Algorithms supplement

Algorithm 85

GENERATION OF CHISHOLM APPROXIMANTS
R. Hughes Jones, P. R. Graves-
Morris and G. J. Makinson
University of Kent
Canterbury
Kent.

Authors’ Notes

Chisholm (1973) has shown how rational approximants may be
defined for functions expressed as a power series in two variables,
and the ALGOL procedure presented here generates all the
Chisholm approximants up to some given maximum order m.
Common and Graves-Morris (1974) have proved some of the
mathematical properties of such approximants.

Hughes Jones and Makinson (see ref.) have shown how to generate
successively approximants of increasing order by the prong method,
and Graves-Morris, Hughes Jones and Makinson (see ref.) have
reported some computational experience in approximating a number
of functions in this way.

Let f(x, y) be defined by the formal power series

flx,y) = Z Z cigxiyl . 6))
i=0j=0
Then the mth order rational approximant defined by

3

% AuoXxty®
Sy, y) = =% =0 _ Px) @

m m
Z 20 bpexPy?

is found by first multiplying the difference between (1) and (2) by
Q(x, y) which gives formally

O(x, ») Z 2 cyxiyl — P(x,y) = Z }: dijxtyi 3)
i=0 j=0 i=0j=0
Linear equations for the parameters ay» and bpq, where 0 < u, v, p,
g < m, are obtained by requiring

dj=0 0<i+j<2m, @
dij+dp=0 1<i<mwherei+j=2m+1 ®)
These equations together with a normalising equation for boo are

sufficient to determine the parameters uniquely provided the

coefficient matrix is non-singular.

By taking the equations in a particular order the system can be
partitioned into a form which enables the solution to be found
directly block by block.

Assuming boo is normalised to unity, then the equations which arise
from matching terms x™+%, y = 1, 2, ..., m, in Hughes Jones and
Makinson, only involve the m parameters by, i = 1,2, ..., m, and
so these parameters can be determined provided the coefficient
matrix is non-singular. Similarly the m equations which arise from
matching terms ym+v, p =1,2,...,m, in Hughes Jones and
Makinson allow the m parameters boi;, i = 1,2,...,m, to be
determined. These are referred to in the program as the parameters
involving index zero, of which altogether there are 2m + 1.

The m — 1 equations which are obtained from matching terms
xmtuy y=1,2,...,m — 1, in Hughes Jones and Makinson may
be grouped together with the m — 1 equations which are obtained
by matching terms xy™+v, v = 1,2, ..., m — 1in Hughes Jones and
Makinson, and with the addition of the one symmetrised equation
given by /i =1 in Reinsch and Wilkinson (1971), they form a
linear system of 2m — 1 equations relating the 2m — 1 parameters
b1, bi1 and b1s, i = 2, 3,. .., m, to the previously determined para-
meters. The new block is referred to in the program as the set of
parameters involving index unity.

The process can be continued and by matching terms xmtty2,
u=12,...,m—2, and x%ym+tv, vy =1,2,...,.m—2, 2m — 4

Volume 18 Number1

equations are obtained, which, taken together with the symmetrised
equation i = 2 in Reinsch and Wilkinson (1971), form a linear
system for the 2m — 3 parameters b2z, be; and bis, i = 3,4, ..., m.
These parameters are expressed only in terms of parameters which
have already been evaluated and so the block of parameters in-
volving index 2 can be computed.

Continuing in this way all the denominator parameters can be found
using a block by block process. The largest block to be solved is
@2m — 1 x 2m — 1). The b’s are thus computed in blocks of
increasing index order and within a block the ordering chosen is as
follows: the b’s of index i are ordered bim, bi,m—1, . . ., biiy « . ., bmi.
This is slightly different from that given in Hughes Jones and
Makinson.

Once the b’s have been determined, the a’s are given explicitly by
the equations which come from matching terms x¥y%,i = 0, 1, .. ., m,5
j=0,1,..., m, in Hughes Jones and Makinson. 5

The full set of (m + 1)2 linear equations for the b’s, P(™b = r3
has a lower triangular block structure which is simply extended whenm
mis increased. Apart from one small additional alteration, the addmg;ﬂ
of a border partition along the left and top sides of P(™ givesS
P<'"+1) The procedure builds up successive PY) of order N, where=

=j(j + 2), in array gl with the (N, N) element of P ug
ql[1, 1] and the (1, 1) element in g1[— N, N].

Since the coefficient matrix for the set of b’s of fm/m mvolvmgg
index i is exactly the same as the coefficient matrix for the set of b’sg
of fm+1/m+1 involving index i + 1 where i = 1,2,...,m, its tri-g
angular factors, which are obtained in the solutlon process, need beo
found only once and stored for subsequent use. For each news
approximant, however, the set of equations for the b’s involvingS
index zero and the set for those involving index unity, have to
solved completely each time. 0

The triangular factors are stored by overwriting the correspondmgs
block diagonal matrix which is stored in the array gl. The tri-®
angularisation and solution calculation is performed using the%_‘
algorithms ‘unsymdet’ and ‘unsym acc solve’ (Reinsch and Wilkinson
(1971)).

The a’s are given explicitly in terms of the 4’s by an equation

a = Wimbp

N\CI

u

ZBzssy/1L8/L8

where the matrix W) is upper triangular if the blocks of para-3
meters are ordered in decreasing index order and if within each blockrr
the a’s of index i are ordered aio, aos, ai1, aii, - . ., Q.

The matrices W all have the property that W<’°+1) is simply W("XD
extended by a border partition along the top and left-hand s1des.o
The procedure stores the triangular matrix W) with W, j) in”.
gl[-N +i— 1, N — j + 1], in the array space left by the bloc!
triangular coefficient matrix P¢. In the problem of the overlapc
which occurs in the case of the diagonal blocks, the elements of
Wm) are not written since the triangular factors of the diagonal3Q
submatrices of P¢™ are already stored in these locations. All the™
elements of the diagonal block locations of W(m) are however
repeated in the correct configuration in the leading triangular
section of W), Hence by overwriting the upper triangular section
of the leading diagonal block of array g1 with the elements of W),
all the information is available in the store. This can be done
because the leading diagonal block of P does not occur again as
a diagonal submatrix in P(m+1),

The triangular factors of the leading diagonal block of P(™ are
consequently not stored for later use. The leading diagonal block
elements of P(m however, are stored to form P(m+1)_ Thus it is
necessary to restore the overwritten elements before the procedure
returns to begin calculating the parameters of the next order
approximant.

The procedure computes the 1/1 approximant directly and generates
successive i/i approximants up to m/m. It prepares for the construc-
tion of the coefficient matrix for the denominator parameters of unit
index of the i + 1th order approximant whilst it is setting up the

hb A

81

coefficient matrices for the denominator parameters of zero index
of the ith order approximants.

Testing was carried out on an ICL 4130 computer by comparing
the results obtained by the procedure with those obtained from a
FORTRAN program which found the parameters by direct solution
of the full set of equations.

The approximant was evaluated over various grids in the xy plane.
A FORTRAN program has also been written by John and Lutterodt
(1973) which might be adapted for this problem.

Procedure specification

comment The requisite power series coefficients ¢;; must be supplied
in array c[0:2m + 1, 0:2m + 1] where ci; is in c[Z, j]. The elements
of ¢ which are not needed to store power series coefficients, namely
i+j>2m+ 1,and c[0:2m + 1]and ¢[2m + 1, 0] can be assigned
arbitrarily. On exit the numerator parameters are in num[0:m, 0:m]
and the denominator parameters are in den[0:m, 0:m]. The co-
efficient of xiy7 is assigned to array location [7, j]. The procedure
exits to label sing if a singular block coefficient matrix is encountered
during the solution process, and exits to label ill if any system of
equations is too i/l conditioned to be solved accurately. eps is the
smallest number for which 1 + eps > 1 on the computer;

References

CuisHOLM, J. S. R. (1973). Rational approximants defined from
double power series, Math. Comp. 27, 124.

CoMMON, A. K., and GRAVES-MORRIS, P. R. (1974). Some proper-
ties of Chisholm Approximants, J. Inst. Maths. Applics. 13.

HucHes Jones, R., and MakKINsoN, G. J. The Generation of
Chisholm rational polynomial approximants to power series in
two variables, to be published in J. Inst. Maths. Applics.

GRAVES-MORRris, P. R., HuGHES JoNEs, R., and MAKINSON, G. J.
The calculation of some rational approximants in two variables,
to be published in J. Inst. Maths. Applics.

REeINscH, C., and WiLkinsoN, J. H. (1971). Linear Algebra
Handbook for Automatic Computation, Vol. 2, Springer-Verlag.

JonN, G., and LutTteroDT, C. H. Private communication, 1973.

procedure chis2 (num, den, c, m, eps, sing, ill);
value m, eps; array num, den, c; integer m;
label sing, ill; real eps;
begin integer i, j, k, q, s, g, t, h, 1, it, im, top, d2; real diag, d1;
g:=mx (m+ 2) + 1;den[0,0] := 1; diag := c[0, 0];
num[0, 0] := diag;
begin integer tot, mm, spk, var, qp, u, run, sop, upp, und, dec, drop, inc,
qt, cs, ds, itn;
real w; real array ql{—q :—1, 1:q], int, store[1:q];
integer array as, bs[1:q, 1:2], blas[1:2 x m + 1,1:2];
den{0, 1] := store{1] := —c|0, 2)/c[0, 1]; denl[l, 0] := store[2]
= —cl2,0)/c[1,0]; w:= c[0,1] + c[1,0]; den[l, 1] := store
[31:= —(cl2,1] + cl1, 2] + (c[1, 1] + c[2,0]) x store[l] —
(c[1,1] + ¢[0, 2] x store[2D/w; num][l, 0] := diag x den[1, 0]
+ ¢[1,0]; numi0, 1] := diag x den[0,1] + c[0,1]; num[1, 1]
1= diag x den[1,1] + c[1, 1] + ¢[0, 1] x denl1, 0] + ¢[1, 0] x
den{0, 11;
comment 1/1 approximant found,
if m # 1 then
begin g1[—4, 2] := gq1[—2,4]: = 0;q1[—2,2] := ¢[1,0];
ql[—2,3] :=q1[-3,2] := c[2,0]; q1[—4, 3] := ¢q1[-3, 4]
1= ¢[0,2]; q1[—4, 4] := [0, 1]; g1[-3, 3] := [0, 3] +
c[3,0]; q1{—4,1] := c[1,1] + ¢[2,0]; g1[-2,1] := c[1, 1]
+ ¢[0,2]; q1{—3,1] := c[2, 1] + c[1, 2]; as[1, 2] :=
as[2,1] := 0; as[1, 1] := as[3, 1] := as[2, 2] := as[3, 2]
=1;g:=3;
for i := 2 step 1 until m do
beging :=h x (h+2)+ 1;9gp:=q + 1;tot :=h + 1;
sop:=2X%Xh+1;s5s:=gq— tot;
for i := 1 step 1 until 7ot do
begin cs :=gp — i;
for j := 1 step 1 until i do
begin comment setting up matrices for coeffts with a zero
index but anticipating the next order unit index matrix;
ds :=qp — j;ql{—ds, es — h] := qllh — cs,ds] :=
gl{—cs,ds — h] :=qllh — ds, cs] := 0;ifj #m + 1
then g1{—ds, cs] := ql[—cs,ds] := ¢[0,i + j — 1];
fi-j#m+1

