A postfix notation for logic circuits

F. G. Duncan,* D. Zissos, and Maureen Wallst

Reverse Polish (postfix) notation is well known to compiler writers through its relationship to the
concepts of the stack and the tree (Randell and Russell, 1969). A development of the ideas of
postfix notation is proposed which in principle can be applied to any information structure expressible
as a directed graph. In the present paper the developed notation is specialised to the needs of logic
circuits. It has already proved itself as a powerful and convenient tool in logic design. Its considerable
advantages over the conventional notation of Boolean expressions stem from the immediate one-to-
one correspondence between its symbols and the elements of the physical circuit. In addition it has
been found most useful for the representation of circuits in computer storage, particularly for

programs concerned with automatic circuit design.

(Received July 1973)

1. Introduction
In an earlier paper (Zissos and Duncan, 1972) two of the present
authors proposed the introduction of NAND and NOR
operators to enable a one-to-one correspondence to be achieved
between the symbols of Boolean expressions and equations and
the elements of logic circuits. The most serious disadvantage
of the notation then proposed has been an excessive need for
brackets, resulting in frequent transcription errors, The need
for a bracket-free notation was apparent, and it seemed
reasonable to begin with a second look at the reverse Polish
(postfix) system.

In the usual postfix system, each operator is written after its
operands:

a + bappearsasab +
a— bappearsasab —
b — aappearsasba — .

The number of operands required by an operator must be fixed
and is implicit in the operator itself. The notation does not
take account of commutativity except that it respects the actual
ordering of operands.

Where an operator in ordinary notation is used with differing
numbers of operands (e.g. monadic and dyadic minus), a
distinct operator symbol must be admitted’ into the postfix
system for each number of operands (‘adicity’). Thus if we use
¢—’ as above for dyadic minus (subtraction) we must have
something like ‘neg’ for monadic minus (negation):

e.g. —a appears as g neg .

Expressions as those given above can be treated as operands in
the building up of more complicated expressions. This intro-
duces no ambiguity to be resolved by the use of brackets. Thus
(@ + b)(c — d) — flg appearsasab + cd — x fg /| —
while
((a + b)(c — d) —f)/g appearsasab + cd — x f—g/.

As was pointed out in Zissos and Duncan (1972), NOR and
NAND gates used in logic circuits have differing ‘fan-in’, and
so the corresponding operators were allowed to have variable
numbers of operands, that is, variable ‘adicity’.

For arithmetic expressions we might do something similar—
beginning by writing ‘—1’ and ‘—2’ for monadic and dyadic
minus respectively, and, for good measure, writing in the
adicity of every operator explicitly.

Thus (—a + b)(c — d) would now appear as

a—1b+2cd—-2x2.

D=

s

Fig. 1 NAND circuit for ABC + AD

A B c A D

Fig. 2 A tree structure

It should be noted at this stage thata + b + c¢ can be written a;
abc+3

aswellasab +2c +2andasabc +2 +2.

The form a b ¢ + 3 is much more satisfying than either of thes
other two forms; it can be read as ‘the sum of a, b, ¢’ rather tha
‘the sum of a and the sum of b, ¢’. There is, after all, nothing in=
the nature of addition to suggest it is essentially dyadic. §

We now have a basis from which a notation for logic circuits™
can be developed.

& uo1senb Xq szzgsH/c9/1/8 1 /810ME/UlWoo/Woo dno-olWepea.//: SRy WOl papeojumoq

2. NOR/NAND expressions
The circuit in Fig. 1, whose output is 4BC + AD, may be
expressed in the notation of Zissos and Duncan as
A(A(4, B, AC), A(4, D)) .
It may now be expressed as
A BCAIA3 A DA2A2 .
The configuration of the circuit may be even more simply
expressed, by dropping the operator symbols, as
ABC134D22,

*Department of Computer Science, University of Bristol, School of Mathematics, University Walk, Bristol BS8 1TW.
+Department of Mathematics, Statistics and Computing Science, University of Calgary, Canada.

