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A recursive algorithm for the implicit derivation of the determinant of a quindiagonal matrix is
derived in terms of its leading principal minors. Its form is more compact and simpler than that
previously presented in the literature by Sweet (1969). Its envisaged use is for deriving the eigenvalues
of quindiagonal matrices by Newton’s or similar root finding methods.

The derived algorithm simplifies considerably for the case of symmetric matrices yielding a
Sturmian sequence of polynomials from which the eigenvalues can be obtained by use of the well

known bisection process.
(Received May 1973)

1. Introduction

Recent computational techniques for the solution of matrix
eigenvalues have all emphasised the fact that the characteristic
polynomial of a tridiagonal matrix can be obtained implicitly
with great ease by computing (for a specified value of 1) a
simple sequence of polynomials derived from its leading
principal minors (Wilkinson, 1965). Since quindiagonal mat-
rices occur frequently in boundary value problems involving
fourth order derivatives, it seems pertinent, therefore, to
investigate the structure of such a matrix to develop a similar
sequence of polynomials which expresses the characteristic
equation implicitly.

2. A recursive relation for determinant evaluation. The Unsym-
metric case

It is well known that the required eigenvalues are given by the
determinantal equation

det(C—-A) =0, 2.1
or in full matrix notation,
ci—Ady, e
by, c=Ad,, e 0
as, biy, c3—Ad; e
as, by, ca—Ad, e,
det L S =0
T
0 Ay1 by i Cpoy—A,d,_4
a,, b, c,—A

A simple Laplace expansion of the leading principal minors of
small order can be shown to give the following sequence of
polynomials Py(4) = P;, i = 0, 1,2 and 3.

P, =1,
Py = (c; — MPy,

= (c; — )P, — d\b,P,,
P, = (c3 — )P, — d,b3 P, —

The evaluation of P, can be obtained in terms of P; and
previous members of the set of polynomials P; by bordering it
horizontally with the matrix row elements 0, a4, by, (¢4 — 4)
and vertically with the matrix column elements O, e,,
ds, (¢, — 7). (Burnside and Panton, 1904).

When P, is expanded all the terms which contain (¢, — 4) are
included in the term (¢, — A)P;. In addition to this, the expan-
sion will consist of the product of every other element of the

2.2)
a3e1(62 - l) + a3d1d2 + b3b2e1.

fourth column by every other element of the fourth row, every
such product being multiplied by a certain factor. Thus, if the
cofactors of (c; — 4), (c; — A), d, and b5 in the expansion ¢f
P; by C;, C,, D, and Bj;, then the requlred factor whlc§1
multiplies any product, i.e. a,d; in the expansion of P, is thr
same as the factor which multiplies b;(c, — A) with the 81@
changed.

A s1mp1e rule by which the factor of any such product can t%
found is obtained by finding the fourth element which com=
pletes the rectangle formed by the leading term (¢, — 4) arﬁl
the two elements in the fourth row and column which enter into
this product. Substituting the cofactor with a negative sign for
the constituent of P so found, yields the required factor in ea@
case. Thus, we obtain for P, the expression,

P, = (¢, — A)P3 — bd;C5; — ase,Cy + a,d;B; + b4e'2D2 £

Thus, the expression for P, can be written as

P, = (cy — NP3 — bydsP; — ase;[(c; — )Py — aze Py]
+ a,dy(d, Py — e,b;) + buey (b Py

A similar operatlon of row and column bordering yields t
following expression for Ps,
Ps = (cs — AP, — bsd,P3 — ases[(cs — NP, — ase,P,]
+ asdy[d;3P, — e,(bsPy — asd;)]
+ bses[byPy — ay(drPy — byey)] . 2.5)

A comparison of the equations (2.2), (2.4) and (2.5) enables one
to derive the general form for the characteristic equation for
i = n. Thus, the value of det (C — AI) can be easily obtained
from the recursion formula by computing the sequence of