thengl[—i — s+ h,g—2x h—j+i]:=
gll—q+2xh+j—i,s+i—hl:=c[2xi—-j0]
end
end i;
ifh # mthengl{—q + h,q — h] := c[sop, 0] + cl0, sop];
store[tot] :=1;
begin array aa, d[1:h, 1:h], z, sol, bb[1:h, 1:1), piv[1:h];
comment solving for the coeffts with zero index;
fork :=0,1do
begin upp := k x tot; dec := qp — upp;
for i := 1 step 1 until 4 do
begin z[i, 1] := —ql[—q + h, dec — il;
for j := 1 step 1 until /2 do
aali, j] := dli, j]l := ql{—dec + j, dec — i]
end;
unsymdet(h, eps, aa, d1, d2, piv, sing);
unsymaccsolve(h, 1, d, aa, piv, z, eps, sol, bb, itn, ill);
for i := 1 step 1 until z do store[i + upp] := solli, 1]
end
end decl d;
mm:=h—1;r:=q—2x h;u:=gq;
begin integer array se[l:q, 1:2];
for k := 0 step 1 until / do
begin dec := mm — k;
comment increasing index ordering vector bs extended,
for i := O step 1 until dec do
begin s := u — i;t :=r + i; bs[s, 2] := bs[t,1] :=
h—1i;
bs[s, 1] := sels, 1] := se[t, 2] := bs[t,2] := k;
selt, 1] := se[s,2] := tot + i
end i;
s:=u—h+ k;bs[s, 1] := bs[s, 2] := se[s, 1] := k;
se[s,2]1:=2xh—k+ 1;spk:=2x (h—k)—1;
r:=r—spk;u:=u— spk — 2
end k;
t:=2xh+1;s:=q—2xh;
for k := O step 1 until mm do
begin comment setting up new lhs partition;
spk =2 x (th—-k)—1;
for j := 1 step 1 until spk do
begin var := s — j;
for i := 1 step 1 until 7 do
begin run := qp — i; it := se[var, 1] — bs[run, 1];
im := se[var, 2] — bs[run, 2];
if it < 0\Vim < O then g1{—run, var] := 0
else g1[—run, var]: = c[it, im];
ifj = h — k then
begin it := se[var, 2] — bs[run, 1];
im := se[var, 1] — bs[run, 2];
if it > O Aim > O then
gl[—run,var] := ql[—run,var] + c[it, im]
end
end i
end j;
s:=s5 — spk
end k
end decl se;
t:=2xh—1;r:=q—2x h;
begin array aa, d[1:¢, 1:¢], z, sol, bb{1:¢, 1:11], piv[l:¢];
integer f;
comment solving for coeffts with one index unity;
for i := 1 step 1 until # do
begin z[i 1]1:= 0;
for j := 1 step 1 until sop do
z[i, 1] := —qllj — qp, r — i] x store[j] + z[i, 1]
end i;
comment coefft matrix to array d. Its factors to array aa;
for i := 1 step 1 until 7 do for j := 1 step 1 until # do
aali,jl := dli,jl1:=qllj —r,r — il;
unsymdet(t, eps, aa, d1, d2, piv, sing);
unsymaccsolve(t, 1, d, aa, piv, z, eps, sol, bb, itn, ill);
for i := 1 step 1 until 7 do
begin store[2 x h + 1 + i] := sol[i, 1];
intlr — i] := pivl[il;
forj:= 1step 1 until £do gl[j — r,r — i] := aali, j]
end factors overwrite coeffts in diagonal blocks of q1;

202 udy 61 U0 1s9n6 Aq Z8ZGGH/1.8/1/81/aI01E/UlWOD/ W00 dNo"dlWspeoe)/:SA]Y WoJ) POPEOUMOQ

The Computer Journal

comment remaining sets of equations solved using stored
triangular factors. coeffts found in increasing index order;
t:=q—4x%x h;tot :=h— 2;
for k := 1 step 1 until 7ot do
beginf:=2x (h—k)—1l;qt:=q— t;u:=h—-—k—1;
for i := 1 step 1 until « do
beginr :=f+1—1i;
dir,u+ 1]1:=dfu+ 1,r] := clu + i,0];
dlu + 1,i]l :=dfi,u + 1] := c[0, u + i];
for j := 1 step 1 until / do
begin inc := f+ 1 — j; d[i,j] :=d[j, il :=
cl0,i +j7—11;
d[r, inc] := dlinc,r] := cli + j — 1,0];
d[r,jl:= d[j,r] := dlinc,i] := d[i,inc] := 0
end j
end 7;
diu + 1, u + 1] := ¢[0, 1 + c[f, 0];
for i := 1 step 1 until fdo
begin z[i, 1] := 0; s := ¢t — i + 1; piv[i] := int[s];
for j := 1 step 1 until fdo
aali,jl := q1lj — t — 1, s];
for j := 1 step 1 until g7 do
z[i, 1] := —ql[j — qp, s] x store[j] + zl[i, 1]
end;
unsymaccsolve (f, 1, d, aa, piv, z, eps, sol, bb, itn, ill);
for i := 1 step 1 until £ do store[gt + i] := solfi, 1];
t:=t—f
end k;
sol[1,1]1:=0;
fori:=qg — 1step —1 until 1 do
sol[1,1] := solf1,1] — q1{—i — 1, 1] x store[q — il;
store[q] := sol[1, 1]/w;
comment /ist of denominator. coeffts output to array den;
for j := 1 step 1 until g do
begint:=qg —j+ 1;
denlbs(t, 1], bst, 2]1] := storel;j]
end
end denominator coeffts for hlh approximant now found;
t:=2xh—-1;
for i := 1 step 2 until # do
begin blas[i, 1] := blas{i + 1,2] := h;
blasli + 1,1] := blas[i, 2] := (i — 1)/2
end;
t:=t+ 2; blas(t, 1] := blas[t,2] := h; dec := g + t;
for j := 1 step 1 until # do
begin as[j + g, 1] := blas[j, 11; aslj + g, 2] := blas[j, 2]
end decreasing index ordering vector as is extended;
fori:= g — 1step —1 until 1 do store[i + 1] :=
denlasli, 1], as[i, 211;
comment the denominator coeffts are now in the array store in
decreasing index order but array store will subsequently be
overwritten by the numerator coeffts;
fori:= g + 1 step 1 until dec do
begingl [—i,i + 1]1:=0;¢t0t :=i — 2;
forj := 1 step 1 until tof do
begin it := as[i, 1] — as[j, 1]; im := as[i, 2] — as[j, 2];
ifit <0Vim < Othengl[—j— 1,i + 1]:= 0;
elseql{—j — 1,i + 1] := c[it, im]
end
end coeffts of new eqns written to next row partition of ql;
qll—dec,dec + 1] := ¢[1,0]; g := dec; upp := q;
und :=q — t + 1;dec := t; drop := 0;
for k := 1 step 1 until ~ do
begin inc := q; tot := und — 1;
for i := upp step — 1 until und do
begin s := i — 1; store[i] := diag x store[i] +
clasls, 1], as[s, 2]1;
for j := 2 step 1 until 7ot do
store[i] := store[i] + q1{—j, i] x store[j];
for j := und step 1 until s do
storeli] := store[i] + ql{—j — drop, inc] x store[j];
inc := inc — 1
end;
drop := drop + dec; upp := upp — dec; dec := dec — 2;
und := und — dec
end numerator coeffts in array store in the order as in array as;

Volume 18 Number1

fori := q — 1step —1 until 1 do num[asl[i, 1] + as[i, 2]] :=
store[i + 11;
if 1 # m then
~begintot :=h+ 1;s:=q — tot;qp :=q + 1;
for i := 1 step 1 until zot do
for j := 1 step 1 until i/ do
begin comment resetting the first diagonal block but
only the upper triangular section;
qll—gp + i+ h,qp — jl :=qll—gp +j + h,qp — i]

qlli — gp,qp — j1:= c[0,i + j — 1];
gll—q+ 2 xh+j—i,s+i—hl:=c[2 xi-}j,0]
end;
ql[—q + h,q — h] := c[t,0] + [0, ¢]
end
All hlh coeffts found. A test to determine whether continuation
to h + 1/h + 1 is required can be inserted here
end A
end
end decl q1
end chis2;

Algorithm 86

COMPLEX INTERVAL ARITHMETIC
J. Rokne and P. Lancaster
Department of Computer Scien
University of Calgary
Calgary, Alberta
Canada T2N 1N4

peoe//:sdny uﬁu; papeojumoq

Author’s Note 2
For the algebra we will refer to the note by Rokne and Lancaster=.
(1971). In these subroutines a complex interval 4 is an ordered$
pair of complex numbers (A1, A2). If A = (Al, A2) thens
Re (A1) + i Im (A1) is the lower left hand corner of our complex3
interval and Re (42) + i Im (A42) is the upper right hand corner. %

The algorithm presupposes the existence of four procedures,©
FIADD, FISUB, FIMUL and FIDIV that performs intervals:
arithmetic operations on real numbers, and a procedure FX TEND§>
that adds 1 to the right hand digit of the mantissa of a floating points
number. Such procedures were published earlier in ALGOL 60 by2
Gibb (1961) under the names RANGESUM, RANGESUB,»
RANGEMPY, RANGEDVD and CORRECTION with the obviousg
translation. Let XYZ denote any one of ADD, SUB, MUL and DIV
and let X1, X2, Y1, Y2,Z1,Z2, be single precision storage loca-S!
tions containing real floating point quantities. Then the call

CALL FIXYZ (X1, X2, Y1, Y2,Z1,Z2, IXYZER)

performs an interval addition, subtraction, multiplication or divisiod2
according to the ‘value’ of XYZ on the intervals (X1, X2) and (Y1,
Y2) and stores the result in (Z1, Z2). The contents of X1, X2, Y12
Y2 remain unaltered. Let Q, R be a single precision storage loca-—~
tion containing real floating point quantities. Then the statement

R = FXTEND (Q)

assigns to R the number Q with a 1 added to the last digit of th
mantissa.