Volume 18 Mumber 1

oo>

Fig. 3 Two equivalent circuits

(This last form may be regarded as a postfix expression for a
tree as in Fig. 2.)

To interpret the expression 4 BC13 4 D22, given that it
stands for a logic circuit, we need to know whether it has
NAND gates or NOR gates. We can then (notionally) supply
the missing operator symbols, and, using the adicity numbers,
evaluate the expression from left to right. For NAND the
result is ABC + AD, for NOR itis (4 + B + C)(4 + D)—
these are, of course, dual expressions.

We now consider the manipulation of these postfix expressions
as a technique in the design of logic circuits.

Turning now to the manipulation of these postfix expressions,
consider the two configurations of Fig. 3. Although these two
circuits are logically equivalent the second implementation
may be preferred insofar as it has fewer gates and shorter
signal paths at the expense of higher loading of one of the
signal sources and the use of three-input gates.

(If NAND gates are assumed these circuits give

A(BC + CD) + AF and ABC + ACD + AF respectively;
with NOR gates they give
A4+ B+ CYC+ D)4+ F)
and _
A+ B+ C)Y4+ C+ D)A + F))
The problem is to reduce AB1C2CD222A4AF22 to
AB1C3ACD3AF23 by symbol manipulation only.
We write
AB1C2CD222AF22=AXY22AF22
(where X=B1C2,Y=CD2)
=AF2AXY222
by commutativity.
Now
AXY22=A4AX124Y1221)
(This is equivalent to the identity
A+ XY=(A+ X4+ Y) NAND
or AX+ Y)= AX + AY NOR)
Therefore,
AB1C2CD222AF22=AF2AX12AY12212

=AF2AB1C212ACD
212212.

Also,
PQR212=PQR3 2
(This is equivalent to the identity
P+(Q+R=P+Q0+R NAND
or P.(Q.R)=P.Q.R NOR)
Therefore,

AB1C2CD222AF22=AF2AB1C34ACD33
=ABI1C3ACD3AF23

by commutativity.

From this example it is clear that, as in the manipulation of
conventional expressions, it will be useful to memorise a
number of elementary results for use in proceeding from one
step to another. The two such results applied here are analogous
to statements of the distributive (1) and associative (2) laws in
arithmetic expressions.

Boolean algebra has two other special results of practical
importance—the ‘absorption rule’ and the ‘optional product
rule’. In conventional terms these are:

Absorption: =
A+ AB= A 2

or g
AA+B)=4 &

Optional product (or factor):)
AB + AC = AB + AC + BC =

or _ g
A+BA+C)=(A+BA+C)YB+C). 5

In our notation: 8
Absorption: g
A1AB22=4 Gy

Optional product (or factor): %
AB2A1C22=AB2A1C2BC23. 43

The next example illustrates the use of (3). %
AB2CD2ABC33=AB2CD2CAB33 =

by commutativity%.
=AB2CD2CAB2123 o
by (2) ®
=XCD2CXx123 5
: where X = A B2
=CD2XX1C23 a
by commutativity’

=CD2XX1C2212 g
by (2) e
=CD2X11X1C2212 3
since X11=X2¢

=CD2X112 by(3) 2
=CD2X2 Z
=CD2AB22 =
¥8

=AB2CD22 by commutativit

Thus the equivalence of the configurations in Fig. 4 is shownf
As an example of the application of (4) above we have:

e s
B
A ..._..,i_""
B} .
J—| -

c —{ —1— ?,::D—Jj‘]‘

=

Fig. 4 Example of absorption rule

The Computer Journal

D—DE]“_

Fig. 5 Example of optional product rule

AB2A1BC3BCD133

=AB2A1BC212BCD133by(2
AB2A1BC212D1BC2123

by commutativity and (2)
D1BC212AB2A1BC212212

by commutativity and (2)
D1BC2124AB2A1BC212BBC212312

by (4)
D1BC212AB2A1BC212BC2312

since BB2 = B1
D1X12AB2A4A1X12X312

where X = BC2
D1X12AB2A1X12X21212

n

by (2).
=D1X124B2X11212 by(3)
=D1X124A4B2X212
=AB2XX1D12212 by commutativity
=AB2X112 by (3)
=AB2X2
=AB2BC22.