—~
N

— ad,)

2.3
where C;, C,, B; and D, are defined as %
Cs=(-1"|c; -4 d =P, 3

bz, Cy; — A g

=}

= (—“1)2+2 cl - A, el = (C3 - )s)Pl - a3elPo ,%
as, c;— A 2

3

B; = ("1)2+3 c1— 4 e | = —(d,Py — ;b)) , =
[6)]

bZ, d2 %

a

D, = (—1)“3 ci — 4 di | = —(b3P; — a3d)) . g
as, b, é

2

o

3

he

o

IN

polynomials P,(1) = P;, R(A) = R;, S{(A) = S, for i = 0(n
such that

P, =1 ; Ro=0; So=0

P, =(c; — NP, ;R =1;8 =1

P, = (c; — APy — byd,Py;

Rz = dl ’ S2 = b2
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Py = (c3 — WP, — byd, Py — aze (c; — A)

Ry = d,P; — ¢,5, ; 83 =b3P; — a3R,

P, = (¢4 — DP3 — bydsP;, — ase;[(c; — )P, — aze,Py]
+ a4d3R3 + b432S3;

R, = d;P, — e,S,4 3 Sy =b,P, — aR; .
fori = 51)n — 1,
P;=(c;— MP;_y — bd;_\P;_,
—ae;_; [(ci-y — MPi_3 — a;_18;_3P;_4]
+ adi_1Ri_1 + bie;_3S;-1;
Ri=d;_\Pi_y —e€;_35i_1; Si=bPi_y —aiR;_,
and finally for i = n,
det (C - '1[) = Pn = (cn - }')Pn—l - bndn—IPn—Z
- anen—Z[(cn—l - }')Pn—-3 - an—len—-3Pn—4]
+andn an 1 +be,, 2Sn 1 (26)
Similarly, the evaluation of P/(1) = 7l [det (C — AI)] can be
carried out by the formulae listed below:
P;=0 R;=0; S§=0
P/=-1 ; R{=0;8/=0
P; = (c; — )P —b,diP;—P;;R,=0; §,=0
= (c3 — WP, — bsd,P{ — P, + azey;
R} = d,P}; S§ = byP;
= (cg — MDP; — bydsP; + ase, Py
— ase; [(e3 — V)P — aze Pgl + a,d3R;
+ bse,S; — Ps;
R; = dyP; — €;,5;; S; = byP) — a3R; )
fori =51)n — 1;
=(¢; — )P/_y — bd;_P/_, — Pi—l + ae;_,P;_;
— aie;_5[(ciy — MP/_3 — a;_1e;_3P/_,]
+ad;_R/_, + be;_ zS, 5
R’l = dl 1Pl—2 l—2Sl—1’ Sl = bPl’—Z - aiRil—l (27)
with i = n,

d
7 [det (C = AD] = P, = (e = DP;_, = bdy 1P,

— Lpoq + anen—ZPn—3
- anen—zl:(cn—l - ;‘)Pn,—S - an-len—3Pn,—4]
+ a,d,_(R,_, + be,_,S,_, .
Finally, the two recursive formulae (2.6) and (2.7) are used in

Newton’s iterative method for finding an eigenvalue of the
matrix C, in the form

Aerr = ke — [PAD/P(AD), k =

where A, is an initial estimate.
If the root is simple, then this method has quadratic converg-

ence, that is
e VA 29

However, if the root to which the process is converging is
multiple then (2.9) has linear convergence. It is possible to
modify the formula to take account of multiplicity of roots if
we know the order of multiplicity of the root. In general, we
will not have this information available.