If either X1 > X2 or Y1 > Y2 in the call of these routines the
errorflag IXYZER is set to 1. In the case of FIDIV, the errorflag is
set to 2 if Y1*Y?2 < 0. Normal return is indicated by the errorflag
being set to zero.

Let A, B, C be complex intervals (41, 42), (B1, B2) and (C1, C2)
respectively. The four routines ADDX, SUBX, MULX and DIVX
perform complex interval arithmetic operations on complex inter-
vals 4, B and return the result in C. Let XYZX be any one of the
above four complex interval arithmetic routines. Then the routines
are used according to the call sequence

CALL XYZX (A1, A2, B1, B2, C1, C2,IXZXER)

If in the call of the routine XYZX any of the conditions
Re (A1) < Re (A42), Im (A1) < Im(42), Re(Bl) < Re(B2) or
Im (B1) < Im (B2) are violated, the errorflag IXZXER is set to 1.
In case of DIV X, the errorflag is set to 2 if zero is a member of the
complex interval B. Normal return from the routines is indicated by
the errorflag being set to zero.

Adq zge

v2Dz Iudv 6

We define the area S of a complex interval (41, 42) to be
S(A1, A2) = [Re (42) — Re (41)] * [Im (42) — Im (41)] ,
and use the size of this quantity as a measure of how good our
algorithm is.

We present an example of the division routine. At the input of
(X1, X2) = {(0-10000000E + 01, 0-10000000E + 01) + i(0-0, 0-0)}
(Y1, Y2) = {(0-50000000E + 01, 0-60000000E + 01)

+ i(—0-30000000E + 01, —0:10000000E + 01)}
the computer (IBM 360/50) produced the result
(Z1,22) = (X1, X2) + (Y1, Y2) = {(0-13333321F + 00,
0-19230783E + 00) + i(0-27027003E — 01, 0-88235438E — 01)}.
The resulting area is

S$1(Z1,Z2) = [0-19230783E + 00 — 0-13333321E + 00] *
[0-88235438E — 01 — 0-27027003E — 01] = 0-36097441E — 02

If, however, we use the simpleminded approach on these intervals
the result is (see also Rokne-Lancaster 1971)

(Z1,22) = (X1, X2) + (Y1, Y2) = {(0-11111099E + 00,
0-23076934E + 00) + i(0-22222206E — 01, 0-11538470E + 00)}

The resulting area is in this case

S2(Z1,22) = [0-23076934E + 00 — 0-11111099E + 00] *
[0-11538470E + 00 — 0-22222206E — 01] = 0-11147670E — 01

Comparing S1 and S2 we see that we have a considerable
improvement.

In some cases our division routine will produce a result, whereas the
simpleminded approach fails. The reason for this is that the growth
of the intervals is slower for our routine than for the simpleminded
approach.

For example if we have

(X1, X2) = {(0-10000000E + 01, 0-10000000E + 01) + i(0-0, 0-0)}
(Y1, Y2) = {(0-10000000E + 01, 0-20000000E + 01)

+ i(—0-20000000E — 01, 0-30000000E + 01)
the computer produced the result

(Z1,22) = (X1, X2) + (Y1, Y2) = {(0-99999964E — 01,
0-10000029E + 01) + i(—0-500000066E + 00,
0-500000066E + 00)}

using our routine. The simpleminded approach, however, could not
handle this division.

References

GiBB, A. (1961). Algorithm 61, Procedures for Range Arithmetic,
Communications of the ACM, Vol. 4, p. 319.

ROKNE, J., and LANCASTER, P. (1971). Complex Interval Arith-
metic, Communications of the ACM, Vol. 14, p. 111.

Acknowledgements

The authors are grateful for financial support from the National
Research Council of Canada and Defence Research Board of
Canada.

SUBROUTINE ADDX(A1, A2, B1, B2, C1, C2, IADXER)
THE SUBROUTINE ADDX PERFORMS A COMPLEX INTERVAL
ADDITION ON THE COMPLEX INTERVALS (A1, A2) AND (B1, B2)
AND STORES THE RESULT IN (C1, C2). THE COMPLEX INTERVALS
(A1, A2) AND (B1, B2) ARE UNALTERED. IADXER IS AN ERROR-
FLAG. IT IS SET TO ZERO FOR NORMAL RETURN AND TO 1 TO
INDICATE AN ERRORCONDITION.

COMPLEX A1, A2, B1, B2, C1, C2, CMPLX

IADXER = 0

1;;2(;1E2L(A1) .LE. REAL(A2) .AND. AIMAG(A1) .LE. AIMAG

gnngL(m) .LE. REAL(B2) .AND. AIMAG(B1) .LE. AIMAG(B2))

IADXER = 1

RETURN
1 “CALL FIADD(REAL(A1), REAL(A2), REAL(B1), REAL(B2), CR, Cl,

CALL FIADD(AIMAG(A1), AIMAG(A2), AIMAG(B1), AIMAG(B2),
1DR, DI, IDUM)
= CMPLX(CR, DR)

& = CMPLX(CI, DI)

RETURN

END

(eleleleXele]

SUBROUTINE SUBX(A1, A2, B1, B2, C1, C2, ISBXER)
THE SUBROUTINE SUBX PERFORMS A COMPLEX INTERVAL
SUBTRACTION ON THE COMPLEX INTERVALS (A1, A2) AND
(B1, B2) AND STORES THE RESULT IN (C1, C2). THE COMPLEX

® 00non

(ele)Xe]

(elelelelele]

(e]eleIsleleleloIg o]0l

INTERVALS (A1, A2) AND (B1, B2) ARE UNALTERED. ISBXER IS
AN ERRORFLAG. IT IS SET TO ZERO FOR NORMAL RETURN AND
TO 1 TO INDICATE AN ERRORCONDITION.
COMPLEX A1, A2, B1, B2, C1, C2, CMPLX
ISBXER = 0
IF (REAL(A1) .LE. REAL(A2) .AND. AIMAG(A1) .LE. AIMAG
1(A2) . AN
2REAL(B1) .LE. REAL(B2) .AND. AIMAG(B1) .LE. AIMAG(B2))
3GO T
ISBXER =1
RETURN
1 CALL FISUB(REAL(A1), REAL(A2), REAL(B1), REAL(B2), CR, Cl,
1IDUM
CALL FISUB(AIMAG(M) AIMAG(A2), AIMAG(B1), AIMAG(B2),
1DR, DI, IDUM)
C1 = CMPLX(CR, DR)
C2 = CMPLX(CI, DI)
RETURN
END

SUBROUTINE MULX(A1, A2, B1, B2, C1, C2, IMLXER)
THE SUBROUTINE MULX PERFORMS A COMPLEX INTERVAL
MULTIPLICATION ON THE COMPLEX INTERVALS (A1, A2) AND
(B1, B2) AND STORES THE RESULT IN (C1, C2). THE COMPLEX
INTERVALS (A1, A2) AND (B1, B2) ARE UNALTERED. IMLXER IS AN
ERRORFLAG. IT IS SET TO ZERO FOR NORMAL RETURN AND TO
1 TO INDICATE AN ERRORCONDITION.

COMPLEX A1, A2, B1, B2, C1, C2, CMPLX o

IMLXER = 0

IF(REAL(A1) LE. REAL(A2) .AND. AIMAG(AT1) .LE. AlMAG(A2§

1.A

2REAL(B1) LE. REAL(B2) .AND. AIMAG(B1) .LE. A|MAG(B:)§
3GO TO
IMLXER =1
RETURN

1 CALL FIMUL(REAL(A1), REAL(A2), REAL(B1), REAL(B2), Q115
1Q21, IDUM)
CALL FIMUL(AIMAG(A1) AIMAG(A2), AIMAG(B1), AIMAG(B2)?
1Q12, Q22, IDUM)
CALL FISUB(Q11, Q21, Q12, Q22, CR, CI, IDUM)
CALL FIMU;.(REAL(A1) REAL(A2), AIMAG(B1), AIMAG(B2), Q11
1Q21, IDUM
CALL FIMUL(AIMAG(A1), AIMAG(A2), REAL(B1), REAL(BZ)P
1Q12, Q22, IDUM)
CALL FIADD(Q11, Q21, Q12, Q22, DR, DI, IDUM)
C1 = CMPLX(CR, DR)
C2 = CMPLX(CI, DI)
RETURN
END

SUBROUTINE DIVX(A1, A2, B1, B2, C1, C2, IDVXER)
THE SUBROUTINE DIVX PERFORMS A COMPLEX INTERVA
DIVISION ON THE COMPLEX INTERVALS (A1, A2) AND (B1, B2
AND STORES THE RESULT IN (C1, C2). THE COMPLEX INTERVALS:
(A1, A2) AND (B1, B2) ARE UNALTERED. DIVX SORTS OUT AND2
MAPS THE DIFFERENT INTERVALS INTO THE FIRST AND SECOND5
QUADRANT: AFTER DIVISION (DIVIQ) THE INTERVAL IS MAPPED:
BACK INTO THE PROPER POSITION
IDVXER IS AN ERRORFLAG. IT IS SET TO ZERO FOR NORMAL!
RETURN AND TO 1 TO INDICATE NONSTANDARD INTERVAL
ON INPUT. IT IS SET TO 2 IF THE DENOMINATOR CONTAIN
ZERO.
COMPLEX A1, A2, B1, B2, C1, C2, D1, D2, CMPLX
REAL L, M, N, LP, MP, NP
IDVXER = 0
IF (REAL(A1) .LE. REAL(A2) .AND. AIMAG(A1) .LE. AIMA
1(A2) .AND.
2REAL(B1) .LE. REAL(B2) .AND. AIMAG(B1) .LE. AIMAG(B2)
3GO TO 10
IDVXER = 1
RETURN
10 L = REAL(B1)
M = AIMAG(B1)
N = REAL(B2)
P — AIMAG(B2)
IF(.NOT.(((M.GT.0.0). AND.(L.GE.0.0.)).OR.((P.GT.0.0).
1AND. (L.GT.0.0)
2))) GO TO 20
CALL DIVIQ(L, N, M, P, LP, NP, MP, PP)
GO TO 60
20 IF(.NOT.((M.GT.0.0).AND.(L.LT.0.0)).OR.((M.GE.0.0).
1AND.(N.LT.0.0)
2))) GO TO 30
CALL DIVIQ(M, P, —

wouy p

wapeoe/F

e/ ulwoo/woo dno

o 1senb A

6L

20z Iud

N, —L, PP, MP, LP, NP)