This shows the equivalence of the configurations in Fig. 5.

In the working given above every step is shown in detail.
However many short cuts become possible with experience,
and the overall method described in Zissos and Duncan (1973a)
can be followed exactly. The first of these examples is in
practice worked simply as:

AB2CD2 ABC33
L

L |
______ absorption

The second becomes:

AB2 A1BC3 BCD133

(I R B
————— replacement
————— elimination

BC2—/7 — — 1 optional product or factor
=AB2BC22. ‘

The optional product of 4 B2and 41 B C 3is B C 2, and this
can replace the parent term 4 1 B C 3 (by absorption) and
eliminate the non-parent term B C D 1 3 (also by absorption).

The final step necessary for the minimisation of a Boolean
expression, as described in Zissos and Duncan (1973a), is
also adaptable to this notation. The step is typified by the
irredundant expression

AB + AB + AC + AC 5)
which has a minimal form
AC + BC + AB . ©)

Volume 18 Number1
3

The expression (5) translates directly into
AB2A1B12A1C12A4C24
which by commutativity is
AC2AB2A1C12A4A1B124.

Relevant optional products and their use with the absorption
rule can be seen as follows:

)

AC2.AB2.A1C12AIBI24

3
{\BéIZ\\

AB2 A1C12
As long as AC2 and A1B12 are present, BC12 can
replace both its parent terms A B2and 41 C1 2.

Thus we have

AC2AB2A1C124A1B124=AC2BC12A4A1B123

(Fig. 6), the latter expression corresponding to the minimal
form (6).

The expression (7) has nine operators, but the circuit in Fig. 6
(top) has only eight gates. The reason is that 4 1 occurs twice
in the expression, and the inverter for 4 has been allowed a
fan-out of two.

For a number of reasons including the desire to maintain one-
to-one correspondence between the symbols of an expression
and the elements of the circuit, we introduce a ‘naming
operator’. It is denoted by ‘=" and is regarded essentially as

la (=

SHS

,{; _— D_._._.._._.
c —L—_I"'_'[l:

A ____D_.«.M

ey

—

Fig. 6 Example of minimisation

s— J—x

Fig. 7 Use of naming operator

S

202 udy 61 U0 1s8n6 AQ GZZGGH/E9/1/81/aI0NE/UlWOD/ W00 dNo dlWspeoe)/:SA]Y WoI) PAPEOUMOQ

dyadic, associating a name (its second operand) with a value
(its first operand). (Later, in Section 5, we consider a multiple
naming operator.)

Expression (7) can now be named and one-to-one corre-
spondence restored as follows.

A1 X=AC2AB2XC12XB124P =

This should be compared with Fig. 7.

As a final example in this section, the reader may like to verify
that the expression given below, when realised with NAND
gates, gives a simple excess-3 encoder (simple in the sense that
it does not check against invalid inputs). The inputs are 4, B,
C, D; the outputs are P, Q, R, S; inputs 0, 1, 1, 1 give outputs
1,0,1,0 (7 + 3 = 10), etc.
A1BC2BD23P=D1S=CS2X=

CX2XS22R=C1S82Y=
BY2Z=BZ2ZY22Q=.

3. Combinational circuits—special considerations

A number of useful pieces of information about a NAND or
NOR combinational circuit may be read from the correspond-
ing postfix expression.

