Database—the ideas behind the ideas

K. A. Robinson

Data Base Controller, Management Services, Surrey County Council, County Hall,

Penrhyn Road, Kingston-upon-Thames, Surrey

A data base is a model of the real world. The programs which update and retrieve the data are
themselves models of events in the real world. Maintenance of programs and systems is much
easier if that part of the world being modelled by the programs and data is intuitively obvious from
the data descriptions and the application procedure descriptions.

Three approaches to database management (CODASYL DBTG, GUIDE-SHARE and Rela-
tional Databases) are considered with regard to the facilities they provide for modelling the real
world and the mechanisms by which they physically support these facilities.

(Received July 1973)

1. Introduction

A data base is a store of information which provides a variety
of users with the facility to enter or retrieve data relating to
their environment. The content and context of the information
stored essentially provides each user with a model of that part
of the world with which he deals. Inasmuch as a variety of users
interact with the data, they are all interacting with the same real
world entities which that data models.

It is no less true that a file in a conventional system is a model
of part of the world. Systems analysis training in the past has
been output oriented; the attention paid to stored data has
been biased towards efficient processing of that data and has
almost completely neglected the investigation and definition
of what the data is about. Unless the real world structure is
obvious from the data definition maintenance of the system
is very difficult. This is even more true of applications operating
in a database environment.

This paper considers three apparently different approaches
to database management: the Joint GUIDE-SHARE Database
management system requirements report, the relational data-
base concepts exemplified by the work of E. F. Codd of IBM,
and the 1971 CODASYL Data Base Task Group report. These
approaches are compared thus:

(a) The way in which data being described models the world
(b) The view of data given to the applications

(c) The accessing of the data

(d) The physical storage of data

I believe that it is essential to the success of a database project
that these four functional areas be clearly separated at the
specification stages. I am thus particularly concerned with the
merits and demerits of the three approaches in these areas.

2. Data models the world
2.1. Entity data (GUIDE-SHARE)
A central concept in the GUIDE-SHARE report (1970) is
that of ‘entity’ data. An entity is defined as ‘A person, place,
thing or event of interest to the enterprise’, how abstract or
concrete a ‘thing’ may be is left undefined. The concepts built
round entities are fairly daunting to the first-time reader
and seem needlessly complex. There is something called an
‘entity construct’ (which appears to be an association of
entities, e.g. PARENTAGE = MAN, WOMAN, CHILD).
Research in the glossary of the report reveals the ‘entity
construct’ as just another (if somewhat more abstract) entity
in that, if named, it defines an ‘entity record type’ (an ‘entity
record type’ represents the attributes of a particular ‘entity
type’ (defined as ‘entity’ type) ).

Since an entity (more or less by definition) is something which
has existence whether its associated ‘entity record type’ is

Volume 18 Number 1

EMPLOYEE = PAY-NUMBER
START-DATE
DEPT-NUMBER
MGR-NUMBER
COURSE-NUMBER
COURSE-TITLE } Oceurs n

Fig. 1(a) Unnormalised relation (record)

EMPLOYEE = PAY-NUMBER

START-DATE
DEPT-NUMBER
MGR-NUMBER

TRAINING = PAY-NUMBER
COURSE-NUMBER
(WSE-THT

[woo/woo dnoolwepese//:sdny Woll pepeojumod

|
aa
=Y
IC]
=X
gz
EDE
o
e
a;
E_o
g1
7 =
55
«
k=3
> 8
z2
3
(=1
Be
“%
-
oes
ole/[u

as establishing another attribute (COURSE-NUMBER)(D
as part of its primary key)

EMPLOYEE = PAY-NUMBER

START-DATE
DEPT-NUMBER
MGR-NUMBER

TRAINING = PAY-NUMBER
COURSE-NUMBER

COURSE = COURSE-NUMBER
COURSE-TITLE

Fig. 1(c) Second normalisation step—separation of attributes not
fully dependent on key

dy 61 uo 1s8nb Aq G2 ¥Gh/L/LI8LI

¥20¢ 4

EMPLOYEE = PAY-NUMBER

START-DATE
DEPT-NUMBER

DEPARTMENT = DEPT-NUMBER
MGR-NUMBER

TRAINING = PAY-NUMBER
COURSE-NUMBER

COURSE = COURSE-NUMBER
COURSE-TITLE

Fig. 1(d) Third normalisation step—separation of attributes de-
pendent on other attributes




named or not, it would seem that an ‘entity construct’ defines
an entity pure and simple.