MP = —MP
PP — —PP
GO TO 60

30 IF(.NOT.((N.LT.0.0).AND.(M.LT.0.0)).OR.((N.LE.0.0).
1AND. (P.LT.0.0)

2))) GO TO 40

CALL DIV1Q(N, —L, —P, —M, NP, LP, PP, MP)
LP— —LP

MP — —MP

NP = —NP

PP — —PP

The Computer Journal

0o

(elelelelels]

GO TO 60
40 IF(.NOT.((N.GT.0.0).AND. (P.LT.0.0)).OR.((L.GT.0.0).
1AND. (P.LE.0.0)
2))) GO TO 50
CALL DIVIQ(—P, —M, L, N, MP, PP, NP, LP)
NP = —NP
LP = —LP
GO TO 60
50 IDVXER =2
RETURN
60 D1 = CMPLX (LP, MP)
D2 = CMPLX (NP, PP)
CALL MULX (A1, A2, D1, D2, C1, C2, IDUM)
RETURN
END

SUBROUTINE DIVIQ(X1, X2, Y1, Y2, X1D, X2D, Y1D, Y2D)
THE SUBROUTINE DIV1Q TAKES CARE OF THE DIVISION IN THE
FIRST AND IN THE FIRST AND SECOND QUADRANT
CALL FIMUL(X1, X1, X1, X1, AU1, AU2, IDUM)
CALL FIMUL(Y1, Y1, Y1, Y1, AU3, AU4, IDUM)
CALL FIADD(AU1, AU2, AU3, AU4, AUS, AU6, IDUM)
CALL FIDIV(X1, X1, AUS, AU6, AK11, AK12, IDUM)
CALL FIDIV(Y1, Y1, AUS, AU6, AL11, AL12, IDUM)
CALL FIMUL(X2, X2, X2, X2, AU7, AUS, IDUM)
CALL FIMUL(Y2, Y2, Y2, Y2, AU9, AU10, IDUM)
CALL FIADD(AU7, AUS, AU3, AU4, AU11, AU12, IDUM)
CALL FIDIV(X2, X2, AU11, AU12, AK21, AK22, IDUM)
CALL FIDIV(Y1, Y1, AU11, AU12, AL21, AL22, IDUM)
CALL FIADD(AU7, AU8, AU9, AU10, AUS, AU6, IDUM)
CALL FIDIV(X2, X2, AU5, AU6, AK31, AK32, IDUM)
CALL FIDIV(Y2, Y2, AUS, AU6, AL31, AL32, IDUM)
CALL FIADD(AU1, AU2, AU9, AU10, AUS, AU6, IDUM)
CALL FIDIV(X1, X1, AU5, AU6, AK41, AK42, IDUM)
CALL FIDIV(Y2, Y2, AU5, AU6, AL41, AL42, IDUM)
A1 = AMIN1(AK11, AK21, AK31, AK41)
A2 = AMAX1(AK12, AK22, AK32, AK42)
B1 = AMIN1(AL11, AL21, AL31, AL41)
B2 — AMAX1(AL12, AL22, AL32, AL42)
X1D = A1
IF(.NOT.((Y1.GT.X2).OR.
1((X1.GT.Y2).AND.(Y1.GT.0.0)))) GO TO 10
X2D = A2

Y1D = —B2
Y2D = —B1
RETURN
10 CONTINUE
1IF(().'{\IOT.(((YZ.GE.X2).AND.(X2.GE.Y1).AND.(Y1.GE.X1))

1((X2.GT.Y2).AND.(Y1.GE.X1)))) GO TO 20
X2D = AMAX1(A2, FPDIV(1 ., Y1)[2.)

Y1D = —B2
Y2D = —B1
RETURN

20 P1 = FPDIV(1., X1)
Q1 = FPDIV(P1, 2.)
IF(Y1.LE.0.0) GO TO 30
X2D = A2
Y1D = AMIN1(—B2, —Q1)
Y2D = —B1
RETURN

30 X2D = P1
IF (ABS(Y1).GE.X1) GO TO 40
Y2D = —B1

GO TO 50
40 Y2D = Q1
50 IF (ABS(Y2).GE.X1) GO TO 60
Y1D = —B2
GO TO 70
60 YID = —Q1
70 CONTINUE
RETURN
END

SUBROUTINE FIADD(X1, X2, Y1, Y2, Z1, Z2, IADDER)
FIADD PERFORMS AN INTERVAL ADDITION ON THE INTERVALS
(X1, X2) AND (Y1, Y2) AND STORES THE RESULT IN (Z1, Z2).
THE CONTENTS OF (X1, X2) AND (Y1, Y2) REMAIN
UNCHANGED.

IADDER IS AN ERRORFLAG. IT IS SET TO ZERO FOR NORMAL
RETURN AND TO 1 TO INDICATE AN ERRORCONDITION.

IADDER = 0

IF(X1 .LE. X2 .AND. Y1 .LE. Y2) GO TO 10

IADDER = 1

RETURN
10 ZI=X1+Y1"

72 =X2+ Y2

IF (Z1)1,2,3

CALL FXTEND(Z1)
IF (Z2) 4,4, 3

CALL FXTEND (Z2)
RETURN

END

BWN =

Volume 18 Number 1

[elelelele]

(elelelelelel

aOn0nn0nNn0n

elelelelelolelele]

SUBROUTINE FISUB(X1, X2, Y1, Y2, Z1, Z2, ISUBER)
FISUB PERFORMS AN INTERVAL SUBTRACTION ON THE INTER-
VALS (X1, X2) AND (Y1, Y2) AND STORES THE RESULT IN (Z1, Z2).
THE CONTENTS OF (X1, X2) AND (Y1, Y2) REMAIN UNCHANGED.
ISUBER IS AN ERRORFLAG. IT IS SET TO ZERO FOR NORMAL
RETURN AND TO 1 TO INDICATE AN ERRORCONDITION.

ISUBER = 0
IF (X1 .LE. X2 .AND. Y1 .LE. Y2) GO TO 10
ISUBER = 1
RETURN

10 Z1=X1-Y2
Z2=X2-Y1
IF(Z1)1,2,3

1 CALL FXTEND (Z1)

2 IF(Z2)4,4,3

3 CALL FXTEND (Z2)

4 RETURN
END

SUBROUTINE FIMUL(X1, X2, Y1, Y2, Z1, Z2, IMULER)
FIMUL PERFORMS AN INTERVAL MULTIPLICATION ON THE
INTERVALS (X1, X2) AND (Y1, Y2) AND STORES THE RESULT IN
Z1, Z2
'(I'HE CC))NTENTS OF (X1, X2) AND (Y1, Y2) REMAIN UNCHANGED.
IMULER IS AN ERRORFLAG. IT IS SET TO ZERO FOR NORMAL
RETURN AND TO 1 TO INDICATE AN ERRORCONDITION.
IMULER = 0
IF (X1 .LE. X2 .AND. Y1 .LE. Y2) GO TO 10
IMULER =1
RETURN
10 Z1 = AMINT(X1*Y1, X1*¥Y2, X2*Y1, X2*Y2)
Z2 = AMAXT(X1¥Y1, X1*Y2, X2*Y1, X2*Y2)
IF(Z1)1,2,3
CALL FXTEND (Z1)
IF (Z2) 4, 4, 3
CALL FXTEND (Z2)
RETURN
END

AW =

peoe//:sdny wolj papeojumoq

SUBROUTINE FIDIV(X1, X2, Y1, Y2, Z1, Z2, IDIVER)
FIDIV PERFORMS AN INTERVAL DIVISION ON THE INTERVALSS
(X1, X2) AND (Y1, Y2) AND STORES THE RESULT IN (Z1, Z2)&
THE CONTENTS OF (X1, X2) AND (Y1, Y2) REMAIN UNCHANGED. 2
IDIVER IS AN ERRORFLAG. IT IS SET TO ZERO FOR NORMALGS
RETURN AND TO 1 TO INDICATE NONSTANDARD INTERVALSS
ON INPUT. IT IS SET TO 2 IF THE DENOMINATOR CONTAINSS
ZERO.

IDIVER = 0

IF (X1 .LE .X2 .AND. Y1 .LE. Y2) GO TO 10

IDIVER = 1

RETURN
10 IF (Y1*Y2 .GT. 0.0) GO TO 20

IDIVER = 2

RETURN
20 A2=1./Y1
Al =1./Y2
IF(A1)1,2,3
CALL FXTEND(A1)

IF (A2) 4, 4, 3

CALL FXTEND(A2)

CONTINUE

RETURN END CALL FIMUL (X1, X2, A1, A2, Z1, Z2, IDUM)

FUNCTION FPDIV(A, B)
C=AJB

IF(C)1,1,2

CALL FXTEND(C)
FPDIV = C

RETURN

END

E]

AW =

-N

202 1udy 61 U0 }sanb Aq z8ZGG1/18/1/81/9101He/|ulod

SUBROUTINE FXTEND(X)
FXTEND SHIFTS X TO THE NEXT MACHINE REPRESENTABLE
VALUE. THE VALUE OF N, M, B AND L MUST BE SUPPLIED BY THE
USER. THE VALUES BELOW ARE FOR IBM/360 FORTRAN.
L IS THE LENGTH OF THE MANTISSA.
B IS THE BASE.
M IS THE LOWER AND N IS THE UPPER BOUND FOR THE
EXPONENT. IT IS RECOMMENDED THAT THIS ROUTINE BE
REWRITTEN IN MACHINE CODE WHEN THE PACKAGE IS
IMPLEMENTED.

IF(X) 23,2
3 RETURN
2 M=—62

B =16.

N = 61

<=r

i
2»Zo
I &l
XX
e

X
|
-

*
*

.(A.LT. Y .AND. Y .LT. A*B)) GO TO 1
(Y + B**(K+1-1), X)

1=~unno

4 -
U)OW
dx

XH>» R0
Q
4

|
85

RETURN

1 CONTINUE
END
Algorithm 87

MINIMUM OF A NON-LINEAR FUNCTION BY THE APPLI-
CATION OF THE GEOMETRIC PROGRAMMING TECHNIQUE

Robert Fleck and John Bailey
Department of Management Science
University of South Carolina
Columbia, South Carolina 29208 USA

Author’s note

Introduction

Geometric programming can be used to find the minimum of a
specific type of a non-linear function. For this specific subset of
non-linear functions, the minimum value can be determined by
geometric programming without calculating the values of the vari-
ables. This method does not require the solution of non-linear
equations or differentiation. The types of functions for which this
technique applies are found in industrial engineering (Duffin,
Petersen and Zener, 1967; Federowicz and Mazumdar, 1968;
Passy, 1970; Wilde and Beightler, 1967, pp. 27-30), inventory
management (Kochenberger, 1971), and computer science (Chow,
1974).

