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The truncation error of polynomial interpolations can be written as a form expressible as the product
of two functions so that one factor depends only on the points we use for the interpolations, while
the other depends essentially on the function we aim to approximate. To optimise this error term
in a min-max sense, we concentrate on the first part and introduce extra degrees of freedom by use of
extra information in the form of values of derivatives at some of the interpolation points. This
paper gives a discussion of the ‘best’ choice of the extra information and the implications of such

‘extended’ approximations.
(Received April 1973)

1. Introduction

Let us consider a function Z(x) continuous in [—1, +1]. We
suppose Z(x) to be given numerically on a set of prescribed
points x,,1,...,€ [—1, +1] and, for explanation purposes,
we further suppose that no other information concerning Z is
available, beyond the belief that it may be approximated by
polynomials of moderate degree. (This latter assumption is
somewhat relaxed in the last sections of this paper.)

We aim to approximate Z(x) by a polynomial Py(b, x) which
coincides with Z(x) at the points x,¢, 1 ..., and whose degree
N(N = g) and coefficients b,_,o, ;,..  n are chosen so as to
optimise the approximation in a certain sense.

Due to the absence of a definition of Z(x) in [—1, +1] we
cannot minimise the modulus of

en(x) = Z(x) — Py(b, x) (1.0

for all x. We can, however, split gy(x) into two factors, one of
which contains the known (x, dependent) component, and the
other the unknown (Z dependent) component; of the two
factors the former may indeed be minimised.

To explain the splitting of ey(x) we first consider the remainder
formula for a polynomial interpolation of degree ¢ which can
be written as (Davis, 1963, p. 64),

£ = Pg®) . Bys1(x) (1.2)

with

gq+ l(x) =

sIjTO x = x) (1.3)

where p,(x) contains the information which is function
dependent.
In our present problem we have N > ¢ and so choose to write

SN(X) = ﬁN(q’ x) ﬁN+ l(ma x) (1'4)
where
fyaam, %) = T G = )™ (1.5)

Withmo+m1+...+mq=N+l.

For convenience, we insert a normalising constant and choose
to examine the polynomial given by
q
uy1(m, x) = E I"% (x — x)™ (1.6)
where m are positive integers.

We start by studying some of the limitations of this approach
in Section 2. Afterwards we obtain for sets of equally—spaced
points X, 1,..., €Xplicit numerical values for m,.o 1,

We leave for a second paper (Oliveira-Pinto, 1974) the pre-
sentation of a well-conditioned algorithm (based on a modified
Gram-Schmidt process) which has enabled us to experiment
extensively with these approximating forms.
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2. The optimisation of the truncation error
Our aim is to reduce all the maxima and minima in x of t
polynomial (1.6) to the same height which is one of the knowa
requirements of min-max approximations (Rice, 1964, p. 56}
However, the reduction of all the extrema of (1.6) to the san%
height is not usually possible for fixed x,, and so we are
constrained to define a ‘near-optimisation’ scheme for (1.6)
where we make the maximum linear distance of ¢ + 2 of i
extrema from their average value (disregarding signs) a mm?»
mum.

These q +2 extrema are the maxima and minima of uy. ,(m,
in between zeros and for x e [—1, min (x;)], [max (xs), +1
We denote by x;_¢, 1, g1 the correspondlng abscissae in x.J

Since the height of maxima and minima of uy 4 1(m, x) on s
Zeros X,.,1,..., Cannot be numerically controlled, we must
not allow these type of extrema to occur. This is done
restricting the set of poss1ble solutions for mg_,q,1,.. .4 tO th_?;
set of odd integers 1, 3, . .. with the possible exceptlon of n%
and m, in the case of xo, x, = FL

To s1mp11fy the formulatlon of this approximation process WE
start by defining a reference function U,.,(x — x,) in the
following terms:

(@) Uy 1(x — xy) is continuous in [—1, +1] with its zeros anﬂ
extrema in x on the same set of abscissae as those
Uy 1(m, x);

(b) The g + 2 extrema of U, (x — x,) have the same amplf-
tude and their signs agree with the corresponding signs @f
Uy 1(m, x7);

(c) Moreover, the difference uy., ((m, x) — Uy 1(x — x,) can—
not have extrema in x other than those corresponding to the
extrema of uy., ((m, x).

