azl >) &

(n,men < R*, 5 set of natural numbers). é

Space S of symmetric matrices over R* satisfies the properties3
of structure &, and the predicates ¢' and ! formally expres
the requirements of the problem definition; in addition, P! isS
easily understandable and can therefore be considered a good\
assessment of the problem. Nothing is said, at the first level =
about how functions - and | || will be realised ; this will depend%
on how matrices will be represented in core memory. However,s
we are now sure, since the properties required for .5’1 hold, thaﬁ
the problem has a solution, and an outline of it is P*. The\
implied variables are of different types, i.e. x1, a, b, z1, are{ﬂ
individual variables over S and c, z1, are individual varlableso
over R*. The domains of the various blocks are thereform—
different, and we have to take this into account not only in theca
verification, but also in the expansion process; to achieve this,}
we can make use of the following input/output conditions fog
the elementary programs P} (0 <j < 3):

eix) = (x1 € 8); Yi(x1, a4, by,¢)) =(a; = by = x1Acy =
fixt II)

¥20¢ Iud V 6

@i(ay, by, ¢)) = (cr € RY);
Pip(ay, by, ¢y, a5, by, ¢2) = (a4, bys ¢1) = (a3, b5,) A ey > @)
Pip(ay, by, ¢y, a3, by, ¢3) = ((ay, by, ¢1) = (a3, b3, c3) Acz < a);
¢L(az by, ;) = (@€ SAc, € RY);

Y3(as, by, €3, 214, 21,) = (21 = a3 Azl = 63);

©l(as, b3, ¢3) = (a3, b€ SAc; € RY);

Yi(as, by, c3, ay, by, ¢) =(a; = ay"bynby = bsney = |ayl) -

We can now deal with the representation of data in the
expansions of P!,

2. The representation function

To save memory space, only elements s(i,j) with i < j are
stored in a vector v. This can be done by stating the following
correspondence between the matrix indices and the vector
indices:

(1,1, (1,2, 2,2), (1,3), (2,3), (3,3), ...
>) 3, 4, 5 6, .
Such a correspondence is assigned by the function:
(@) fU) = (i,), with j = max {klk(k — 1)/2 < I}
and i=1—-j({ — 1)2
®) 6,5 =1, w1thl—j(j— D2 +ifori<j
fY@GH =f7G, i) for i >

Then there exists a one-to-one correspondence between the
space V of vectors of dimensions N(N + 1)/2 and the space S
of symmetric matrices N x N:
T: V «— S, which is assigned as follows:
WeV(is=tv) <) =v)forl <I< NN + 1)/2);
Vse S =17"1s) = ((f1()) = sG,j)for1 <i<j
and 1 <j < N)).
7 has the following properties:

S.Yv(ve V<1(v)eS);
6. Vv, v, € V(I(vy) = T(v,) < v, = V,).
The second-level domain is therefore: 2, = V'u R*. We will
consider for P2 the following variables:
(x2,1,j,...) input variables;
(e,f,d,i,j,...) program variables;
(224, 22,, 1, j, . . .) output variables.

i,J, ... are variables over 5 and have been introduced in order
to construct the operations acting on single elements of vectors
v € V. Their final number will be known only at the end of the
expansion construction and is unimportant at this point since
only x2,e,f,d, 22,22, represent the first-level variables
x1,a, b, c, z1 in the way specified by the following functions:
1(x2, i, j,...) = x1 if and only if x1 = 7(x2);
(e, f,d,1,j,...) = (a, b, ¢) if and only if

a=7e),b=1f)and d = c;
1y(224, 225,14, . . .) = (214, z1,) if and only if

zly = 1(Z2)Azl, = 22, .

7, connects the input variables, 7, the program variables,
the output variables. It is necessary to distinguish between
T, Tp, Ty Since the input, program and output variables are not
the same; however, both for P! and P2, the program variables
are the same for all the blocks and therefore the formulae given
in the previous sections still hold.

