A one-sided transformation method for the singular
value decomposition and algebraic eigenproblem

J. C. Nash

Research Division, Economics Branch, Agriculture Canada, Sir John Carling Building,

Ottawa, K1A OC5, Canada

Post-multiplication by plane rotations is employed to orthogonalise the columns of a real matrix.
This procedure, when carried out in an ordered fashion, produces a singular value decomposition of
the matrix and may be used to solve the eigenproblem of a real symmetric matrix.
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Kaiser (1972) has proposed a one-sided transformation method
for finding the complete eigensystem of a real symmetric
matrix. For certain matrices (see Table 1), however, his program
proved inadequate, and correction of the inadequacy led to the
observation that a similar method would accomplish a singular
value decomposition (Golub and Reinsch, 1970) of a real
rectangular matrix.

The underlying process for both problems is an orthogonalis-
ation by plane rotations of the columns of a matrix 4, which
we shall consider m x n with m > n. The singular value
decomposition of a matrix with m < nis found from that of AT
(transpose of A). ’

Our aim is to find a matrix ¥ as a product of plane rotations
such that:

AV = B = (bl’ b29 b3a L] bn) (1)
with the columns of B orthogonal, hence:
bf b; = S.-2 5ij )

where §;; is the Kronecker delta, equal to 1 when i =j,0
otherwise. The S; may be considered as forming an n x n
diagonal matrix, so that B may be written:

B=USwithUTU =1, . 3)
Where j < n is the rank of 4. Consequently:
A=USVT 4

because V, as a product of orthogonal matrices, must itself be
orthogonal. Thus, if we can construct V, (4) is the singular
value decomposition of 4. One difficulty in constructing V is
that the ordering of the rotations is indeterminate. This can be
effectively limited by requiring that the columns of B decrease
in norm from left to right. (However, ||B|| = || 4], Wilkinson,
1965, page 58). Thus the S; are monotonic non-increasing.

The plane rotations

Consider the plane rotations acting one at a time to bring A4 into
B. Any one rotation acts only on two columns of the current 4
matrix, say x and y. Following Kaiser we can write:

@i mo)=®Y @

Thus:
X =xcos® + ysin0 6)
Y = —xsin® + ycos

If we try to maximise f = XTX with respect to @ we find:

af _ 5 xTy —
2= 2XY=0. ©)

Thus, orthogonality results from this first order condition for
a maximum; we further require:

XX —xTx>0 8)

4

to ensure the calculation always proceeds towards an ordering
of column norms. Defining:

P =2x"y (%)
Q=x"x—yly (9b)
v=(P? + OV Oc

a straightforward calculation suggests:
cos @ = (v + Q)/(2v))* = P/(2v sin 0) (10a
sin @ = sgn (P) # (v — Q)/(2v))* = P/(2v cos ) (10b§

If Q is positive, cos @ is calculated first from v and Q, ang
sin @ from P, v and cos 0. If Q is negative, sin § is calculated
first. This minimises error by cancellation during a subtractiong
An alternative procedure, used in the author’s program for thg
singular value decomposition (but not the eigenproblem) is to

C

1NBOPEO)

T
2

Q
A so that a subsequent rotation has Q > 0. Limited practica}
experience suggests that there is little to choose between the
two methods. The latter choice orders very small singulaR.
values, which the slightly faster and apparently more straight%
forward approach may be unable to do owing to the nature ofs
the convergence criterion. The rotations are performed in a set,
sequence called a sweep (as in the traditional Jacobi algorithm)z
each sweep consisting of the n(n — 1)/2 rotations on the colum#]
pairs (1,2)(1,3),...,(1,n),(2,3),(2,4),...,2,nG9,.. 5
(3,n),...,(n — 1,n). The process is iterative since orthos
gonality between columns established in one rotation may be
destroyed in subsequent ones. Convergence is guaranteed by
condition (8) which always requires that the column norms

S
set @ = = whenever Q is negative. This reorders the columns of
3

become more ordered; in fact: %
XX —x"x = yTy — Y'Y =sin@(cos@ P — sinQ Q) = %:?_
w-—0)=0. (8ap

An algorithm very similar to this, except that the angle cal§
culation does not seem to be constrained to imply condition
(8), was suggested by Hestenes (1958) who approached the
problem from the point of view of orthogonalisation directly.
His algorithm does not appear to have had any reported
practical trial. Neither does a similar algorithm reported by
Chartres (1962).