Since it may be difficult to visualise such a function we giye

here one possible way of constructing U, (x — X;). =

Let us consider a non-negative step function w(x)in[—1, +1]
which for [ —1, xo), [xo, X1), . . . [x,, +1] withxy < x; <

< x, has the values

wx) =

oe,

oI,

99,88

uoy}

Z I

mwhereh = Uy (m, x), s > 0,1,. 1.2.1)
The product w(x) . uy,(m, x), satisfies (a), (b), (c). It can
therefore be taken as a reference function.

We are now in a position to state that we require

q

max | E [] (x — x)™ — Ugs(x — x7) |, xe [—1, +11(2.2)

x s=0
to be a minimum in the odd integer powers m,_¢,1,.. .4 > 0.
We shall denote by m¥*,, ;,..., the coordinates of such a

minimum. The factor E is a normalisation factor to uy. ;(m, X)
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and it is such that the mean of the absolute value of the g + 2
extrema of uy, ,(m, x) is equal to

max | Uy, (x — x)
X

The reason why we cannot use an ordinary ‘absolute’ norm

q

Il (x—x9™ |, xe[—1, +1] 23)
s=0

which corresponds to U, (x — x) =0 and E =1 in (2.2)
needs an explanation.

max
x

Let us consider the norm (2.3) when we take X, ... , a8
the zeros of the Chebyshev polynomlal g+1(x)=cos ((g + 1)
arccos x), that we represent by x*,o .. and A the coefficient
of its highest power of x. Making m, = 1 we have

q
Tgr1(x) = A TI (x — x3) (2.4
s=0

which fulfills the requirement of all its ¢ + 2 extrema having
the same amplitude. We can prove however that m, =1 are
not the coordinates of a minimum. In fact, defining uy, ,(m, x)
by

Uy 1(m, x) = (x — x’5)2 (x — x;k)z Tys1(%) 2.5
we have
[)* = 91 1 Tge 1) < |Tps 1M, xe [—1, +1] (2.6)
because x; = —x§ and so our statement is proved.
We are then going to solve (2.2) subject to the condition that

lsms—vo,l,...qSM'i'l (27)

for M fixed (preferably an even 1nteger) and independent of the
relative position of x,.¢,1,...,in [—1, +1]. M defines the
highest order derivative of the data functlon Z(x) that may be
required at x = x,.

Unfortunately, for a given set of points x,,0,1,...,and a
fixed M, no simple method is at present known for the
computation of myq,, 4, ., iteratively. But for reasonably

small values of ¢ and M, say ¢ < 24 and M = 2, the total
number of possible polynomials uy, ;(m, x) is from(2.7)—2?**
—which is a number small enough to make feasible, with
modern automatic computers, the direct evaluation of each
polynomial uy,,(m, x), so as to choose from amongst them
the required uy, ((m*, x).

This direct verification method has the advantage that we may
obtain without extra cost a ‘2nd best’ solution which may be
easier to use and, in practice, give comparable polynomial
approximations. This was the method used when computing
the values of Table 1 for equidistant values of x,.q,
described in the next section.

seesq

3. The distribution of powers for equidistant data
We shall now study the error-function uy, ;(m, x) for a special
set of sampling points: the equidistant set.