Methodology

The methodology locates the minimum value by ‘inspection’ of the
exponents in the terms of the non-linear function. The theoretical
basis and initial applications were made by Zener, Petersen and
Duffin (1967). The theoretical foundation relies on the geometric-
arithmetic mean inequality. The function to be minimised, which is a
series of terms involving products of variables, is converted to a
weighted geometric mean and the weights determined which cause
the geometric mean to be maximised and equal to a weighted
arithmetic mean.

Example
Assume we have a function to be minimised:

N M
- § (off) 0

j=1 i=1

where C; is the coefficient of each of N terms, ay; is the exponent of
variable i in term j. An explicit example (Wilde and Beightler, 1967,
pp. 27-30) is

y = 1000X1 + 4 x 109X171 X271 + 2-5 x 105Xz)

If we took derivatives, the first partials of (1) must be zero at the
optimal solution:

24 X axj-1 o
i) = 2. Cary(Xx)™ i [T X"
k] =1 i#K

1 N
= — 2 agyCiXg"I [X%

Xk j=1 i#k
1 N M (©))
== 2 agGI] X =0
Xk j=1 i=1
N M
. =2 agiG] X% =0
i=1 i=1
forK=1,..., M.
Define a weight, wj, as:
M
C; X%
111 & @

wj = >
for each term j where y* is the optimal functional value and the X;

are the optimal values determined from the solution of (3).
Transforming (4) to

M
wiy* = G [T X% (5)
i=1

allows substitution of (5) into (3) yielding

y* 2 axw; = 0
or

N
> agwj =0
=1

(6)
forK=1,..., M.

From equation (1) with optimal values of each Xj;, the optimal
function value:

N M
=3 (c,n X) ™
j=1 i=1
Dividing equation (7) by y*,
y# N M
Y_o1=5 (cjn Xi"”>/y* ®)
y j=1 i=1

Substituting for each term j in equation (8), w; as defined in equation
(4), we have
N
2 wp=1.)]
j=1
If we form the N linear equations in N unknowns based on (6) and
(9) for the example (2),

wi+ we+ ws=1
w1 — we =0 10
— w2+ w3=0
The solution to (10) yields wiy = w2 = wz = 1/3.
From (9), (4):
M v,
N N (T x| T NG\ M v
y=Tom=11 (¢ =11 (W I1 X%
j=1 j=1 vy j=1\"™ i=1
It can be shown that
N /M w;
T (H Xfu) -1
j=1 \i=1
Therefore
Cy\ ¥4
* = —_ 11
y ,-1;11 (w) an

and hence for (2), (11) becomes:

o _ (1000\15 (4 x 109\1/3 (25 x 103\18
Y =\13 173 173 =3 x 100

The solution to (10) and (11) yields the values for each term of
1 x 108,

1000Xx1 = 106
4 x 109X171X21 = 106 (12)
2-5 x 105Xz = 10%

which can be solved by inspection or by taking logarithms. The
solution yields X1 = 103 and X2 = 4.

202 udy 61 U0 1s9nb Aq Z82GGH/1.8/1/81/a0E/UlWOd/ W00 dNo"dlWspeoe)/:SA]Y WoJ) PAPEOUMOQ

Relationship between arithmetic and geometric means

It can be shown that the arithmetic mean is always greater than or
equal to the geometric mean of the same numbers (McMillan, 1970,
pp. 224-227). This relationship holds as long as all numbers in the
set are positive and non-zero. The condition of equality between the
means exists when all the numbers in the set are identical. By
converting a function (via weights) into its corresponding arithmetic
and geometric means and then determining the weights which maxi-
mize the geometric mean, the minimum arithmetic mean and the
minimum functional value are found (McMillan, 1970, pp. 224-227).

Define equation (13) as follows:

1000.X1 4 x 109X-1X,"1 2:5 x 105X
T owm wa ws

’

y

13)
where the w;’s are variables to be defined later.

Now convert (13) to equation (2) by multiplying each term by the
appropriate wj,

The Computer Journal

1000.X, 4 x 109X-1Xx31 2:5 x 105X>
w1+ —m—mMm8Mmm — w2 + ——
w1 w2 w3

ws (14)

If we restrict the w;’s to positive and non-zero values less than one,
summing to one, equation (14) is the weighted arithmetic mean of
equation (13). The weighted geometric mean of (13) is:

w1 9yY-1Y,—1\ %2 . 5 w3
G = (1000X1) (4 x 109X-1 Xz) (25 x 10 Xz) as)

w1 wa w3
If we simplify (15)
G 1000X1\ %t (4 x 109*%2 /2.5 x 105*3 X, (W1-W3) Y, (~0a+0s)
w1 w2 w3

16)

It can be shown (McMillan, 1970, pp. 224-227) that the maximum

of (16) is found when the sum of the exponents of each of the decision

variables is equal to zero. This condition plus the condition that the

wy’s sum to one yields the set of equations (10). The maximum of
(16) is the minimum of (14), the function to be minimised.

Applications
Applications for geometric programming examples can be found in
the references cited earlier. More complex forms involving con-
strained optimisation problems and forms which violate some of the
assumptions for the simple cases can also be found in these references.
One commonly occurring problem for the simple case is found in
inventory control. The total cost equation for an inventory system
under conditions of instantaneous delivery would appear as:

KQ D

15)

where K. is a constant cost of holding an item in inventory per time
period, Kp is the cost of placing an order, D is the demand per time
period and Q is the amount to order which minimises the total cost,
TC. Given values for the constants K., Ko, and D, this problem can
be solved using geometric programming.

Limitations

Since all w; > 0, equation (11) is solvable for real values only if all
C; > 0. To get a system of equations (10) the number of terms must
be larger than the number of variables. It is also possible to generate
negative weights or no solution to (11). This may occur when vari-
ables appear only with positive or only with negative exponents.
To insure a solution, each variable should appear with positive and
negative exponents.

The degree of difficulty is defined as:

the number of terms — (the number of variables + 1) .

The example here has zero degrees of difficulty and is unconstrained.
Solution techniques are available for cases when the degree of diffi-
culty is not zero, the coefficients are negative, only positive (or
negative) exponents exist, and non-linear constraints are involved
(Duffin, Petersen and Zener, 1967; McMillan, 1970; Wilde and
Beightler, 1967, Chapter 4). The techniques are much more cumber-
some. However, there are still a large number of cases for which the
methodology given here will yield a solution. The program which
follows solves problems of the limited case.

References

Cuow, C. K. (1974). On Optimization of Storage Hierarchies,
IBM Journal of Research and Development, Vol. 18, No. 3,
pp. 194-204.

DurrFIN, PETERSEN, and ZENER (1967). Geometric Programming.
New York: John Wiley and Sons, Inc.

FEDEROWICZ, A. J., and MAZUMDAR, M. (1968). Use of Geometric
Programming to Maximize Reliability Achieved by Redundancy,
Operations Research, Vol. 16, No. 5, pp. 948-954.

KOCHENBERGER, G. A. (1971). Inventory Models: Optimization by
Geometric Programming, Decision Sciences, Vol. 2, No. 2,
pp. 193-205.

McMILLAN, C., Jr. (1970). Mathematical Programming. New York:
John Wiley and Sons, Inc., Chapter VII.

Passy, U. (1970). Modular Design: An Application of Structured
Geometric Programming, Operations Research, Vol. 18, No. 3,
pp. 441-453.

Volume 18 Number 1

WILDE, D., and BEIGHTLER, C. (1967).
Englewood Cliffs, New Jersey: Prentice-Hall, Inc.

NO00NNO000NNNNNNNNNNNNNONONONN

[eleXelelelele)

Foundations of Optimization.

MAIN DRIVER

INPUT:

NUMBER OF TERMS: COLUMNS 1-5. DATA CARD ONE.
INTEGER CONSTANT.

NUMBER OF VARIABLES: COLUMNS 6-10. DATA CARD ONE.

COST COEFFICIENTS:

VARIABLE EXPONENTS:

1000

1010
1020

1030

10
1040

20
1050

30
1060

40
1070

50
1080

60
1090

70
1100
1110
1120

1130

80
1140

1150

INTEGER CONSTANT.
COLUMNS IN MULTIPLES OF TWENTY.
COST FOR TERM ONE IN COLUMNS
1-20, TERM TWO, 21-40, ETC. START
ENTERING COEFFICIENTS ON DATA
CARD TWO AND CONTINUE FOR AS
MANY CARDS AS NECESSARY. REAL
CONSTANTS.
COLUMNS IN MULTIPLES OF FIVE.
EACH DATA CARD CONTAINS THE
EXPONENTS FOR ALL VARIABLES FOR
A GIVEN TERM. VARIABLE ONE, TERM
ONE IN COLUMNS 1-5, VARIABLE
TWO, TERM ONE IN COLUMNS 6-10,
ETC. USE AS MANY CARDS AS THERE
ARE TERMS. PLACE THESE CARDS AT
THE END OF THE DATA DECK. IF A
VARIABLE IS MISSING FROM A TER
ENTER A ZERO FOR THE EXPONENTS
REAL CONSTANTS.
DIMENSION C(11), A(11, 11)
DIMENSION WB(11), S(11)
DETERMINE THE NUMBER OF TERMS (N) AND VARIABLE
(M).
READ (5, 1000) N, M
FORMAT (215)

DETERMINE N COST COEFFICIENTS.
READ (5, 1010) (C(I), | = 1, N)
FORMAT (4E20.7)

WRITE (6, 1020) N, M (C (I),] =1, N)
FORMAT (1H1///55X, 21HGEOMETRIC PROGRAMMING]/,
151X, 13, 10H TERMS AND, 13, 10H VARIABLES///49X,
231H COST COEFFICIENTS FOR EACH TERM// (6E21.7))
WRITE (6,1030) (I, | = 1, M)

FORMAT (////54X, 22HEXPONENTS OF VARIABLES//
16H TERMS, 54X, 9HVARIABLES // 10112])

DETERMINE EXPONENTS OF VARIABLES (1) IN TERM (J).
DO10J=1,N

READ (5, 1040) (A(l, J), I = 1, M)

FORMAT (10F5.0)

DO20J=1,N

WRITE (6, 1050) J, (A(l, J), | = 1, M)

FORMAT (13, 10E12.3)

CALL GEOM (N, M, C, A, IER, Y, WB, S)

GO TO (70, 30, 40, 50, 60), IER

WRITE (6, 1060)

FORMAT (//47X, 26 HMORE THAN ZERO DEGREES O
110HDIFFICULTY)

STOP

WRITE (6, 1070)

FORMAT (//18HMATRIX IS SINGULAR)

STOP

WRITE (6, 1080)

FORMAT (//30H NEGATIVE OR ZERO COEFFICIENTS)
STOP

WRITE (6, 1090)

FORMAT (//25H NEGATIVE OR ZERO WEIGHTS)
STOP

WRITE (6,1100) (I, I, = 1, N)

FORMAT (//55X, 21HWEIGHTS FOR EACH TERM//63)%:
14HTERM/10X, 11110/))

WRITE (6, 1110) (WB(I), | = 1, N)
FORMAT (15X, 11F10.6//)

WRITE (6, 1120) Y

FOPEO|UM

[Wo9/Wo9 dno-oIWaPeoe//:sdny WoJy

T8/1/8L/8101JE/|u

Fidy 61 uo 158n6 Aq Z8ZSSH/

¥20¢:

FORMAT (///43X, 30HVALUE OF OBJECTIVE FUNCTION =,
1E14.7)

WRITE (6, 1130)

FORMAT (//46X, 8HVARIABLE, 14X, SHVALUE)
DO80J=1,M

WRITE (6, 1140) J, S(J)

FORMAT (45X, 15, 15X, E14.7)

WRITE (6, 1150)

FORMAT (1H1)

STOP

END

SUBROUTINE GEOM(N, M, C, A, IER, Y, WB, S)

THIS

PROGRAM WILL DETERMINE THE MINIMUM OF A NON-

LINEAR FUNCTION USING THE GEOMETRIC PROGRAMMING
TECHNIQUE.