Alternatively, having found 1, by Newton’s method, we may
switch to the more efficient Secant iterative method,

Aevr = A — (A — lk—l)Pn(lk)/[Pn(Ak) = Py(A-1]
k=1. (210
The iteration is continued until satisfactory convergence to the
eigenvalue A is obtained, i.e. until |(4,,,; — 4,)/A;| < &, where e
is a small specified tolerance.
Having computed one or more of the eigenvalues by any of the
above techniques, it is desirable to ensure that in further
searches for eigenvalues, we do not redetermine those already

(2.8)
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found. Thus, we require some technique of suppressing the
known eigenvalues. The recommended technique is as follows.
If approximations A1, . . ., ¥ to eigenvalues are known, then
instead of iterating with P,(A) use

G,(A) = P, (l)/

Note that G,(4) is again 1mp11c1t1y defined through the implicit
determination of P,(1) and the derivative of G,(4) for use in
Newton’s method is given by

G, = G} {P;(A)/Pn(x) -2 G- A"‘))-‘} , @12)

from which an expression for G/(1)/G,(4) can be obtained.

IT (2= A7) . 2.11)

3. The symmetric case
When the quindiagonal matrix C is symmetric, i.e.,

d,' = bi+l’ i= (l)n -1 and ej = aj+2,j = l(l)n bl 2,
the recursive sequence (2.2) and (2.3) become,

Po =

Pl =((:1 - A)PO,
= (¢, — )Py — b2P,, (3.1)
= (¢c3 — HYP, — bIP; — aj(c, — 2) + 2a;3b,b; ,

and

P, = (cs — )P; — biP, — WP, — ajPo}
+ 2a,b,4{b3P; — bya3Py} |
Further applications of the bordering technique developed in
Section 2, produces the recursive sequence P; fori = 5,6, .
in the simpler form
Pi=(c;—M)P;_, — biP;_, —a}{(ci—,
+ 2a:bi{b;—Pi-3 —

— ai{(cs

_}‘)Pl’—3 —a
bi—2a;_1Pi_4

P Pi-a}

+ bi_3a;_1a; Pi_s — ...}
and finally in a more compact notation, for i = n,
Pn = (C,, - j')})n—l - bﬁpn—l
—az{(cn 1 — DPy_3 — a_\P,_4}
+2 Z ( I)J+1b bn _)[ ]._.[ 1 r] -j+2 - (3'2)
r=n—j

Now since the polynomials P,, P,, P,,...,P,_,, P, form a
sequence consisting of the leading principal minors of |C — Al|,
where C is a symmetric quindiagonal matrix, then they form a o
properly signed interleaved sequence of polynormals (i.e. all“‘
P, (%) > 0 for a sufficiently large value of A either positive orE
negative and the zeros of P,(A) strictly separate those of"
P, (%) and thus with the aid of the separation theorem &
(Wilkinson, 1965), it can be shown that the sequence of poly-S
nomials P,, P, .. ., P, form a Sturm sequence of polynomialsc
in the interval (— co, + o0).

The fundamental property of such polynomials facilitate the=
calculation of the roots by the process of bisection, i.e. the.\)
number of disagreements in the sign s(4) in the sequence P;,”~
i=0,1,2,...,n being equal to the number of roots of P,(2)
smaller than ,1.

From Gerschgorins’ theorem, the eigenvalues are all contained
in the union of the » intervals

¢ £ (16 + [bipq] + lail + laisal), i=1,2,...,n
with

gonL/gL/apguenu[woowoo'dnoogLuapéoeu:sduq wo.y pepeow/v\oq

0z Judy

by =byy1=a, =08, =01, =08,,,=0.
Hence the expression

max
. {Ci + (1bi] + lai| + b4 4| + Iai+2|)} s (3.3)
min

can be input to the bisection process as initial upper and lower
bounds for the eigenvalues.