Loading of inputs

The number of occurrences of the name of an input signal is the
number of unit loads (in the usual sense) imposed by the circuit
on the source of that signal. Thus the excess-3 encoder of the
previous section imposes loads of 1, 4, 4, 2 units respect-
ively on the sources of 4, B, C, D.

Weakening of outputs

The effective fan-out from an output gate is reduced by the
number of unit loads required internally to the circuit. In the
encoder, P, Q, R can bear the full fan-out, but the fan-out from
S is reduced by 3 since that is the number of occurrences of S
(other than its naming occurrence) in the expression.

The fan-in of each gate is explicit in the expression.

Signal delays

Assuming a nominal switching time, these can be determined
by counting the number of levels through which a signal has
to pass from input to output. This is most conveniently done
as part of the investigation of hazards, below.

Hazards

Circuits can be designed hazard-free (Zissos, 1972), but it may
be required to investigate the possibility of hazards in a given
circuit. Consider, for example, the expression

AC2BC12A1B123

corresponding to Fig. 6 (bottom).

We first trace signal paths by writing down the given ex-
pression and placing underneath it expressions derived by sup-
pressing all inputs except one.

It is in practice useful, both as an aid to clarity and to avoid a
possible source of error, to indicate the association of operands
and operators by means of horizontal ties as shown.

r
F =1 r 1
L | ~ /M M

Full expression AC2 BC12 A1B123
Suppress all inputs except 4 A4 1 Al 12
Suppress all inputs except B B 1 B112
Suppress all inputs except C Cl1 cll1 2

These residual expressions show that each signal has two paths
to the output of lengths 2 and 3 gates respectively. If the other
inputs (if any) to all the gates on these paths are held at 1, a
change to the input concerned may cause a spike at the output.

ol

Fig. 8 A simple sequential circuit

|

S3

AB=10 AB=11

Fig. 10 T-type flip-flop

> B
oibpeoe//:sdyy Woly papeojumoq

Consider first the input 4. Assume the gates are numbered
serially from left to right in the full expression. 4 goes throught
gate number 1; the other input to this gate is C. Gate numbeg
4 is merely an inverter for 4. Gate number 6 has an input of
B 1. Gate number 7 has one input which is not on the paths QB
A, namely BC'1 2.

Therefore, necessary conditions for a spike at the output arg
tohave Cat1, Blat1,and BC 12 at 1. These conditions are
all satisfied if C = 1, B = 0.

The residual expression 4 1 4 1 1 2 shows that a change in As
reaches the final gate after one gate delay time on one path:
(gate number 1) and after two gate delay times on the otheg
path (gate numbers 4 and 6). Consequently, if 4 is switched
from 1 to O while B = 0 and C = 1, there will be a spike at thg
output; the output, which should remain constant at 1 wfﬂ
temporarily assume the value O between one and two gate des
lay times after the change in 4. S

Hazards due to changes in B and C can be found by a 51m11a£
process.

20z udy

4. Sequential clrcults—representatlon of feedback
No further developments in the notation are needed to represen?
the configurations encountered in NAND or NOR sequential
circuits.

The simplest illustration is a set-reset flip-flop made from two
NOR gates (Fig. 8).

This configuration can be expressed as

AS2R24=.

The new feature of this expression is that we have in effect a
recursive definition for A. This embodies the ‘feedback’ or
‘memory’ aspect of the sequential circuit.

(The notation is in fact adequate to describe any directed
graph, not only trees. For example, the complete directed graph
of four vertices in Fig. 9 is

BCD3A=ACD3B=ABD3C=ABC3D =
where A means ‘an arc (edge) from vertex a’ etc.