LIMITATIONS: THE FUNCTION MUST HAVE ONE MORE TERM

THAN VARIABLES. THE FUNCTION MUST HAVE
POSITIVE COEFFICIENTS.

87

000000000000 0OOANNHOND DOOOONNNON

(e]e} no 0

(e]e!

(elelelelelelele]

EVERY VARIABLE MUST APPEAR WITH ONE NEG-
~ ATIVE AND ONE POSITIVE EXPONENT.
REFERENCES: MC MILLAN, MATHEMATICAL PROGRAMMING,
JOHN WILEY AND SONS, NEW YORK (1970)

PAGES 220-241.

WILDE + BEIGHTLER, FOUNDATIONS OF OPTI-
MIZATION, PRENTICE-HALL, INC., ENGLEWOOD
CLIFFS, N.J. (1967) PAGES 27-30, 99-133.

DIMENSION C(11), A(11, 11)

C IS A ROW VECTOR OF TERMC OEFFICIENTS

A IS A MATRIX OF EXPONENTS OF VARIABLES IN EACH TERM
EACH ROW IS A VARIABLE
EACH COLUMN IS A TERM

N: NUMBER OF TERMS (MAXIMUM 11)

M: NUMBER OF VARIABLES (MAXIMUM 10)

THESE MAXIMA CAN BE CHANGED BY ALTERING THE DIMEN-
SION STATEMENTS IN ALL THE SUBROUTINES.

IER: ERROR RETURN
1 NO ERRORS
2 MORE THAN ZERO DEGREES OF DIFFICULTY
3 SINGULAR MATRIX
4 NEGATIVE OR ZERO TERM COEFFICIENTS
5 NEGATIVE OR ZERO WEIGHTS

SUBROUTINES REQUIRED: MATINYV (INVERSION ROUTINE)
MATMLT (MATRIX MULTIPLICATION)

?;(P::E)NSION WA(11), WB(11), AS(11, 11), WC(11), L(11), L1(11),
IER = 1
CHECK FOR ZERO DEGREES OF DIFFICULTY
IF (N — (M + 1)) 10, 20, 10

10 IER =2
RETURN
CHECK COEFFICIENTS

20 DO40J =1, N

! IF(C(J)) 30, 30, 40

RETURN
40 CONTINUE
EXPONENTS FORM M LINEAR EQUATIONS IN N VARIABLES.
WEIGHTS MUST SUM TO ONE.
DOS0J=1,N
50 A(N, J) = 1.
SAVE PART OF A FOR LATER USE IN SOLUTION OF DE-
CISION VARIABLES.
DO60 1 =1, M
DO60J =1, M
60 AS (J,) = A(l, J)
SOLVE FOR WEIGHTS BY TAKING INVERSE.
CALL MATINV (A, N, D, L, L1)
IF (D) 80, 70, 80
70 IER = 3
RETURN
SET UP CONSTANTS FOR LINEAR EQUATION.
80 DO90I—1,M
90 WA(l) = 0.

MULTIPLY INVERSE TIMES COLUMN VECTOR OF CONSTANTS
TO GET WEIGHTS
CALL MATMLT (A, WA, WB, N, N, 1)
(Y:ALCULATE VALUE OF OBJECTIVE FUNCTION.
=1.
DO 110J =1, N
CHECK FOR NEGATIVE OR ZERO WEIGHTS
IF (WB(J)) 100, 100, 110
100 IER = 5
RETURN
110 Y = Y*((C(J)/WB()))**WB(J)
DETERMINE VALUES OF DECISION VARIABLES.
REMOVE CONSTANT (C(J)) TO GET NON-LINEAR EQUATION
IN FORM OF VARIABLES = CONSTANT. TAKING LOGS OF
BOTH SIDES TRANSLATES INTO EXPONENT*LOG(VAR(D) +
EXPONENT*LOG(VAR(l -+ 1)) + . . . + EXP*LOG(VAR(M)) =
LOG(CONSTANT) WHICH IS SYSTEM OF N LINEAR EQUA-
TIONS IN M VARIABLES. NTH EQUATION IS REDUNDANT.
SOLVE FOR LOG(VAR) USING MATRIX METHODS.
CALL MATINV (AS, M, D, L, L1)
IF (D) 130, 120, 130
120 IER =3
RETURN
130 DO 140) =1, M
140 WA(J) = ALOG((WB())*Y)/C(}))
CALL MATMLT (AS, WA, S, M, M, 1)
SOLUTION OF VARIABLES

DO 1501 =1, M
150 S(J) = EXP(S(J))
RETURN
END

SUBROUTINE MATINV(A, N, D, L, M)

(elelelelele!

(e]e}

THE INVERSE OF THE MATRIX A IS CALCULATED USING GAUSS-
JORDAN WITH COMPLETE PIVOTING. THE INVERSE REPLACES
THE ORIGINAL MATRIX. L AND M ARE WORK VECTORS OF
LENGTH N. THE CETERMINANT D IS CALCULATED.

10

20

REFERENCE: IBM’S SCIENTIFIC SUBROUTINE PACKAGE;
MINV

DIMENSION A1, 11), L(11), M(11)

D=

DO 19o K=1,N
L(K) = K

M(K) =

BIG = A(K, K)
DO2I=K,N
DO20J =K, N
IF (ABS(BIG) —
BIG = A(l, J)
L(K) = I
M(K) = J
CONTINUE

ABS(A(l, J))) 10, 20, 20

CHECK FOR SINGULARITY

30

IF (BIG) 40, 30, 40
D=0.0
RETURN

INTERCHANGE ROWS

40
50

60

INTERCHANGE COLUMNS

70
80

90

DIVIDE COLUMN BY MINUS PIVOT

100

110
120 CONTINUE
REDUCE MATRIX

130 TEMP = A(l, K)

140 A(l, J) = TEMP*A(K, J) + A(l, J)
150 CONTINUE

160 CONTINUE

DIVIDE ROW BY PIVOT

170 A(K, J) = A(K, J)/BIG
180 CONTINUE
CALCULATE DETERMINANT

TAKE RECIPROCAL
190 A(K, K) = 1.0/BIG
BACK SUBSTITUTION

200

210
220
230
240
250

260
270

I = L(K)
IF (I — K) 50, 70, 50
DO60J=1,N
TEMP = —A(K, J)
A(K, J) = A(l, J)
A(l, J) = TEMP

J = M(K)

IF () — K) 80, 100, 80
DO 90| =1,N
TEMP = —A(l, K)
A(l, K) = A(l, J)

A(l, J) = TEMP

DO 1201 =1, N
IF (I — K) 110, 120, 110
A(, K) = A(l, K)/(—BIG)

DO1601=1,N
IF (I — K) 130, 160, 130

DO 150J =1, N
IF (J — K) 140, 150, 140

DO180J =1, N
IF (J — K) 170, 180, 170

D = D*BIG

NM1 = N — 1
IF (NM1) 200, 270, 200
DO 260 KK — 1, NM1
K =N — KK

J = L(K)

IF () — K) 210, 230, 210
DO 2201 =1, N

TEMP = A(, K)

A(l, K) = —A(l, J)

A(l, J) = TEMP

I = M(K)

IF (I — K) 240, 260, 240
DO 250 J =1, N
TEMP = A(K, J)

A(K, 1) = —A(l, J)

A(l, J) = TEMP
CONTINUE

RETURN

END

202 udy 61 U0 1s9nB Aq Z8ZGGH/1.8/1/81/aI0E/UlWOd/ W00 dNo dlWspeoe)/:SAY Wolj POPEOUMOQ

SUBROUTINE MATMLT(A, B, C, N, M, L)
DIMENSION A(11, M), B(11, L), C(11, L)

THIS SUBROUTINE MULTIPLIES AN N BY M MATRIX(A) BY AN M
BY L MATRIX(B) TO FORM AN N BY L OUTPUT MATRIX (C)

10

DO10) =1,L

DO101=1,N

c(l,J) = 0.0

DO10K =1, M

c(l, J) = (I, J) + A(l, K) * B(K, J)
RETURN

END

The Computer Journal

Test results

1. Minimise
_ 30 15,000
Solution:
Q = 100
TC = 300

This is a solution to the Economic Order Quantity problem and is
due to: Bierman, Bonini and Hausman, Quantitative Analysis for
Business Decisions, 4th edition, Homewood, Illinois: Irwin
(1973), pp. 174-175.
2. Minimise
f=40/X1X2X3 + 10X1X2 + 40X2X3 + 20X1X3
Solution:

f =100
X1=2
Xe =1
X3 =05

Due to: Claude McMillan, Jr., Mathematical Programming,
New York: John Wiley and Sons, Inc. (1970), pp. 229-230.
3. Minimise
y = 1,000X1 + 4 x 109X171X271 + 2:5 x 105Xz
Solution:

y =3 x 1086
X1 = 1,000
X =4

Due to: Wilde and Beightler, Foundations of Optimization,
Englewood Cliffs, New Jersey: Prentice-Hall, Inc. (1967),
pp. 28-30.

Algorithm 88

AN ELECTORAL METHOD
1. D. Hill,
Clinical Research Centre,
Watford Road, Harrow,
Middx., HA1 3UJ

Author’s note
In Hill (1974) I suggested a voting method for the case of many
candidates for one position, in which the analysis of votes was made
by assessing the result of a ‘straight fight’ between each possible pair
of candidates.