3. The correctness predicates
Predicates ¢3, wz (0 <j < 3) are obtained from ¢ and tﬁ‘ by
means of 7;, 7p,7y in the following way:
Pa(x2,i,...) = @i(t(x2,1,...) =(x2€ V)
(on the basis of property 5 of 7);
YA(X2, g, ey, £y, dyy iy, ..) =
‘/’(1)(71("2’ ios - -), Tp(ey, £y, dy, . . L)
=(e; =f; = x2ad, = ||[7(x2)])
(on the basis of properties 5 and 6 of 7).
Analogously:
¢3ey, £y, dy, iy, ...) =d, e RY;

l/;%T(el,fl, dl’ il’ o ooy ez, fz, dz, iz, . .) = el = ez/\f = fz/\
di =dynd, > a;

lIIfF(el, fl’ dl’ il’ .« oy e3, f3, ds, i3, .. .) = el = e3/\f1 = f3/\
dl = d3/\d3 < a;

Qe 1y, doy i, ...) =e,e VAd, e R

Ei’g(ez,fz, dyy Bz, . . o, 22y, 22,) = 22) = ey Ady = 22,;

Qles, 13, ds, 05, . ..) = e3,f,€ VAdy e RY;

1&%{93, f3, ds, i3, ooy el, fl’ dl’ il’ .. .) =

(T(e)) = T(e3) T(E)Afy = f3Ady = |[T(e)l]) .

4. Construction of expansions
Expansions P} are made on the structure:

&y = VU RY, {+, % Max, [,v()}, {>}>

where +, *, Max, / and > are defined in the usual fashion in
R*.v(l) is the extraction of the /th component of vector v.

We have to express the predicates <;b§ and |ﬁ§ on the structure
&,; this will constitute a guide to construction of expansions
P?. The only terms that appear in the above predicates ¢ and
¢12 not already expressed on &, are:

(D ITx2)[15 AD) T(e,) = T(es) -7(f5); AID) [IT(e)ll -
Besides, having defined |s| = Max {s(i,j)|1 <i< N and
1 < j < N}, the expression

IZWI = Max {v()I1 << NN + 1)/2}
holds for every vector v of dimension N(N + 1)/2.

As for the relation II between e, e;, f;, we have to find a
vector product), expressed in terms of the components and
such that:
7.Vvy, V3 € V(I(vy ® V) = T(vy) - T(v2)).

In fact, in such a case 7(e,) = 7(e;) -7(f;) can be expressed a
el = e3 @ f3.

To construct the product &), we use the following procedure:2

(a) The matrix product is defined as usual by means of sums ands’
products between the components, i.e.:

8. 51205,)) = %sl(i, k) * s,(k,j) (512 = $51°52)-
(b) On the other hand, we must have:

Tl(syvsy) = T H(s) ® T (sy).

(c) Remembermg that 7!(s) = v if and only if v(f ~1(i,j)) =
s, forl<i<Nand1<j<N (see para. 2), makmg
v, = 1°4sy), v, =T7Xs,), Vi =T (sy,), the followmgg
must hold:

v12(f_1(i3j)) = Zvl(f_l(i, k)) * v2(.f l(k’.]))
forl <i<N and 1 < j < N. Therefore:

10. V(GG ~ D2 + D) = 3 WG ~ D2 = Ky »
v.(jG — D2 + k) +
. :z+: vitk(k — 1)/2 + 1) =
GG = D2 +) +
. z vitk(k — 1)/2 + i) *
s vk — /2 +j) &

peofimoq

Iwspese//:sdny w

N
0D

102SS/SS/1/8 1L /aRme/ulwod/w

0senb Aq

forl <j< Nandi<j.

We are now able to express each component vlz(l);f
(I =j(j — 1)/2 + i) by means of sums and products on the2
components of v, and v,, that is, we have constructed the\)
product (® required. Expression (10) will serve as a guide td};J
construction of the corresponding expansion.

This procedure is more general, i.e. can be applied each time
some given operations (and their properties) on a data structure
are to be represented on a different structure, whose relation-
ship with the first one is known.

Coming back to the present example, we have now:

11. [7(x2)| = Max {x2()|1 <1< N(N + 1)/2}

(analogously for |7(e,)||) and we can express
7(e,) = 7(e;) -T(f3) as follows:

12. ¢,(j(G — D2 + i) = IZ

- D2+ k)®LUGG-D2+k)+ ...
(continuing as in (10)) for 1 < j < Nand 1 <i <.
The expansions P? correct wrt ¢3 and x/zz are therefore the

following:

The Computer Journal

(P} on the basis of (11) and of P2, ¥2;
P? on the basis of ¢, §2;
P?$ on the basis of ¢2, §?;

P73 on the basis of (11), (12) and of ¢2, ZS)