The Computer Journal

-

Fig. 11 JK flip-flop

It is hoped to describe the application of the notation to basic
graph theory in a later paper.)
A rather more interesting example of a sequential circuit is the
T-type flip-flop whose state diagram is shown in Fig. 10.
A direct realisation of this with NOR gates is
X1lx=AbX22a=BAx22b=aBX22A4=
bax22B= (8)
However, by a systematic application of a design algorithm
given in Zissos (1972) this 9-gate circuit can be reduced to the
following 6-gate circuit.
Xpg3r=BX2p=rs2q=Ar2s=s5p2A=
_ pq2B= (9
The manipulative techniques are similar to those described in
Section 2. The basic knowledge required is the result
P1Q12R21=PR2QR22 (10)

and the fact that in certain circumstances a is the inverse of 4
and b is the inverse of B (notation of (8)).

The primitive sequential equations, which follow from the
state diagram, are:

AB1X22BX22A=BAX122A41X122B= (11)

Substitution of a for 4 1, and b for B 1, and the introduction
of x for X 1, leads immediately to (8).

The application of (10) to the second half of (11) transforms
(11) into:

AB1X22BX22A=BX2A1B1X222B=.
Noting repeated sub-expressions, we write:
Bl1X2r=BX2p=Ar2p2A=pA1r22B= (12)
We try to eliminate the indicated inverters for 4, B.

Bl1X2=pA1r221X2=XpA1r2212=XpAlr23
= Xpqg3 whereg=A1r2 (13)
Alr2 =Ar2r2
=rs2 where s=Ar2. (14)

Substituting (13), (14) in (12) we have:
Xpq3r=rs2q=BX2p=Ar2s=sp2A=pq2B=
which is equivalent to (9).

The systematic application of the steps involved, and their
engineering justification, is given in Zissos (1972).

5. Abbreviations, and notation for repeated sub-circuits
It is convenient to introduce the abbreviation A for 4 1, or
rather the convention that the name A stands for a quantity
which is always necessarily the complement of the quantity
denoted by the name 4. This enables one to deal with those
situations where two outputs from a circuit (e.g. the two out-
puts of a JK flip-flop) are complementary. The use of 4 as an
abbreviation is a convenience fraught with a little danger in
cases where hazards are involved ; otherwise it is perfectly safe.
A further convenience is a multiple naming operator. The
operator = associates a name and a value; the operator = 2
associates a pair of names with a pair of values. Thus

XY2YZ2AB=2
is equivalent to
XY2A=YZ2B=.

Volume 18 Number 1

In general if = is followed by an integer n, it is preceded by 2n
operands; the first » are values which are given the names
written as the second »n, matched one to one.

The encoder in Section 2 above is a circuit with four inputs and
four outputs which can now be represented by an operator with
four operands;

A B C D encoder 4 .

This expression stands for four values (the outputs) which can
be named by a multiple naming operator:

ABCDencoder4P QRS =4 .

A JK flip-flop with preset and reset inputs (Zissos and Duncan,
1973b) can be represented as

JKCRPJIKS5QQ =2 (¢ Fig. 11) .
This expression can be successively abbreviated as follows:
JKCRIK4QQ0 =2 (no preset)

JKCIJK300=2 (no preset or reset; or preset/reset
conditions understood)

JKIK2Q0Q =2 (as before, and clock conditions
understood, as in synchronousg
circuits). 5

Some of the possible operators, like JK, are sufficiently wellm
known for them to be regarded as ‘standard functions, avall-fD
able without explicit declaration’. Others, like encoder, need to=
be defined within a particular circuit description.

The following is a definition for the operator encoder adapted=
from the expression given in section 2 for the excess-3 encoder.”
ABCDin4A1BC2BD23P=D1S=CS2X=

CX2XS22R=C182Y=BY2Z=
BZ2ZY22Q=PQRSout4
encoder op.