2.2. Third Normal Form (Codd)
At the heart of the relational database approach is a mathemat-
ical theory of data. Data records represent relations between
the attributes of entities. Every record type must have a primary
key to uniquely identify each occurrence of the record type
to users of the data; the occurrences must not be identified
by external sequencing, e.g. instead of saying ‘get me the third
occurrence of record type REC’ we must say ‘get me the record
type REC with primary key OCC—NO = 3°. Where two or
more data items or groups of data items may serve as a primary
key one such is arbitrarily selected.

Codd (1970; 1971a; 1971b) looks at the numerous ways in
which data may be structured and suggests a way of reducing
these to a ‘normal’ form. This is done in three stages:

(a) Separation of repeating groups into separate records
(inheriting the primary key data from the original record).

(b) Separation of attributes not dependent on all fields of the
primary key into separate records with primary key data
being that part of the key on which the separated attribute(s)
depend.

(c) Separation of attributes dependent on other attributes
into records with primary key being those other attributes.

An example of the three normalisation steps is given in Fig. 1.
Primary keys are underlined. (My naming conventions differ
slightly from Codd’s).

The principal objective of performing the three normalisa-
tion steps is the removal of update anomalies, e.g. in Fig. 1()
the deletion of the last TRAINING record for a particular
COURSE would mean that information was lost about the
COURSE itself (COURSE-NO and COURSE-TITLE).

If the primary key is chosen differently in Fig. 1(d) this leads
to a different set of records in third normal form as shown in
Fig. 2. The implications of the choice of primary key to a
great extent reflect the real world situation obtaining. Fig. 1(d)
reflects the usual situation where when employees move depart-
ments they automatically change their departmental managers:
Fig. 2 reflects a situation more akin to the feudal system where
when a manager changes departments all employees move
with him.

EMPLOYEE = PAY-NUMBER
START-DATE
MGR-NUMBER

DEPARTMENT = MGR-NUMBER
DEPT-NUMBER

Fig. 2 Alternative third normal form to 1(d)

The three normalisation steps are, in essence, an algorithm
for discovering the underlying entity structure of the data.

The casting of records (or relations) in third normal form
with a sensible choice of primary keys clearly provides an
excellent basis for describing the underlying real world entities.

2.3. Record descriptions in the schema (DBTG)
The schema in the DBTG report (1971) holds the central
descriptions of all records. No guidance is given in the report
as to what collection of data should be put inside records
but extrapolation from inferences in the report is generally
confirmed in discussions with DBTG members giving advice
such as ‘Define fine entities’.

The records are fairly obviously entity descriptions. It is
possible to bury one entity type in a repeating group inside

a record representing another entity type but it is not intended
that this should be done; the two entities should be defined as
separate record types linked in a ‘set’. Also, the absence of a
facility for defining many-many record linkages forces the
recognition of entities such as TRAINING in Fig. 1(c) linking
EMPLOYEE and COURSE.

It is possible to include certain data items in a record type
which originate in a different record type linked in a ‘set’ with
the first one (these items are the ones defined with an ACTUAL
or VIRTUAL SOURCE clause). There is an implicit recogni-
tion that some of these items do not really belong to the entity
defined by the first record type; ‘control data’ items referenced
in SET OCCURRENCE SELECTION clauses may be
MODIFYed, the others may not. In fact, these ‘control data’
items are exactly parallel to those constituent data items of the
primary keys common to pairs of records in Fig. 1(d); the other
data items are those attibutes which could be removed by
applying the various normalisation rules described in Section
2.2 and are there principally to afford time/space trade-offs.

A defect in the proposals (if one takes the view that all attri-
butes of an entity should be made explicit) is that the inclusion,
in records of ACTUAL or VIRTUAL SOURCE data item$
derived from control data items referenced in SET OCCUR-—
RENCE SELECTION clauses is optional rather than mana
datory. These items do, as shown in Section 2.2, really belong&
to the records since they are the key data used to identifyd
occurrences of those records and, as such, should be explicitly:
defined. In fact, these derived items are not treated consistently:
throughout the report, e.g. no indication is given as to what:
happens when a record with a given value of a SOURCE daté?
item is STORED.