P2 START

[(e, f,d) « (x2, x2, Max {XZ(/)H <I< NN+ l)/Z}—I
]
[(e.,n.dlw(e,f.d)]

|
HALT

2.
Pl P START

(e,f,d) — (e, 1, dy)

(e, d) « (e, dy)

l

(21,, z13) « (e, d)

€2,12,d)) « (e,1,d) | | (e5.05,d3) « (e, f, d)

HALT HALT HALT

The variables i, j, . . . don’t appear in P2 and P2 because no
property is required of them, and they are not modified (the
same for i, j, f in P2). These variables could appear in P2, P2
with arbitrary assignments, but this is unnecessary.

Finally, merging the expansions P} (according to step 4 of
Section 3) the second-level program P2 is obtained, correct

wrt the following predicates (because of what is stated in
Section 4):

02 1(x2) € S,
Y2: In[E(22,) = T(x2)" A 22, = [E(x2)"] A

AVM(l S m < n= |T(x2)"]| <))Az2;, > a] .
The predicates ¢ and y/2, the representation functions ;, tp, 7,

and the first-level program P* constitute a documentation of the
program P2 and of the choices made for its construction, i.e.:

() the input/output behaviour of P2 is expressed, by means of
7, on the basis of that of P!, e.g. the input vector x2 cor-
responds to the matrix x1 in the way specified by 7(x2) = x1
and the output vector z2, corresponds to the matrix
zl; = x1" in the way specified by 7(z2,) = 7(x2)";

(®) ;, 7y indicate how to supply the input and output data to
obtain the initial requirement made in P1.

In this example the interface conditions didn’t appear since
the expansions were correct wrt the predicates @3, Y2, If, for
instance, the expansion of block 2 were called (as a subroutine)
by several points of a more complex program with different
matrix dimensions, instead of constructing different pairs of
predicates ¢?, Y for each call, it would be necessary to assign
to the subroutine a unique pair of correctness predicates which
contain the matrix dimension as a parameter. In this and other
practical cases, therefore, verification of interface conditions
becomes necessary.

Volume 18 Number 1

P2:
START
(e’ f, dv ivj) - (63, fsv tl’;',, 0, 1)
(e = = = = = —
i<j
T ¥
lei+ | l(i‘_i)4—(l._i+ 1)
e(j(j— N2+ i)« [z e(i-(i — 1)/2 + k) *
k=1 N
, f(j-(j— D2+ k) +
J . o
S oetk-(k — 12 + i) 5
k=i+1
. fG-(G=D2+k + 2
Zoelk-(k —)2+ i) f%’
k=j+1 oy
fk-(k — D)2 +/>] 3
3
=
| =
@
(etiti—12+i> :I) <
o
1/ - f%’
3
d e e(j(j— 1)2 + i) 5
o]
C
o
Q
o
3
Q
[e]
3.
S
)
(e|~f|;("|)"—(('.".l/) %
o
@
HALT 5
[$)]
=
[6)]
[$)]
N
o
~
[on
<
e
2
Appendix &

o]
With the following remarks, we want here to make more
precise what we intended in the previous sections for ‘coff-
structive character’ of the described method: 5

=

(@) P! is a program on a structure S =42, F, 2,5
correctness predicates and other assertions about program
P must contain terms referring to structure &,. Formally,
they must be expressed in a theory %, of which & is a
model;

() In the same way, P? is a program on a structure
&2 =Dy F1, P,), thus containing terms referring to .
The properties of the representation function 7,: 2, — 9,
and the predicates @’ lﬁ. containing 7; must be given in
terms that appear both in &; and &,. Formally, goﬁ., ¥
must be expressed in a theory %, of which a suitable
structure #;, (union of &, and &, and containing ,) is a
model;

(¢) If a pair of predicates (Z)j, J/ﬁ containing only terms of &,
and equivalent to ¢?, Y% in %, can be found, then this
constitutes a guide to construction of expansions P2
(as in the example). Theoretically, this is related to the
program synthesis problem, stated as follows (Constable,

61

1971; Marini and Miglioli, 1973, Degli Antoni, Miglioli
and Onaghi, 1974);

Let ¢ and ¥ be two predicates expressed in a theory %
having a model &; is it possible, by proving proposition