To carry out the above algorithm in floating point arithmetic
without the fear of underflow and overflow occurring, we follow

[



a similar procedure to Barth, et al. (1967) and replace the
sequence of polynomials P;(4) by the sequence p;(2) defined by

pid) = P(W[P;i—y (D), (=1,2,...,n) . 34
The polynomials p,(A) can be shown with a little analysis to
satisfy the relationships,

Po=1,

D1 (cl - 2’),

pr=1(c; — 4 — bz/pls

P3 = (c3 — A) — bilp, — ai(c; — A)p.py + 2asb,b5/p,py,

Pn = (C" - '1) - bi/pn—l - ai{(cn—l
- a: 1/pn 1Pn-2Dn- 3} +

2 z< I)J“bb_,[@n/pn_, o) T

- l)/pn—- 1Pn-2

r=n—j+1

(ar/p,)] N EN))

With the use of the modified sequence of polynomials p;,
i=0,1,2,...,nin (3.5), we find that the number of negative
p; now gives s(4), the number of eigenvalues smaller than A.

The calculation of the products p,p,, pipP,Ps, €tc in the
sequence (3.5) also requires careful consideration when A is
close to an eigenvalue to ensure numerical stability.

4. Numerical results

The recursive algorithmic process given by the relationship (2.6)
and (2.7) was checked for validity by obtaining the eigenvalues
of the quindiagonal matrix

[a* + be, 2ab, b?, 0
2ca, a® + 2bc, 2ab, bz,\
s =|c?, 2, @t 2be ~ \\~b2 =J?
\\\\ \\2ca, ~a? +2bc,2ab
0 R c?, 2ca, a + be|
where J = tridiag (¢, a, b). The eigenvalues of J are known to be

As=a+ 2Wbccos {sn/(N + 1)}, s=1,2,...,N (4.1)

An ALGOL program using equations (2.8) and (2.10) was
completed for the Loughborough University ICL 1904A
computer and a starting approximation of

Jo = [a + 2v/be cos (sn/N)]?

was used in the iteration process. The results obtained for the
matrix S = J2 where J = tridiag (1, 2, 2) of order 10 correct to
7 significant places in decreasing order were as follows:
0-22220438,2; 0-19179357,2; 0-14839644,2; 0-10080441,2;
0-57721367,1; 0-25519195,1; 0-68067270,0; 0-50959032,0;
0-14396281,0; 0-21837196, —1;

which agree exactly with the theoretical results obtained from
using (4.1).

Similarly, an ALGOL procedure based on the program given
by Barth, et al. (1967) which computes the eigenvalues of the
(10 x 10) test matrix, i.e.

S -4 1 ;

-4 6 -4 1 0
1 -4 7_—4_ 1
\\ \\\\\\ \\
SN IS T~

ST it s T

0 1 -4 13 —4

! 1 -4 14,

by the method of bisection using the Sturm sequence of poly-
nomials p;, i = 1,2, ..., n given by (3.6) yields the following
results correct to 7 significant figures

72

2-0588891,1;  1-7336869,1;  1-4616481,1;  1-1943311,1;
9-4729464,0;  7-5412116,0;  5-9764481,0;  4-3530204,0;
2.5718218,0;  5-9900089, —1.

Both ALGOL programs are presented in section 5.