“dno-olwap

2.4. Comparison of entity concepts
We can see that all three approaches do share the entlty8
concept. This is explicitly (if not clearly) defined by GUIDE=
SHARE; Codd’s normalisation steps are an attempt to discove
the entities to which the data relates; DBTG has an implicit%
idea of the entity and (if the inconsistencies, e.g. in the STORE>
command, are cleared up) can be used to define third normab
form data although, unfortunately, it provides facilities for de=
fining unnormalised records.

YSLYSYILILISL/

3. Data Seen by Application Programs
3.1. Logical Record (GUIDE-SHARE)
In the GUIDE-SHARE requirements, entities are never dlrectlg
referenced by application programs. The application programs:
are interfaced to ‘logical data’. Two properties of the logical;
data are that it need not contain all the attributes known fop
the entity data which the applications interface to, but only;
those attributes that are actually used, and also that unnormas-
lised records of the type shown in Fig. 1(a) are constructe
and deconstructed by the DBMS (or DBCS) from the entltjg
data, for use by the application programs.

This accessing of unnormalised records by the application is
deemed to be necessary to realise the GUIDE-SHARE
objective of data independence. My inclination is to reject
this view because I think that the proper way to achieve data
independence is by making the applications aware of the enti-
ties which they are processing; an application program which
‘knows’ how the data models the world is much more easy
to maintain than one whose functions depend on implicit
descriptions of the world (e.g. a program which accesses unpaid
invoices by selecting those with a null payment date is easier
to understand than one which gets invoices from a file which is
implicitly known to contain only unpaid ones). Tremendously
cumbersome routines are needed to normalise and unnormalise
the data and resolve the anomalies that occur when applica-
tions attempt to update unnormalised data. Such routines
must be more expensive than the occasional rewriting of an

The Computer Journal



application program accessing entities whose initial bad
definition forces change. The Codd normalisation rules provide
an excellent basis for keeping bad definition of entities to a bare
minimum.

The accessing of a subset of the entity data is useful and cer-
tainly reduces the amount of maintenance when new attributes
are added to entities.

3.2. The Target List (Codd)
The data manipulation language, ALPHA, advocated by the
relational database enthusiasts is primarily directed towards
retrieving and processing entity data. The data items accessed
by the application programs are subsets of the entities and may
be combined into first normal form records; the subset of data
items which is to be retrieved is called the ‘target list’. Some
of the items which may be retrieved are not data items from
any of the entities but are the results of procedures (such as
counting the number of occurrences of given values) applied
to such items.

The updating of items is effectively confined to updating one
entity type at a time thus avoiding update anomalies.

The definition of the target list is dynamic. It is defined by the
access statement rather than the program in which that state-
ment occurs.

3.3. Record descriptions in the subschema (DBTG)

The application programs do not interact directly with records
defined in the schema but rather with records defined in a
subset of the schema called a ‘subschema’. A subschema is
defined statically, before a program is defined, and gives
the subset of the database available to a program or series of
programs.

Insofar as the data descriptions in the schema define real
world entities, the subschema record descriptions form a
subset of the attributes of those entities. The only way in which
attributes from other entities can be associated with the attri-
butes of a given entity to form a logical record is by defining
such derived attributes as data items with an ACTUAL or
VIRTUAL SOURCE clause in the schema definition of the
record. Items which are procedure results may also be specified
in the schema and accessed in the subschema.

As in the Codd approach, derived attributes (except for those
that are really implied key items) can only be modified via
the entity to which they belong.

3.4. Comparison of logical record concepts

The GUIDE-SHARE approach whereby the DBMS builds
up and fragments unnormalised records is unnecessary if the
real world entities are properly defined in the first place.
The approach of ALPHA and the DBTG approach are equiva-
lent even though one system requires the logical record to be
defined at access time and the other requires the logical record
to be defined prior to compile time; neither approach allows
the construction of completely unnormalised records and
neither approach allows the update of items that do not belong
to the entity being accessed.