% F Vx(o(x) = 3z(Y(x, 2)))

for Kleene’s intuitionistic theory of natural numbers (see

the quoted references). We only observe here that, since

the eguivalence between predicates (2, .//3. and predicates
%, Y3 is verified, it is also verified that:

- €12 FVXH(PUx?) = I22(J%(x%, 2%)). In some cases

i . ble in @ build ol . the proof of 3. can be reduced into a proof of:
gunlzxttiagg; spl)ll;:c;lve:haf;: in €°), to build a partial recursive 4. %, F Vx? (¢§ (x2) = 372 @3 2 7%); if in %, the
L D(f) = (81 F o)} (+ valid in &) synthesis is possible, the related techniques can be

. = Q means ‘valid in

2.if ¢ & D(f) and 1O, then & £ Y&, m)? applied. In any case, the construction of @2, |7/§ can be a
.ifée and g = , then > M)

useful guide both for verification of formula 4. and for
Obviously, the answer depends on theory & it is positive construction of expansions P?.

References .

ConsTABLE R. L. (1971). Constructive mathematics and automatic program writers, IFIP congress 71, Ljubljana, p. 8.

DaHL, O.-J., DuKsTRA, E. W., and HOARE, C. A. R. (1972). Structured Programming, Academic Press.

DEGLI ANTONI, G., MiGLIOLI, P. A., and ORNAGHI, M. (1974). Top-down approach to the synthesis of programs. Collogues sur la pro-
grammation, Paris, 9-11 April 1974. Lecture notes on Compt. Sc., Springer-Verlag.

DuksTRA, E. W. (1968a). A constructive approach to the problem of program correctness, BIT, Vol. 8, pp. 174-186.

DuxksTRA, E. W. (1968b). The structure of ‘THE’ multiprogramming system, CACM, Vol. 11, No. 5, p. 341.

DuKSTRA, E. W. (1969). Structured programming, Conference on Software Engineering Techniques, Rome, Oct. 1969.

ELspas, B. et al. (1972). An assessment of techniques for proving program correctness, ACM Computing Surveys, Vol. 4, No. 2, June 1972.

Froyp, R. W. (1967). Assigning meanings to programs, Proc. Symp. Appl. Math. 19, American Math. Soc., pp. 19-32.

HuLi, T. E., ENRIGHT, W. H., and SEDGWICK, A. E. (1972). The correctness of numerical algorithms, ACM SIGPLAN Notices, Vol. 7,
No. 1, pp. 66-73.

Jongs, C. B. (1972). Formal development of correct algorithms: an example based on Earley’s recogniser, ACM SIGPLAN Notices, Vol. 7,
No. 1, pp. 150-169.

LonpoN, R. L. (1970). Bibliography on proving the correctness of computer programs, Machine Intelligence, Vol. 5, Eds. Meltzer, Michie,
American Elsevier, pp. 569-580.

MANNA, Z. (1969a). The correctness of programs, J. of Comp. and Sys. Scie., Vol. 3.

MANNA, Z. (1969b). Properties of programs and the first-order predicate calculus, JACM, Vol. 16, No. 2, Ap. 1969.

MANNA, Z. (1970). Introduction to mathematical theory of computation, C.S. 382A (Spring 1970), Computer Sc. Dept, Stanford University,
(to appear by McGraw-Hill).

MARrNL, D., and MicLioLs, P. A. (1973). Characterization of programs and their synthesis from a formalized theory, MFCS Symposium,
High Tatras, Sept. 1973.

MAURER, W. D. (1972). Theory and practice of algorithm verification. Memo No. ERL-M 315, Berkeley, Calif., Jan. 1972.

MILNER, R. (1971). An algebraic definition of simulation between programs, Second Int. Joint Conf. on Artificial Intelligence, 1-3 Sept. 1971,
p. 481.

MiLts, H. (1971). Top-down programming in large systems, in: Courant Comp. Sc. Symp. on Debugging Techniques in Large Systems,
Randall Rustin ed. pp. 41-55.

WIRTH, N. (1971). Program development by stepwise refinement, CACM, April 1971.

WOODGER, M. (1971). On semantic levels in programming, IFIP Congress 71, Ljubljana, Aug. 1971.

202 udy 61 U0 1s8nB Aq 025G H/SS/1/8L/AI01IE/UlWOD/ W00 dno dlwspeoe)/:SAjY Wolj paPeojuMoq

The Computer Journal