As a test for convergence, Kaiser counted how many times in
any sweep X'y fell below a tolerance, and stopped when the
count reached n(n — 1)/2. This is also the method used in the
present algorithm except that instead of x"y, which may be
small simply due to small eigen or singular values, the para
meter: o

PP 1)
" x)(y"y)

is used (with a different tolerance).
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Table 1 Tests of Jacobi-like methods for the eigenproblem using matrices of order n = 10.

Matrix! BASIC version of BASIC version of  Present® method  Present method
Jacobi algorithm Kaiser’s algorithm  with Rayleigh with Eq. (14)
of Rutishauser quotient for eigenvalue
(1966)
Hilbert segment S 9 4 4 4
A4;=10+j-1) R 7-26 E-7 0-128 668 E-6 691 E-6
. P 0 0997 2:16 E-6 216 E-6
Ding Dong? S 8 11 5 5
A;;=05n—-i—-j+15) R 2:32 E-6 0914 5-13 E-6 1-56 E-5
P 0 1-94 E-7 121 E-6 1-21 E-6
Moler 4;; =i S 7 6 6 6
A, jx; = min (i, 7) — 2 R 1-74 E-5 1-40 E-2 4-28 E-5 9-72 E-5
P 194 E-7 5-40 E-3 2:34 E-6 2:34 E-6
Frank S 8 4 4 4 g
A;; = min (i, f) R 2-29 E-5 572 E-5 534 E-5 1-14 E-4 2
P 2-:09 E-7 5-70 E-5 1-53 E-6 1-53 E-6 f%’
Border A; =1 S 35 5 2 2 §
Ay = Ay =210 R 1-79 E-6 9-54 E-7 1-43 E-6 2-:38 E-6 =
P 5-34 E-9 6'55 E-7 629 E-7 629 E-7 ©
Diagonal S 1 2 1 1 §
Ay =i R 0 0 0 3-81 E-6 o
P 0 0 0 0 5
2
Wilkinson* S 7 6 5 5 g
W+ R 2-32 E-6 4-29 E-6 6-85 E-6 1-57 E-5 3
P 1-79 E-7 2-98 E-7 1-85 E-6 1-85 E-6 g
Wilkinson® s 6 15 4 4 5
w— R 1-94 E-6 1-07 1-21 E-5 2:26 E-5 &
P 4-77 E-7 4-58 E-7 2-13 E-6 2-13 E-6 %
Ones 4;; = 1 S 6 ) 5 E
R 4-65 E-6 FAILS 2-38 E-5 1-10 E-5 oy
P 0 8-54 E-7 8:54 E-7 S
©
Total Time (secs.) 395 391 299 258 g
Code Length (words) 1,081 938 927 880 S
3
S = number of sweeps >
R = magnitude of largest element of residual matrix (4V — VA) Z
P = magnitude of largest inner product V;7V; (i # j) =
Notation: 123 E-5 = 1:23 x 1073 X

1 A1l matrices were calculated on the NOVA computer and punched in six significant figures on paper tape. Timing is for all nine
matrices and includes input/output. The same paper tape was used for all four programs. Machine precision = 2722,

2Angle calculation: a = (v + Q)/2v)%, B = p/(2 aw)

IfQ0>0,cos0 =a,sin® =p8;if 0 <0,cos0 = B,sind =o.