The present algorithm is an extension of the method, for more than
one position to be filled, giving an order of preference so that the
appropriate number of successful candidates may be taken from the
top of the ordered list.

The voters are expected to place the number 1 against their first
choice, 2 against their second choice, and so on. Since ties are
allowed, the difficulty of having to rank every candidate from a
large number is avoided. Thus if a voter merely desires to vote for
candidate 4 and has no preferences among the rest, he can mark 4
as 1, and all the rest as 2. On the other hand, if the only thing he
really cares about is voting against candidate D, he can mark D as 2
and all the rest as 1.

1t is further suggested that the voter should be allowed to leave
names unnumbered, and any such would be counted as having been
ranked equal bottom, below all the numbered ones.

This method has the advantage of rendering °‘strategic voting’
useless and lets all voters vote according to their genuine preferences
without the fear of thereby producing an unwanted result. It also
makes ‘wrecking’ candidatures impossible, as ‘splitting’ the vote has
no effect.

Where there is more than one vacancy, it will produce as second
choice the candidate who would have been first choice if the actual
first choice had not been standing, and so on for further choices. It
cannot therefore be expected to produce a proportionally represent-
ative result as between parties. Where voting is for individuals
rather than for parties this is probably not a disadvantage.

Sometimes ties, or inconsistencies, may be found in the resulting
order of preference. In these circumstances several candidates will

Volume 18 Number 1

be given the same preference number in the list produced by the
algorithm, and the humans will be left to sort the situation out.
This seems preferable to any automatic solution depending on
random selection. For a discussion of the inconsistencies that may
arise, even though each individual’s voting must be self-consistent,
see Gardner (1974).

The format of the data should be one line for each voter, starting in
column 1 and giving two digits (including leading zeros) for each
preference number, with no spaces between numbers. An unnum-
bered candidate should be recorded as preference number 99.

For example, if there are six candidates, and a voter’s preferences
are:

Candidate Preference
1 2
2 1
3
4 2
5
6

the data line for that voter should be 020199029999.
The parameters inch and outch refer to input and output channel
numbers.

References
GARDNER, M. (1974). Mathematical Games—on the paradoxical®
situations that arise from nontransitive relations. Scient. Amer.,S.
Vol. 231, No. 4, pp. 120-124. 3
Hirt, 1. D. (1974). A new suggestion for multi-candidate elections.3
Honeywell Computer J., Vol. 8, pp. 107-109.

ojumoQg

(o)

procedure elect (voters, candidates, inch, outch);
value voters, candidates, inch, outch;
integer voters, candidates, inch, outch;
begin integer i, j, k, m, n; Boolean f, h;
integer array a[l:candidates, 1:candidates], b[1: candidates];
for j := 1 step 1 until candidates do
for k := 1 step 1 until candidates do a[j, k] := 0;
m := candidates — 1;
for i := 1 step 1 until voters do
begin 5
comment read the voter’s preference number for each candidate ;=
for j := 1 step 1 until candidates do inputl(inch, ‘DD’, b[j]);%
inputQ(inch, ‘[’);
comment determine result for straight fight between each possibli
Dpair;
for j := 1 step 1 until m do
for k := j + 1 step 1 until candidates do
if b[j] > blk] then a[j, k] := alj, k] + 1 else
if b[k] > b[j] then alk, j] := alk,j] + 1
end i loop;
for j := 1 step 1 until candidates do b[j] := 0;
comment give results for each possible straight fight, and form tabl.
of number of candidates beaten by each candidate;
for j := 1 step 1 until candidates do
begin
outputO(outch, ‘[’);
for k := 1 step 1 until candidates do
if j # k then
begin
i:=alj,kl;n:.= alk,jl;
output1(outch, ‘| Candidate— > ZD’, j);
if i < n then
begin
outputO(outch,
end

/|ulwoo/woo dno olwepeoe//:sdny

8L/

i3

20z udy 61 UB 1senb Aq z8ZGS1/18/

beats”); b[j] := b[j1+ 1

else if i > n then outputO(outch, “__loses__to”)
else outputO(outch, “ties__with);
output3(outch, “‘_candidate_ > ZD* _by_ > ZD ‘__votes—
to> ZD’, k, n, i)
end k loop
end j loop;

comment produce table of overall preferences;

outputQ(outch, ‘|||‘Order—of_preference:’|’);

i:=1;f:= false;

for m := m step —1 until 0 do
begin
h .= false;
for j := 1 step 1 until candidates do
if b[j] = m then
begin
if & then f : = true else
begin
h := true;
output1(outch, ‘/*Choice—number_’Z D
‘i candidate—number_.", i)
end;
outputl(outch, ‘ZDBB’,j);i :=i + 1
end j loop
end m loop;
if f then
begin
comment there has been at least one tie or inconsistency
outputO(outch, ‘|| Where—several_candidates—appear—
against—the_same_choice’[‘number, _ithe_voting._has_
been—isuch—thatit._is__not—possible’[‘tochoose.
between—them—by_this—method’)
end
end elect

Note on Algorithms 78 and 88

COUNTING PREFERENTIAL VOTES IN MULTI-MEMBER
CONSTITUENCIES USING ABSOLUTE MAJORITY CRITERIA
and AN ELECTORAL METHOD
1. D. Hill,
Clinical Research Centre,
Watford Road, Harrow,
Middx., HA1 3UJ

These algorithms have been compared using the data given with
Algorithm 78. Perhaps the data may have been chosen deliberately
to demonstrate a difficult case, for Algorithm 78 frequently finds
tied values and has to resort to a pseudo-random selection. This
explains why, in the results given with the algorithm the computer
run elects candidates F, E, D and C while manual counting using the
same method elects A, D, C and E (in that order of preference in
each case).

Examination of the method and the data shows that these are not
the only possibilities. Fig. 1 shows the possible results, with the
probability that each path is taken (on the assumption that a good
random number generator is used instead of the RANF function of
Algorithm 78 (Hill and Wedderburn, 1974)). v

Among the strange results from this method, it may be noted that
candidate F has a 50 per cent chance of being elected as first choice,
yet if he loses the toss at that point he cannot be elected until the
sixth choice, even though there are only seven candidates altogether.

By contrast, Algorithm 88 gives candidate C as definite first choice,
and D as second. For third, fourth and fifth places there is some
doubt since

A beats B (11 votes to 9)
A ties with E (10 votes all)
B ties with E (10 votes all)

Algorithm 88 does not sort this out, but presents the evidence of
why the situation is difficult. F comes sixth and G seventh without
question.

The results from Algorithm 88 are therefore much neater than those
from Algorithm 78. Of course, a neat result is not necessarily
preferable to an untidy one if there are other ways in which the
untidy one is preferable, but I cannot see any.

As there were four places to be filled, C and D would be elected,
while F and G would be eliminated. I suggest that the remaining two
places should be filled by means of a further election with 4, B and
E as the only candidates.

The result could be inconsistent again. With the voters’ minds
concentrated on just these three it would be less likely to be, but some
tie-breaking rule would have to be available in case it were. There

sdny wouj papeojumoq

Fig. 1 Possible results from Algorithm 78, with probability at each 5
node

are several possibilities, but almost anything is better than choosing :
at random.

I acknowledge some comments from Tran Van Hoa on my initial
draft, which have led to a change in this version.

References

HiLt, I. D. (1975). Algorithm 88. Computer J., Vol. 18, pp. 89-90.

Hir, I. D.,, and WEDDERBURN, R. W. M. (1974). Note on 5
Algorithm 78. Computer J., Vol. 17, p. 380.

TRAN VAN Hoa (1973). Algorithm 78. Computer J., Vol. 16,
pp. 273-276.

Note on Algorithm 81

DENDROGRAM PLOT
F. James Rohlf
Department of Ecology and Evolution
State University of New York at Stony Brook
Stony Brook, NY 11790 USA :

0z Iudy 61 U0 }sonB Aq Z8ZGSH/18/1/81/0IE/|UlWO0o/WOoo"dNo"OILISPEDE/

N
A number of editorial misdemeanours occurred with Algorithm 81 *
(Vol. 17, No. 1) and the text of the corrected algorithm is now
published again in full, with sincere apologies to the Author.
EpIiTOoR

Author’s note

Description

The results of hierarchic, nested, cluster analyses are usually shown
in the form of a tree-like diagram called a dendrogram (see Sokal
and Sneath, 1963 for a general account). In such a diagram (e.g.
Fig. 1) the labels for the objects being clustered are plotted across
the top and the clustering (or ‘splitting levels’) are shown along the
ordinate. Clusters can be found for any threshold level, 4, by drawing
a horizontal line across the figure at a level corresponding to % on
the ordinate. Each vertical line in the dendrogram cut by this
horizontal line corresponds to a cluster whose members are the
objects connected to that fragment of the dendrogram. Rohlf
(1973) gives a simple method of describing any dendrogram by a

The Computer Journal

Fig. 1 Dendrogram for 12 objects

‘tree matrix’ which consists of two lists. One contains the labels of
the n objects in the order in which they are to appear across the top
of the dendrogram and the other contains » — 1 numbers which
describe the branching patterns of the tree. If the dendrogram in
Fig. 1 is plotted in the mathematically equivalent (but less aesthetic-
ally pleasing) manner shown in Fig. 2 then one notices that there are
n vertical lines (one for each object) and each (except the last) drops
down from an object label until a certain point is reached and then
turns to the left and continues until it intersects another vertical line.
The list of the n — 1 heights of the ‘bend’ in each of these lines is
sufficient to describe the dendrogram.

A diagram such as that given in Fig. 2 is easily computed for output
onto a line printer (see Rohlf, 1973, for a simple program). For use
by persons not familiar with cluster analysis, dendrograms in the
form shown in Fig. 1 are much more desirable. The programs which
I have examined seem unnecessarily complex and require moderate
amounts of storage. The program by McCammon and Wenninger
(1970) plots what he calls a ‘dendrograph’ (a dendrogram with the
object labels at the tips of the dendrogram spaced proportional to

1 4 5 3 2 6 8 7 9 1 10 12

L

Fig. 2 Dendrogram of Fig. 1 replotted to show that only n — 1
level numbers are needed to describe branching form of tree

Volume 18 Number 1

the within-group dissimilarity). Most of the computations performed
as objects are being clustered so that the final task of plotting is
simple but it requires six arrays of length » (in addition to the label
information). This program also has the disadvantage that it cannot
be used to plot an existing dendrogram since most of the logic is
embedded in the clustering program.