5. ALGOL programs
procedure quindiageigen (a, b, cc, d, e, lambdal, n, eps);
value n;
integer n;
array a, b, cc, d, e;
real lambdal, eps;
comment Procedure determines by the Newton iteration method
the eigenvalue of a pentadiagonal matrix where the array cc
denotes the diagonal, b and d the lower and upper sub-diagonal,
and a and e the lower and upper sub sub-diagonal elements.
Iteration is continued until the eigenvalue lambdal is obtained
to an accuracy specified by eps, m being the iteration count.
begin
integer i, m;
real lambda2;
array c, p, pd, r, s[0: n];
13: for i := 1 step 1 until » do
begin
c[i] := cc[i] — lambdal ;
end;
m:=m+ 1;
pl0] :=1;r[1] := s[1] := 1; p[1] := [1];
r[2] := d[1]; s[2] := b[2];
pL2] := c[2] x p[1] — b[2] x d[1] x p[0];
r[3] :=d[2] x p[1] — e[1] x s[2];
s[3] := b[3] x p[1] — a[3] x r[2];
P[3] := ¢[3] x p[2] — b[3] x d[2] x p[1] — a[3] x e[1]
x ¢[2] + a[3] x d[2] x r[2] + b[3] x e[1] x s[2];
for i := 4 step 1 until n do
begin
rlil:=d[i — 1] x p[i — 2] — e[i — 2] x s[i — 1];
s[i] := b[i] x pli — 2] — a[i] x r[i — 1];
pli] := c[i] x p[i — 1] — b[i] x d[i — 1] x p[i — 2]
—afi] x e[i — 2] x (c[i — 1] x p[i — 3] — a[i — 1]
xe[i — 3] x p[i — 4]) + a[i] x d[i — 1] x r[i — 1]
+b[i] x e[i — 2] x s[i — 17;

end;
pd[0] :=r[1] :=s[1] := 0;
pd[1] := —1;r[2] :=s[2] :=

pd[2] := c[2] x pd[1] — b[2] x d[1] x pd[0] — p[1];

r[3] :=d[2] x pd[1]; s[3] := b[3] x pd[1];

pd[3] := c[3] x pd[2] — b[3] x d[2] x pd[1] — p[2] +
a[3] x ¢[1];

for i := 4 step 1 until » do

202 udy 61 U0 1s8n6 Aq 95255 H/0./1/81/I0NE/UlWOD/ W00 dno"dlWspeoe)/:SA]Y WoJj POPEOUMOQ

begin
rli] :=d[i — 1] x pd[i — 2] — e[i — 2] x s[i — 1]:
s[i] := b[i] x pd[i — 2] — a[i] x r[i — 1];

pdli] := c[i] x pd[i — 1] — b[i] x d[i — 1] x
pdli — 2] — p[i — 1] + a[i] x e[i — 2] x
pli — 3] — a[i] x e[i — 2] x (c[i — 1] x pd[i — 3] —
ali — 1] x e[i — 3] x pd[i — 4]) + a[i] x d[i — 1] %
r[i— 1] + b[i] x e[i — 2] x s[i — 1];
end;

lambda?2 := lambdal — p[n]/pd[n];

if abs((lambda2 — lambdal)/lambdal) < eps then goto 12;

lambdal := lambda2;

goto 13;

12: end of quindiageigen;

procedure quindibisect (c, b, d, dd, beta, n, ml, m2, epsl, relfeh)
res: (eps2, z,x);

value n, ml, m2, epsl, relfeh;

real epsl, eps2, relfeh; integer n, ml, m2, z;
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array c, b, d, dd, x, beta;

comment c is the diagonal, b the sub-diagonal, d the sub sub-
diagonal, beta the squared sub-diagonal and dd the squared sub
sub-diagonal of a symmetric quindiagonal matrix of order n.
Input to vectors b[i], beta[i], d[i] should begin with i = 2,
2, 3and 3 respectively. The value of relfeh is machine dependent
and is the precision of the arithmetic used, i.e., for a t-digit
binary mantissa relfeh is of the order 2.

The eigenvalues lambda[m1], . . ., lambda[m2], where m2 is
not less than m1 and lambdali + 1] is not less than lambda[i],
are calculated by the method of bisection and stored in the
vector x. Bisection is continued until the upper and lower
bounds for an eigenvalue differ by less than eps1, unless at some
earlier stage, the upper and lower bounds differ only in the
least significant digits. eps2 gives an extreme upper bound for
the error in any eigenvalue, but for certain types of matrices
the small eigenvalues are determined to a very much higher
accuracy. In this case, epsl should be set equal to the error
to be tolerated in the smallest eigenvalue. It must not be set
equal to zero;