(X1}

cp'qLu

"dno-olwepeoe//:s

o}

The operator-defining operator op has three operands whichS
are respectively an input list, an output list, and an operator=
symbol. The input list is defined here by ‘4 B C D in 4’; in is anS
operator of variable adicity whose operands are names. The=
output list is defined by the operator out, also of variable%i_
adlclty, whose operands are values. In the example these valuesm
arise from the expression deﬁnmg P, O, R, S. The operatorOo
symbol is encoder, which, in the present state of the notatlon,\
must be ‘unique’. °’

It will be observed that in this example we have mtroduced"1
workmg variables’ X, Y, Z which are required only inside them
expression for P, Q, R, S. There seems no reason not to regardc—
these as purely local to the operator definition; the names X s
Y, Z can thus be used ‘outside’ in the normal way. ‘D

In the case of the JK operator, the user of the notation needsO
to know the ordering of the output values, but not necessarllyA
how they are derived 1nterna11y from the mputs Thus the>
following declaration of JK is adequate, and it is consistent.

JKCRPin5Q Qout2JKop .
Two points arise:

(a) Although a number of operators have been introduced to be
represented in their full form (operator symbol followed by
adicity), it is still possible to omit the NOR or NAND
symbol (leaving it ‘understood’) if this is convenient.

(b) In all the examples names of one letter and adicities of one
digit have been used. If longer names and integers are
required, it will be necessary to use a separator—preferably
a comma—between the elements of an expression. It is
convenient to reserve the names I and O for the Boolean
values 1 and O respectively.

20z Iud

6. Interpretation of postfix expressions
Expressions in the proposed notation are evaluated according
to the normal rules for postfix expressions:

67

(a) Each name is stacked as it is encountered during the left to
right scan.

(b) Each operator is applied to the top entries in the stack,
deleting these entries and leaving its result, if any, on the
top of the stack.

It should be noted that a defined operator symbol must be
treated as an operand of op on its defining occurrence and as
an operator elsewhere.

The reader who is familiar with logic circuit diagrams but not
with postfix notations may find the following rules helpful for
drawing a diagram from a given expression.

(a) Take the elements of the expression in order from left to
right.

(b) For each name encountered, add it to a column on the left
of the paper.

(¢) For a gate operator, draw a gate symbol to the right of the
signals to be gated. These are the signals at the ‘bottom’ of
the diagram, and their number is the adicity of the operator.

(d) For a naming operator ‘=", if the adicity is 1 or omitted,
transfer the last name from the left hand column to the
signal immediately above it. If the adicity is more than 1, the
group of the given number of names must be transferred
from the bottom of the left hand column to the same number
of signals immediately above.

Example:
AS2R2A4 =

The seven stages corresponding to the seven symbols are:

s 5

{::r:jj—i_}_

—

it

> o vy >

Finally any links representing feedback should be drawn in if

required.
(A)! -
-
R — A

(e) For the in operator, note that we are drawing a sub-circuit
which is to be used at several points later. Draw a large
left-hand square bracket next to the affected names of the
left hand column.

(f) Treat the out operator like in, but with a right-hand square
bracket.

(g) A new operator being defined is followed by op; it should
label the circuit ‘enclosed’ by the square brackets.

Example:
Set-reset flip-flop.

SRin2AS2R2A4A=Aoutl1 SRop .

“D [11}-—'*‘ =

Now tidy up the diagram according to taste:

2ITRJK3SS =
1 i_\ 1] Qg ‘ Ry]
Xt JK \~-— JK \ JK —\-— JK

- —h
r R

(k) For any other operator, proceed as in (e) above, using
either a standard symbol (for a ‘built in’ function) or a
skeleton drawing based on that produced by (e)-(g) above.

Examples:
Four-bit synchronous JK shift register.
XX1JK2JK2JK2JK2 .

Four-bit asynchronous binary counter.
ITXJK3PP=2IIPJK3QQ=2IIQJK3RR =

'Mapeoe//:sdllqluOJ; pepeojumoq

In this example I stands for logic 1. The device counts puls
at S. The counter reading is

P.2° 4+ Q.2' + R.2% + 5.2% .
P, 0, R, S are also available.