In the program by Bonham-Carter (1967) the dendrogram plotting
is separated out from the clustering algorithm but it requires input
in a less compact form. Each cycle in the associated clustering
program (starting from the top of the dendrogram) stores code
numbers for objects in the left and right branches and the y-
coordinates for the horizontal line joining these two vertical lines.
The plotting program then reads this tape and computes the four x
and y-coordinates which describe these three line segments and then
saves the x-coordinate of the centre of the horizontal line for pro-
cessing at a later step.

The program TREE given in Anderberg (1972) requires eight arrays
of length n to describe the tree and more than 26n storage locations
for scratch arrays. The algorithm itself ‘can be grasped intuitively
through an example but is very difficult to understand from a formal
statement of the pertinent operations’ (Anderberg, 1972).

The algorithm given below is relatively simple and only requires
three arrays of length » (in addition to an array which contains
whatever labels are desired for the objects). One of these array
(LEYV) is the list of clustering levels described above.

The FORTRAN program given below is based on the followm@
algorithm:

1. Input n, the number of objects, and the ‘tree matrix’ giving thg“
labels for the objects, LAB, and the clustering levels LEV. 3

2. The plot is scaled to go from x = 1 to n and from y = ymin té
Ymax. Set the variable CURRY equal to a quantity less than Ymin®
and set LEV, = ymin. In the account which follows we wxlg
assume that the scale along the ordinate goes from ymin corres.
sponding to the least amount of similarity at the bottom of th&
diagram to ymax corresponding to the highest degree of similarity’
at the top. If dissimilarity coefficients are being analysed then thé
scale will have to be reversed and other obvious changes madeg

3. Plot a vertical line for each of the i = 1,2,...,n objectsz.
The co-ordinates of the top of each line where the labels ar®
plotted are (i, ymax) and the co-ordinates of the bottoms aré&:
(i, {max LEVi, LEVi-1}). For i = 1 the y co-ordinate is always
LEYV). The co-ordinates of the bottom end of these lines are alsm
stored into arrays XC and YC. Q

4. Find the first i¢ = 1,2,...,n — 1) for which LEV; > LE V¢+1.r

5. Plot a horizontal line from (XCi, YCi) to (XCiv1, YCira). Plog
a vertical line from the centre of this line down to max {LEV%;
LEV;+1} (for i = 1 always use LEV1). These steps symbolise th83
process of two clusters being merged and replaced by a new onev
Store the co-ordinates of the bottom of this last line in XC;+1 an&
YCi41, delete the ith entries in LEV, XC, and YC and then cloél;>
up. 173
6. Setn=n—1.If n > 1 go to step 4, otherwise STOP. S

N

Step 3 is based on the observation that if object i is the left-most
number of a cluster then LEV;—; will be less than LEV; and th&
vertical line coming down from the label of object i ends at lev%
LEYV;. Otherwise the vertical line ends at LEV;—;.

Steps 4 and 5 are based on the fact that the ith and (i + 1)th pair o‘F
vertical lines can be connected and replaced by a single vertical line
only if they are the left-most pair of objects in a cluster. This is true
only if LEV;—1 < LEVy > LEVi41 (LEVo and LEV 41 are defined to
be less than ymin). The particular order in which this iterative search
is made takes into account the fact that dendrograms tend to be
asymmetrical as shown in the examples. This speeds up the deletion
and compaction process on arrays LEV, XC, and YC in which
entries (if any) to the left of entry i are moved one position to the
right.

The computational effort varies from being proportional to » for
dendrograms (like the left-half of Fig. 1) to being proportional to
n? (for dendrograms the mirror image of the left half of Fig. 2).

To print a dendrogram sideways on a line printer one need only
store the x-co-ordinates and the upper and lower y-co-ordinates of
each vertical line as well as a code to indicate if the line branches
from the left or right end of a horizontal line. These lists are then
sorted so that the x-co-ordinates go from low to high. Then if the

x-co-ordinates are coded into line numbers (going from 1 to 2n — 1
and the y-co-ordinates are coded into positions in an array used to
output the alphanumeric characters for printing a line on the line
-printer, the following steps will print the-dendragram.

1. Clear the output array to blanks.
2. Set line number equal to 1.

3. For all entries in the lists having x-co-ordinates equal to the
current line number, store an ‘*’ from the position corresponding
to upper y-co-ordinate through to the lower y-co-ordinate in the
array.

4. Print the output array (also output an object label if the current
line number is an odd number).

5. For all entries in the lists having x-co-ordinates equal to the
current line number, clear the output array to blanks from posi-
tions corresponding to the upper y-co-ordinate through to the
lower y-co-ordinate — 1. If this entry corresponds to a right branch
in the dendrogram, then also clear the position corresponding to
the lower y-co-ordinate.

6. If the current line number is less than 2n — 1, then add 1 to the
line number and go to step 3, otherwise STOP.

The horizontal lines in the plotted dendrogram are printed verti-
cally by the simple device of not clearing the position in the output
array corresponding to the end of a Jeft branch in the dendrogram.
Since it is not cleared it will appear in subsequent lines until a right
branch is printed.

Since plotting routines are not standardised the FORTRAN
program given below includes calls to hypothetical plotting routines
for which the user will have to substitute locally available equivalents.
This should prove to be no problem. Subroutine SCALE (Xmin,
Xmax, Ymin, Ymax) does whatever is necessary to set up the trans-
formation from problem units to device dependent units. Subroutine
MOVE (X, Y) raises the pen and moves it to a position correspond-
ing to co-ordinates X, Y in problem units. Subroutine DRAW
(X, Y) lowers the pen and draws a straight line to co-ordinates X, Y
in problem units. Subroutine LABEL (X, Y, ALPHA) does what-
ever is necessary to output the alphanumeric object labels with the
first character plotted at co-ordinates X, Y in problem units. The
FORTRAN program has been tested on an IBM 370/155 using both
levels G and H FORTRAN 1V and on a PDP-10. The method has
- also been implemented on a Hewlett-Packard Model 9820 desk top
calculator which has a plotter.

Acknowledgements

This work was supported in part by a grant (B035234) from The
National Science Foundation. This paper is contribution number 82
of the Program in Ecology and Evolution at the State University of
New York at Stony Brook. The reviewer suggested an improvement
to the program which increased the efficiency of the pen movement.

References

ANDERBERG, M. R. (1972). Cluster analysis for applications,
Technical report, OAS-TR-72-1, Kirtland Air Force Base, New
Mexico, USA, 514 pp.

BoNHAM-CARTER, G. F. (1967). FORTRAN 1V program for
Q-mode cluster analysis of nonquantitative data using IBM
7090/7094 computers, Computer Contribution 17, State Geological
Survey, University of Kansas. 28 pages.

McCaMMON, R. B., and WENNINGER, G. (1970). The dendrograph,
Computer Contribution 48, State Geological Survey, University of
Kansas. 28 pages.

Rowurr, F. J. (1973). Hierarchical clustering using the minimum
spanning tree. Computer Journal, Vol. 16, pp. 93-95.

SokAL, R. R., and SNEATH, P. H. A. (1963). Principles of Numerical
Taxonomy, W. H. Freeman and Co., San Francisco, 359 pages.

SUBROUTINE SYMDEN(N, LAB, LEV, XC, YC, YMIN, YMAX)

LEAST SIMILARITY

YMAX =VALUE OF VARIABLE CORRESPONDING TO THE
MAXIMUM SIMILARITY

REAL LAB(N), LEV(N), XC(N), YC(N)

CALL SCALE(0., FLOAT(N + 1), 0., 1.)

C PROGRAM TO PLOT A DENDROGRAM WITH CENTERED STEMS
C N = NUMBER OF OBIECTS

C LAB = LIST OF OBJECT LABELS (OF LENGTH N)

C LEV = LIST OF CLUSTERING LEVELS (N — 1 NUMBERS BUT
C LEV(N) IS USED)

C **NOTE = LEV IS DESTROYED BY THE PROGRAM

C XC = SCRATCH ARRAY TO HOLD X-COORDINATES

C YC — SCRATCH ARRAY TO HOLD Y-COORDINATES

g YMIN = VALUE OF VARIABLE CORRESPONDING TO THE
C

C

LEV(N) = YMIN
YRANGE = YMAX — YMIN
YHIGH = —1.

C FOR EACH OBJECT DRAW A VERTICAL LINE AND LABEL
DO 100IC =1, N
C=IC
Y = LEV(IC)
C CODE Y INTO RANGE 0 TO 1
Y = (Y — YMIN)/YRANGE
LEV(IC) = Y
HEIGHT = CURRENT LEV OR PREVIOUS (WHICHEVER IS THE
LARGEST) A
IF(Y.GT.YHIGH) YHIGH = Y
CALL MOVE(C, YHIGH)
CALL DRAW(C, 1.
CALL LABEL(C, 1.01, LAB(IC))

(e]e}

XC(IC) = C
YC(IC) = YHIGH
YHIGH = Y

100 CONTINUE

C DRAW THE REST OF THE DENDROGRAM
ISTART = 1
X =0.

150 NM1 = N — 1
DC') 2oo'| = ISTART, NM1
C =
IF(LEV(). GE.LEV(l + 1)) GO TO 230
200 CONTINUE
230 Y = YC(IC)

C DRAW HORIZONTAL LINE
IF(X.EQ.XC(IC + 1)) GO TO 240
CALL MOVE(XC(IC), Y)

CALL DRAW(XC(IC + 1), Y)
GO TO 250
240 CALL DRAW(XC(IC), Y)
C DRAW VERTICAL LINE AT CENTER OF HORIZONTAL LINE
250 X = (XC(IC) + XC(IC + 1))/2.
XC(IC + 1) = X
CALL MOVE(X, Y)
Y = LEV(IC + 1)
IF(IC.GT.ISTART.AND.LEV(IC — 1).GT.Y)Y = LEV(IC — 1)
YCIC+1) =Y
CALL DRAW(X, Y)

C DELETE ENTRY IC AND CLOSE UP SPACE
ISTART = ISTART + 1
IF(IC.LT.ISTART) GO TO 350
DO 300 | = ISTART, IC

Il =IC — I + ISTART
LEV(ll) = LEV(Il — 1)
Xc(ll) = XC(l — 1)
YC(ll) = YC(il — 1)
300 CONTINUE
C LOOP BACK UP IF NOT DONE
350 IF(ISTART.LE.NM1) GO TO 150
RETURN
END

202 udy 61 U0 1s8nB Aq Z8ZGGH/1.8/1/81/I0NE/UlWOD/ W00 dNo"dILspEo.)/:SA]Y WO} POPEOJUMOQ

Contributions should be addressed to:
R. F. Shepherd, Editor
Algorithms Supplement
Computing Centre
Chelsea College
University of London
Pulton Place
London SW6 SPR

92

The Computer Journal