I believe that DBTG mix up the functions of accessing enti-
ties and of storing the data in an optimal manner and that
even though, for efficiency, derived attributes are stored in
records defining other entities, the system should still appear
to the application to be accessing data purely on the basis
of the entities to which it applies. In the example of Fig. 1(c) (d)
I would argue that the application program should issue
calls to GET EMPLOYEE and GET DEPARTMENT if it
requires to access MGR-NUMBER for an EMPLOYEE even
though MGR-NUMBER may be stored in the physical record
representing the entity EMPLOYEE ; how this may be achieved
is discussed in Section 5.4.

Volume 18 Number 1

4. Access methods used by the programmer

4.1. Database command language (GUIDE-SHARE) '
The GUIDE-SHARE requirements allow data to be organised
into files. A file is ‘a named collection of occurrences of logical
records which may be of more than one logical record type’.
Such a collection may have a sequence and structure defined
by the data administrator. It is a logical file rather than the
kind of file known to present day operating systems.

It is not entirely clear how the DBCS is to tell that a logical
record is a member of a file. GUIDE-SHARE provide for the
explicit addition of records to a logical file in an analogous
manner to the DBTG INSERT statement (paragraph 4.3
below) as well as for the implicit membership of records in
files based on data content; this implies that the system must
keep some list of the records which are members of particular
logical files. Thus, in a sense, the logical file must be physically
implemented.

The DCBL is a language which acts on logical files. The appli-
cation programmer can make requests for logical records from
these files based on conditional expressions. Primitive functions
for operating on this data are defined, e.g. retrieve, add, delet
replace, and the facility to combine the primitive functions
into more powerful compound functions is required.

1) papeo|u

4.2. ALPHA and relational algebra (Codd)
Codd conceives of two different languages for operating on th§
data. One of these, ALPHA, is a language based on the predic=
ate calculus and enables the statement of logical selectiol®
requirements in a non-procedural manner. The other possiz
bility is relational algebra which allows the application o
various primitive logical operations to build up procedures t&
handle the selection requirements; such an operation might bg
the joining together of the TRAINING and COURSE records
of Fig. 1(d) on the item COURSE-NUMBER in order t@
find who had attended a particular course.

Codd strongly advocates the high level predicate calculug
based language typified by ALPHA as a data handling lans
guage and, unfortunately, the whole relational approachk
now seems to be identified with the use of a predicate calculu§
based language This identification is incorrect; the castlng
of data in third normal form, is 1ndependent of the chonce:
of language for accessing and processing. The undoubted:
difficulty of implementing a language such as ALPHA 1%
totally irrelevant to the use of third normal form data. g

The nearest that ALPHA comes to supporting the concep®
of a file is the ‘workspace’. The workspace is a storage are@
which holds the occurrences of the logical records defined by
the target list which have been selected and ordered according
to criteria specified in the access statement. A workspace
is local to a program, being defined at access time; it could}
e.g. contain all EMPLOYEE records arranged in ascendin%
PAY-NUMBER order, or it could contain just that EMS
PLOYEE record with PAY-NUMBER = 12345.

4.3. Sets and the data manipulation language (DBTG)

The DBTG report makes extensive use of a concept called the
‘set” which is defined as ‘a named collection of record types’.
It consists of an owner (which is either the system itself or a
named record type) and a number of occurrences of one or
more named member record types. There may be multiple
occurrences of each set type—one such for each occurrence
of the owner record type.

A set seems to be a single level logical file, or a collection of
such files, one for each owner record occurrence. This is not
strictly true if our definition of a logical file is something like
‘any named collection of record types’ because the set concept
requires that some method of physical implementation (such
as chaining) be specified ; a set is, in fact, a logical file for which
some kind of physical support (extending to identifying file

9



members and their sequence) is provided.

The DML statements enabling access to the data do so
largely in terms of these sets, e.g. access to records of a given
type in a given sequence must be accomplished via a set which
has been ordered either as records are STOREd (using a
schema defined set order) or locally using the ORDER verb;
access from the EMPLOYEE record of example 1d to the
TRAINING records would be via a set with the first record
type as owner.

The DML supports the facility to manually INSERT records
into sets as required rather than automatically making them
members at STORE time.