3The name and matrix were invented by Dr. F. N. Ris of IBM Thomas J. Watson Research Centre, while he and the author were
both at Oxford. This Cauchy matrix has few trailing zeros in any elements, so is always represented inexactly on the machine.
However, it is very stable under inversion by elimination. In fact, its eigenvalues have the property of clustering at + /2.
“Wilkinson (1965) page 308. For even n the zero diagonal element is omitted.

Whenever ¢ falls below the tolerance or (x"x) - (y'y) under-
flows, a counter, initially set to n(n — 1)/2, is decremented by
1, so if it is O at the end of any sweep, convergence is assumed.
Typically this occurs about the fourth sweep.

Real symmetric matrices
The eigenproblem of real symmetric matrices is solved by
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applying the same technique when m = n. Failure may occur,
however, if the matrix is singular, since a null column may
appear in the matrix B. In the singular value decomposition
this is not important—one of the singular values is zero and
the product USV' T is still 4. However, in the case of a real
symmetric matrix a null column in B, and hence in U, gives
only the trivial solution to the eigenproblem
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Au=Ju . (12)

To avoid this possibility we may look at the eigenproblem of

the matrix
Al = A4 + k1 (13)

which has the same eigenvectors as A, with k chosen to make
A* positive definite. If S!, i = 1,2, .. ., n, are the singular or

1

eigenvalues of 4!, then the eigenvalues of 4 are:

A=S—k. (14)

Alternatively, the Rayleigh quotient, (u"Au)/(u"u), may be
used to find the eigenvalues of 4. This appears to be a slightly
more satisfactory procedure than Equation (14) even on a one
precision machine, but requires a copy of 4 to be stored. For
positive definite matrices the algorithm is especially attractive.

Comparisons with other algorithms

One of the major motivations for development of this singular
value decomposition algorithm at Agriculture Canada was its
compactness; the Golub/Reinsch algorithm will not fit easily
into the memory of two minicomputers owned by the Depart-
ment: a Data General NOVA and a Hewlett Packard 9830.
Both these machines operate in the BASIC computer language.
While access is available to larger machines, cost and turn-
around factors make it attractive to use the minis. The algor-
ithm has been built into a larger program which allows a
number of regression calculations to be performed on different
combinations and permutations of variables loaded into the
machine at the beginning of a run (either by hand or paper
tape). A number of statistics other than the regression co-
efficients are produced by the program. The major shortcoming
of the minis, apart from size, is the lack of a double precision
feature. Thus all the test computations, including residuals and
Rayleigh quotients, are performed in single precision.

As a check of program performance, the matrices UTU,
VTV, and VVT were formed. In all cases, so far, these have
been unit matrices (perhaps augmented by zeros in the case of
UTU when rank (4) < n) to within a small multiple of the
machine precision. Similarly, the quantities:

n 2
<Aij - kzl UikSkajk>

Z A (15)

were computed, and in every case were a small multiple of the
machine precision. When one column of 4 was null, the
numerator of the fraction in Equation (15) was printed and
always was extremely close to, or identically zero.

Regression calculations were carried out on the NOVA
(machine precision 272%) using the least squares test data of
Golub and Reinsch (1970), some labour statistics given by
Longley (1967), and polynomials suggested by Wampler (1970).

For the Golub/Reinsch data, agreement with the published
results was obtained to machine precision. For Longley’s data,
similar agreement between the Golub/Reinsch method and the
present algorithm was obtained for both the singular values

kS

M=

i=1

q; =
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automatically ordered. g
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those presented were found for order 4 matrices. The principat
timing comparison (for the complete set of 9 matrices) i§
between the present method and a BASIC version oB
Rutishauser’s Jacobi algorithm, which is efficient primarily
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approximately proportional to n* and the present metho
cannot be recommended for solution of the eigenprobler
of matrices much larger than order 10. ©

minimise [|Ax — b,

Indy 6
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