7. Further considerations
The problem of mechanical translation between conventiona
infix notation and the proposed notation should not present’
difficulties, and programs for this are being written. Programgq
for manipulating postfix expressions as part of the logic demgﬁi
process are also under consideration. One of us (MW) hasr
made a detailed study of the manipulations which are requlredo

Some further developments of the notation itself are clearlg
desirable. Each of the last two examples of Section 6 1nvolves
the repetition of a string of symbols for each of the bits in th&
shift register or counter. To avoid this repetition in larger, morgs
realistic, cases, a form of subscripting might be introduced.

A possibility is

X X1 [JK 2]" for a synchronous #-bit shift register

and[I1X,;JK3 X,,, X;,,]i=3~ ! for an asynchronous (ripple-
through) n-bit counter, where X, is the input (pulses to be
counted) and X; (i = l(l)n) represents the coefficient of 2¢71,

Although this notation is no longer bracket-free it seems to
offer some advantages over a pure postfix scheme.

o/ /joiMe/|ufuwioo/uRBo dno

¥20¢ I!Jd

Conclusion

It is already clear that after only a short period of practice the
proposed notation becomes a very useful and powerful means
of handling the algebraic aspects of the logic design process.
Indeed, the notation is capable of replacing the existing means
of expression. This is true both in written work and in computer
programs; postfix expressions are easily manipulated as strings
and the established translation methods, including Djikstra’s

The Computer Journal

algorithm, are readily adapted for this purpose. At all stages
in the work, the fact that the symbols stand in immediate
one-to-one correspondence with actual circuit elements removes
one of the greatest inconveniences of the conventional notation.
This applies, moreover, to components at higher levels than
that of gates, and up to system level if required. In this respect
it will be desirable to develop ‘standard declarations’ for such
components as common integrated circuits, standard interfaces
(as regards their logic aspects), and so on. Using a one-line
declaration for a 4-bit full adder (e.g. TTL 7483), a circuit
involving 15 such devices has been notated in eight lines; the
postfix expression clearly showed up the point where a sub-
sequent modification should be made.

References
RANDELL, B., and RuUSSELL, L. J. (1969).

Z1ssos, D., and DuNcaN, F. G. (1972).
Journal Vol. 14, No. 4, pp. 413-417.

Current work is concerned with the systematisation of the
manipulation of postfix expressions, the construction of
computer programs to assist in the logic design process, and
the development of operator declarations’ for higher-level
components.

Acknowledgements
One of us (FGD) is particularly indebted to Dr. J. Miilbacher
of the Hochschule fiir Sozial und Wirtschaftswissenschaften,
Linz, Austria for much useful discussion on general directed
graphs.

The work has been supported in part by a research grant
of the National Research Council of Canada.

ALGOL 60 Implementation, Academic Press.
Z1ssos, D. (1972) Logic Design Algorithms, Oxford University Press.
NOR and NAND Operators in Boolean algebra applied to switching circuit design, The Computer

Zissos, D., and DUNcAN, F. G. (1973a). Boolean minimisation, The Computer Journal, Vol. 16, No. 2, pp. 174-179.

Z1ssos, D., and DUNCAN, F. G. (1973b).

Digital Interface Design, Oxford University Press.

Book review

Digital Computing and Numerical Methods, by B. Carnahan and
J. O. Wilkes, 1973; 477 pages. (John Wiley and Sons, £7-80.)

The authors of this large book are both Professors of Chemical
Engineering at the University of Michigan. They suggest in their
preface that the book is “. . . suitable for the early years at university
and the orientation is toward engineering and applied mathematics’.