begin real /4, xmin, xmax; integer i;
comment Calculation of xmin, xmax;
d[1] :=d[2] := 0;
dd[1] := dd[2] := 0;
beta[1] := b[1] := 0;
xmin := c[n] — abs(b[n]) - abs(d[n]),
xmax := c[n] + abs(b[n]) + abs(d[n]);
= abs(b[n — 1]) + abs(d[n — 1]) + abs(d[n]);
if c[n — 1] + h > xmax then xmax := c[n — 1] + h;
if c[n — 1] — h < xmin then xmin := c[n — 1] — h;
fori:=n — 2step —1 until 1 do
begin
h := abs(b[i]) + abs(d[i]) + abs(®b[i + 1]) +
abs(d[i + 2]);
if c[i] + h > xmax then xmax := c[i] + h;
if c[i] — h < xmin then xmin := c[i] — h;
end i;
eps2 := relfehx(if xmin + xmax > 0 then xmax else —
xmin);
if eps1 < O then epsl := eps2;
eps2 := 0-5 x epsl + 7 x eps2;
comment Inner block;

begin integer a, k; real xI, xu, xo; array wu[m1: m2],
pll:n];
X0 := xmax;
for i := m1 step 1 until m2 do
begin x[i] := xmax; wu[i] := xmin;
end i;
z:=0;
comment Loop for the kth eigenvalue;
for k := m2 step —1 until m1 do
begin xu := xmin;
for i := k step — 1 until m1 do
begin if xu < wu[i] then
begin xu := wu[i]; goto contin
end
end i;
contin: if xo > x[k] then xo := x[k];
for x1 := (xu + x0)/2 while xo — xu > 2 x relfeh
x (abs(xu) + abs(xo)) + epsl do

begin integer r, j;

array p[0: n];

real prod, prod2, sum, prod p;

z:=z+1

comment sturm sequence;

a:=0;p[0] =0;

pl1] := [1] — x1;

if p[1] < Othena:=a + 1;

p[2] := (c[2] — x1) — beta[2]/Gf p[1] # O
then p[1] else relfeh);

if p[2] < Othena:=a + 1;

P31 := (c[3] — x1) — beta[3]/Gf p[2] 4 O
then p[2] else relfeh)

—dd([3] x (c[2] — x1)/(Gf (p[2] x p[1]) # O
then (p[2] x p[1]) else relfeh)

+2 x d[3] x b[2] x b[3]/Gf (p[2] x p[1]) # O
then (p[2] x p[1]) else relfeh);

if p[3] < Othena := a + 1; prodp = p[1] x p[2];

for i := 4 step 1 until n do

begin
s £ 0; 9
prod2:=1; S
prodp := prodp x p[i — 1]; 8
forj:=i— 2step — 1 until 1 do 2
begin 3
prod :=1; g

Forr: =i — j+ 1 step 1 until i do prod:
prod x d[r];
prod 2: = prod2 x p[i — j — 2];
sum :=sum + 2 x (DTG + 1) x
bli — j] x prod x prod2,
end j;
pli] := (c[i] — x1) — beta[i]/Gf p[i — 1] # O
then p[i — 1] else relfeh) — dd[i]
x ((c[i — 1] — x1)/Gf (p[i — 1]
x p[i — 2]) 4 O then (p[i — 1]
x p[i — 2]) else relfeh — dd[i — 1]/
if (p[i — 171 x p[i — 2] x p[i — 3]) #
x then (p[i — 1] x p[i — 2] x
x p[i — 3]) else relfeh)) + sum—
if prodp ne O then prodp else relfeh);
ifp[i]<Othena:=a+ 1;
end i;
if a < k then
begin if a < m1 then xu := wu[ml] := x1
else
begin xu := wu[a + 1] := x1;
if x[a] > x1 then x[a] := x1;
end;
end;

else xo := x1;
end x1;
x[k] := (xo0 + xu)/2;
end k;
end inner block;
end quindibisect;
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