4.4. Comparison of access concepts

Of the three approaches GUIDE-SHARE and DBTG are
very similar. Both purport to access some kind of logical file
which actually turns out to be physically supported by some
kind of list structure. The GUIDE-SHARE file is admittedly
a more general hierarchical structure than the simple owner-
member set of DBTG; the GUIDE-SHARE report also re-
quires more complex access qualification than DBTG provides,
but this merely changes the amount of work the programmer
must do—it does not change the quality of interface to this
quasi-logical file or set.

This may be unfair to GUIDE-SHARE, but the kind of
system they seem to be thinking of is one where the system
maintains its own list of the members of the files—how else
can a system which allows manual membership of files typified
by the DBTG INSERT verb operate? My view, already ex-
pressed in paragraph 3.1, is that all information should be
explicit in the entity descriptions and not implicit by the
membership of an entity in some file. If all information is
explicit, then what is a file?

What does a conditional expression applied to select informa-
tion from a file mean? My own view is that a conditional
expression applied to select data from a file is merely a defini-
tion of a smaller file (or set of files) which should have been
defined as such in the first place.

The ALPHA workspace idea seems to be the best hope for
true data independence. Using this concept, a file is any col-
lection of records whatsoever, identified by their content—
or the content of some (possibly remotely) related records—
which a program needs to access and which are ordered in the
sequence in which they need to be accessed. ALPHA, however,
in my view, is not implementable within our current level of
technology.

What can be done? Suppose we define logical files of the
DBTG set variety and make them purely logical concepts,
i.e. the system may have no other way of deciding which records
belong to a set other than scanning the entire database, select-
ing the required records and then sorting them into the defined
set order. The system can maintain lists for the most popular
sets and use them to access these quickly. The data administra-
tor can write procedures to determine whether records are
members of the defined sets. Some of these procedures will be
system supplied like the key matching procedure provided
on the SET OCCURRENCE SELECTION clause at present.
These procedures can operate in one of two modes: at STORE
and MODIFY time leading to INSERTion into a list occur-
rence (and similarly for DELETE) or at FIND time requiring
a scan of the database. Where a list is maintained then at
FIND time part of the INSERTion procedure would (as at
present) have to be invoked to determine the list to be used.
The procedures would also have to resolve differences between
the list ordering and the set ordering.

For the installation with a DBTG based system which wishes
to start building its database now, the solution described above
may seem to provide no comfort. However the data admin-
istrator of the installation could define a logical file interface

10

which the application program modules could use and build
his database access modules on the other side of that interface
using the set purely as a physical list. This is the approach
many users are adopting.

5. Physical Mapping of Data

5.1. Physical Data (GUIDE-SHARE)

There is no implication in the GUIDE-SHARE report that
any particular form of physical mapping must be used. Items
may not actually be stored in the database. It is possible to in-
vert the records when storing them. Data retrieved is always
‘materialised’ from the physical data.

5.2. (Codd)
Beyond passing references to some attributzs being indexed
no physical storage considerations are described.

5.3. Sets and records in the schema (DBTG)
Record descriptions in the schema are entity descriptions

but they do also describe the physical records. Data items

belonging to the entity can be specified as virtual items derlvedo
either by calculation or from a record describing a relateds
entity. The physical record also may contain items Wthho
belong to other entities; this facility is provided to a]lowrl
multiple copies of the same data item to be held for access‘i
optimisation.

:sdpy wou

5.4. Comparison of physical record concepts
GUIDE-SHARE clearly separate their entity, logical ands
physical record concepts. Codd does not deal with phys1ca§_
data at all. DBTG have, to some degree, mixed up the funcg
tions of defining entities, logical and physwal data.

If we follow the principles outlined in Paragraph 3.4 of onlyg
allowing logical records to be subsets of the data items whichg
are attributes of the entities, then we must not in a DBTG'Di
system allow records to have SOURCE derived data 1tem%
which are not used as control data items in SET OCCUR-S
RENCE SELECTION clauses for sets containing those re<
cords. If we do follow these principles it may be desirable tof
provide some mechanism to allow the system to make use og
redundant copies of data items for access time optlmlsatlon—\

Fig. 3(a) shows how the access requirements described inz
paragraph 3.4 are currently catered for if redundant copies ot"1
the item MGR-NUMBER are held. Fig. 3(b) shows an alterna-
tive method which allows logical records to contain onlyZ
items which are attributes of the entities described by thoség
records.