The first two chapters give a conventional introduction to digital
computers, flow diagrams and algorithms, with the IBM 360/370
being used to illustrate internal number and character representa-
tions. The full title of the book also includes the phrase ‘with
FORTRAN 1V, WATFOR and WATFIV programming’. This is
covered in the 146 pages of Chapter 3, with an apology for the
existence of many dialects of FORTRAN IV but the assertion that
‘the variations from one dialect of FORTRAN to another tend to
be rather small’. The authors therefore describe IBM 360/370
Level G or Level H FORTRAN IV as FORTRAN IV and, since
the University of Michigan also uses WATFOR and WATEFIYV, the
further features of these variants are also discussed. Grey stripes
in the margins are used to indicate the variations between FOR-
'TRAN IV, WATFOR and WATFIV but there are no indications
of the ‘rather small’ variations of the FORTRAN described from
standard FORTRAN IV. Many a FORTRAN IV compiler would
fail to appreciate

REAL FUNCTION PROF*8 (DELTA, *, MAX, *, N)
IMPLICIT REAL*8 (A—M)
READ (5, 100, ERR=99)X

100 FORMAT (G10.3)
$=N/X
Y =DELTA =ARSIN (MAX*$)
PRINT 200, Y

200 FORMAT (‘ THE RESULT IS’, F12.3)
RETURN 2

99 CALL EXIT

END

but the text does not explicitly warn the reader of the peculiarities
of such statements. The authors do suggest that they would expect
an instructor to supplement the text with additional short examples
and that for self-study 4 FORTRAN IV Primer by E. 1. Organick
would be a useful auxiliary text—though the only statements in the
above subprogram which are mentioned by Organick are RETURN
and END.

Although the material is well presented and clearly explained, the
reviewer would not recommend this introduction to FORTRAN to

Volume 18 Number 1

anyone who was not going to use an IBM 360/370; who else would &
appreciate the 16 pages of appendices giving the diagnostic error £
messages from the three compilers ?

Chapter 4 gives a 50 page introduction to operating systems with &
a clear exposition of the development of a modern operating system
through the stages of batch processing, multiprogramming, time-©
sharing and multiprocessing. Excellent detailed diagrams supple-<
ment the text which goes as far as considering strategies for 1mple-

dny wouy papeojumoq

O
Q

@
2

menting paging. (One is pleased to see that the introduction of3
virtual memory is attributed to the Atlas computer!) The chaptero
concludes with a detailed account of an on-line session on the_

MTS terminal system.
The remaining 185 pages cover numerical methods in five chapters

ole/|ul

headed Solution of single equations, Numerical approximation, m

Numerical integration, Solution of simultaneous equations, Solu- 3

tion of ordinary differential equations and the Introduction to 5
optimization methods. The approach in these chapters is generally@
to introduce the problem and develop a simple method of solution, &
e.g. Euler’s method for ordinary differential equations. The weak-%
nesses of the method are then discussed before proceeding to more
satisfactory methods, e.g. Runge-Kutta or predictor-corrector, for<
that type of problem. The treatment is to derive some results and pre-¢
sent others without being too rigorous. Indeed the authors recom- ¢
mend that the reader requiring greater depth should consult Apphed]
Numerical Methods of which they are joint authors (but see review
in The Computer Bulletin, Vol. 15, No. 5, p. 186). Each chapter con—>
tains one or two typical real problems for which an analysis, flow-3.
chart, documented program, results and discussion are given. As
training in how to tackle a problem this is good, but the methods'Y

are not the most efficient and the programs are therefore only useful
for illustration. One notes the comment on page 291, in relation to
Horner’s rule, that the user should attempt to write efficient pro-
grams which could save 20 %; on total execution time. In the chapter
on simultaneous equations, however, the Gauss-Jordan method is
presented without mention of the 30 %; faster Gaussian elimination,
nor mention of the existence of indirect methods.

The opinion of the reviewer is thus that the book is limited in its
usefulness to students with access to an IBM 360/370 being taught
Fortran by someone who would steer them through the idiosyncra-
cies of the dialect of Fortran presented in the book and who would
also be aware of the shortcomings of the numerical methods. Each
chapter, except the one on operating systems, contains a large
number of problems and those for the numerical methods are well-
chosen problems in science and engineering fields, generally with
suggested test data.

E. W. HAappoN (Norwich)