The reason for investigation of this case is the fact that it
occurs often in practice. For example, sampling of obser-
vational functions by clock mechanisms leads to equidistant
sampling. Further, with numerical problems of the step-by-step
type, we often finish with a set of numbers defined at equal2
step-size intervals. But it is well known how disastrous%
Langrangian polynomial approximations may be for equally-w
spaced x,.9,4,.. , and large g (e.g. Fig. 1). In Lanczos (1961)‘l
p- 13 we read ‘We thus come to the conclusion that inter-S
polation in the large by means of high order polynomials is=
not obtainable by Langrangian interpolation of equidistantS
data. If we fit our data exactly by a Langrangian polynomlaF
of high order we shall generally encounter exceedlngly largem
error oscillations around the end (sic) of the range’. To reduceg
these large oscillations near the boundaries of the normahsedo
interval for x we have computed for equidistant x,.¢,1,.. .5 2
the set of integer powers m¥,, ; ..., < M + 1 which makeso
the function wuy, ,(m, x) to have 1ts extremes of almost theg
same height. g

The result is condensed in Table 1 where only half of the:
powers ms_,o 1 4 due to their symmetry are represented. In-‘

3
oo
Table 1 The ‘odd’ powers of the Error-functions E,, I'[ (x — s) s Xg = 254 ,m¥<3 3
-
4 279E,,, max. mymim3 . . . g+1 279E;;; max. mom'ym . . . N
deviat. deviat. g
=
1-17  +0-04 21 4 0-74 —0-34 11 &
0-44 1-45 —-0-04 211 5 0-79 +0-44 111 ]
0-78 1-70  +0-22 211 6 0-80 +0-78 111 2
1-19 315 —-0-22 3111 7 1-91 +0-39 2111 z
1-64 374 +0-18 3111 8 2:08 +0-65 2111 =
2-13 433  +025 31111 9 2-18 +0-97 21111 S
2:64 4-88 +0-36 31111 10 2:21 +1-3 21111 =
316 535 +0-49 311111 11 2-16 +1-8 211111
3-68 4729  —0-64 331111 12 571 +0-65 311111
4-20 5356 —0-62 3311111 13 591 +0-93 3111111
472 60-59  —0-59 3311111 14 5-96 +1-3 3111111
524 6817 —0-54 33111111 15 5-84 +1-6 31111111
575 76:02 —0-49 33111111 16 5-57 +20 31111111
6-27 8375  +0-46 331111111 17 519 +24 311111111
6-78 90-92  +0-56 331111111 18 4-74 +2-8 311111111
7-29 97-04  +0-71 3311111111 19 4-24 +32 3111111111
7-80 101-68  +0-87 3311111111 20 372 +36 3111111111
8:31 97501 —0-95 33311111111 21 104-47 +1-0 33111111111
8:81 1075-58 —0-94 33311111111 22 105-21 +1-2 33111111111
9-32 1176:06  —0-93 333111111111 23 103-85 +14 331111111111
9-82 127142 +1-2 333111111111 24 100-52 +1-6 331111111111
10-3 135598 +1-6 3331111111111 25 95-51 +20 3311111111111
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Fig. 1 Ordinary polynomial interpolation and corresponding
ug+1(m, x)

the second half of that Table we give a ‘second best’ set that we
call here m/_,, 4, ..., subject to the condition m, < m since
we believe it to be pointless to have, as a second choice, a
Uy, 1(m’, x) which is more expensive to construct. Finally, in
the column of the maximum deviations, we have respectively

—1 or max
x
and thus an upper bound for these errors is always available-
For easy reference the first column of the table contains the
maximum deviations to one of the m, = 1 Lagrange inter-
polator case. The lower plot of Fig. 2 shows the plot of
Uy, 1(m*, x) of Table 1 for g = 20.
We now comment on Table 1.