RECORD NAME IS EMPLOYEE
02 PAY-NUMBER
02 START-DATE
02 DEPT-NUMBER; VIRTUAL, SOURCE IS DEPT-NUMBE
OF OWNER OF DEPT-EMPS SET
02 MGR-NUMBER; ACTUAL, SOURCE IS MGR-NUMBER
OF OWNER OF DEPT-EMPS SET

v 28z udy 6 do 159

Fig. 3(a)

RECORD NAME IS EMPLOYEE
02 PAY-NUMBER
02 START-DATE
02 DEPT-NUMBER; VIRTUAL, SOURCE IS DEPT-NUMBER
OF OWNER OF DEPT-EMPS SET

RECORD NAME IS DEPARTMENT
02 DEPT-NUMBER
02 MGR-NUMBER; COPIED INTO MEMBERS OF
DEPT-EMPS SET

Fig. 3(b)

The Computer Journal



Using the data structure of Fig. 3(b) a request to FIND
OWNER OF DEPT-EMPS SET followed by a GET MGR-
NUMBER would be required to retricve MGR-NUMBER
for an EMPLOYEE’s DEPARTMENT but would not result
in any access other than that required to retrieve the EM-
PLOYEE record since the system would know that the MGR-
NUMBER was held there.

6. Conclusions

All three approaches contain some basic idea of data describing
entities in the real world; the work of E. F. Codd, in particular,
is oriented towards discovering the entity structure of the
data.

With regard to the way the applications see the data all
three approaches let the programs see only the information
actually used by them. GUIDE-SHARE require the facility
to aggregate the subsetted data into elaborate structures;
Codd and DBTG restrict aggregation to the formation of
logical records without repeating groups in them and restrict
updating to items which belong to the entity. My view is that
the entity structure should be properly identified and that the
applications should explicitly access all the entities with which
they interact, logical records being restricted to subsets of
the entity data. The DBTG system can be operated in this
way and the elaborate GUIDE-SHARE logical data structur-
ing facilities are not needed.

For access, both GUIDE-SHARE and DBTG make use of
some kind of logical file concept which in the former appears
to be, and in the latter has to be, physically supported using
a list structure. The Codd language, ALPHA, does not pro-

References

Copp, E. F., A Relational Model of Data for Large Shared Data Banks, Comm. ACM, 13, June, 1970, 377-387.
Copp, E. F Further Normalization of the Data Base Relational Model, Courant Computer Science Symposia 6 Data Base Syste

published by Prentice Hall, May 1971.

Copp, E. F. A Data Base Sublanguage founded on the Relational Calculus, IBM Research Report RJ893, San Jose, California, July, 197

CODASYL, Data Base Task Group Report, BCS HQ April 1971.

Joint Guide-Share, Data Base Management System Requirements, Guide or Share Distribution, November 1970.

cess files as such but rather allows access commands to define
the data to be processed and its sequence of processing, both
based on values in the data. Although the ALPHA language
does present severe implementation problems its concepts
can be used. I believe that if all information about an entity
is present in the record describing that entity and not denoted
by its membership in some ‘file’, then a file does not really
exist except as a description of a collection of records known
to a particular program. With this concept it is possible to
keep separate the application program modules accessing the
data in the file, and the database access modules which have
to access the data from the database and create the file.

The Codd system makes no real mention of physical data.
DBTG and GUIDE-SHARE both provide for virtual storage
of data and for holding redundant copies of data where desir-
able. DBTG does mix up its entity description functions and
its mechanism for holding multiple copies of the same data
item and if the DBTG system is to be operated on the basis
of explicitly accessing the entities to which the data relates
this mixup should be resolved.

The DBTG system is the only one of the three for which
implementations are commercially available; in fact, thg
GUIDE-SHARE report describes not a system, but a set (33
requirements. Many of the most useful features for bulldmg
a system based on entity data held in third normal forlﬁ
are not available in current implementations. Neverthelesg
the DBTG system can be used to build a database which is &
good model of the world although a lot of the work which
would ideally be performed by the system is devolved on to th@
data administration staff.

g dnoolweped

Volume 18 Number 1

20z Iudy 61 U0 3s8NnB AQ ¥'G/¥SY///1/8 L/B11e/uluod/w

1