1. To balance the ‘exceedingly large error oscillations around
the end(s) of the range’ the tabulated polynomials show, as
expected, larger powers in the zeros around the ends of
[—1, +1] than in the middle. Let us for example take the
polynomial

4 q(m, x) = q+l(x - xo) (x—Xx)..
(x — X - 1)(x -x)*. (31

max
x

Uy 4 1(m*, x)

Uy 1(m', x) | -1

Because X, = —X, we have

Uy 1(m, x) = [(¥)* = (%)*]* Ry+1(x) (3.2)
Ryp1(x) = Egpq(x — Xo)(x — Xy) - . .
x—X—)x—Xx) . (3.3)
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The first factor in (3.2) may be considered as a ‘damping’
function to the corresponding Lagrange polynomial R, {(x)
and the polynomial uy, (m, x) displays, as desired, much
smaller oscillations around the ends of the interval [—1, +1]
than the corresponding Langrangian one R, {(x).

2.In the first half of the Table the same pattern of powers
extends over consecutive values of g (e.g. forg — 11, 12, .
19) and for such sub-sets the absolute value of the maximum
deviation decreases first with 1ncreasmg g, reaches a mini-
mum and often increases again until a different pattern
arises. The same is not, however, true for the second half
of the Table where the maximum deviation within the same
pattern always increases.

3. Looking again at the columns of the maximum deviations,
we note that the general tendency of its values is to increase
with increasing g. This shows how poor polynomial approxi-
mations can be for large sets of equidistant data points, even
though non-Langrangian ones. This is due to the lack of
flexibility in the choice of powers m¥,, 1, ..., since they can
only have integer values. This also limits for a given M, the
maximum number of equidistant sampling points that onge
can safely use.

4. Numerical experiments and conclusions

Let us consider the classical example introduced by Run
around 1900 (Lanczos, 1961, p. 12). The data of this exam
are defined by the values Z ., ;,.. .20 Obtained by dlreet
sampling at the equidistant points X; - +10, 9, £8, . .0 &f

} PSpeoju

Z(X)= — 4
1+ Xx? 3
or, which is equivalent, from g
. 1 2
Z(x) = ——
™) = T Toox 3

now at the points x; - +1:0, +0-9,...0. These 21 sampled
values Z,,¢,1,...20 deﬁne the ‘basic’ table of values which wee
shall now approx1mate using different polynomial techmqu%
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Fig. 2 Extended polynomial interpolation with the corresponding
uy +1(m, x)
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Fig. 3 [Extended polynomial
derivative information

interpolation with non-optimising
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Experiment 1:

For the Langrangian type of approximation we have obtained
what is plotted in the upper part of Fig. 1. The strong oscil-
lations in between data values near the boundaries of the
normalised interval for x, [—1, +1], are disappointing. The
function uy, ,(m, x) corresponding to this polynomial approxi-
mation is shown in the lower plot of the same figure, and the
correlation between the exceedingly large oscillations in both
plots (apart from a scaling factor) is overwhelming.

Experiment 2:
Including now derivative information such that the error
uy41(m, x), q = 20 is ‘best’ according to Table 1 we obtained
the upper plot of Fig. 2 where we used in the first and last 3
tabular points, 1st and 2nd derivatives of Z (x). The oscillations
in between data values at the end of the normalised interval
[—1, +1] are much smaller (by a factor 2 x 10* as can be
shown for x = +0-95) than the corresponding ones in the
Langrangian experiment. Due to the presence of derivative
values this type of polynomial approximation converges to
Z(x) everywhere in [—1, +1]. The lower plot illustrates the?
function u;;(m*, x).

pPapeojumad

Experiment 3:
To emphasise the importance in the proper selection of thes'
derivative information we prepared an example where we havez,
taken the same number of derivative values as used in th%
previous experiment but in different tabular points. Thus, we\
considered 1st derivative values on the first and last six tabulam
points and the result is given in the upper plot of Fig. 3. Thls‘%
approximation has improved around x = +0-3 when com—g
pared with the two previous experiments but near +1 is still
very poor. Note again the strong similarity between the shape?
of the approx1mat10n obtained and the correspondm@
u33(m, x) in the lower part of the same figure.
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