Systems with state re-set

dJ. J. Florentin* and A. J. Sammest

Some computer systems, such as operating systems and communications controllers, have to work
continuously for long periods. These systems are almost inevitably affected by intermittent errors, and
there is a need to develop design methods which minimise the effect of occasional errors. This
paper points out that, if some part of a system can be modelled as a finite state machine, then it is
sometimes possible to arrange that this part will reset itself to a correct state after an error. The
technique has been used in the design of a simple interactive programming system.

(Received September 1973)

1. Introduction

Many computer systems have to work continuously for long
periods; typical systems of this kind are machine operating
systems and communications controllers. It is virtually inevit-
able that some hardware and software malfunctions will occur,
and it is necessary to provide mechanisms and procedures for
system recovery after such errors. Some errors are minor, and
do not lead to major reconstruction of corrupted data; all that
is needed is to reset a program, or logic device, to a correct
operating state. If the action of the program, or device, can be
modelled as a finite state machine then it is sometimes possible
to arrange that this resetting will take place automatically after
a few faulty steps of operation; this may well be an adequate
recovery if errors occur infrequently. This paper explains how a
finite state machine can be made to reset to a standard state by
a sequence of input commands, and briefly describes how the
control program of a simple interactive programming system
based on a model,*was examined for self-correcting behaviour
against intermittent errors.

It can be expensive and tedious to track down the causes of
infrequent minor errors, and when the causes are found it may
not be practicable for the system designer to remove them.
Consider the following ways in which errors might be caused:

(@) A program properly meets its specifications, but the
application problem was not fully understood, so that the
program occasionally produces inapplicable results.

(b) The application problem is correctly understood, and a
correct program specification produced, but the constructs
of the programming language are misunderstood, so that
wrong results are occasionally produced.

(c) The application problem is correctly understood and a
correct program produced, but the compiler is faulty, so
incorrect results are occasionally produced.

(d) The problem is correctly understood and a correctly com-
piled program produced, but a hardware malfunction occurs
during running, so incorrect results are occasionally
obtained.

These examples show that faults can occur at various levels, and
a system designer will only have responsibility for a few of these
levels. Faults occurring at a level for which the designer has
responsibility are misconstructions, and in principle can be put
right by the designer. Faults at levels outside the designer’s
control can be called miscomputations; the designer can only
provide recovery procedures to deal with these. Ideally, a
designer should anticipate possible sources of miscomputations
and design recovery procedures for them.

2. Finite-state models of parts of computer systems
Computer systems differ widely in their detail and for the pur-
pose of error analysis a simplified model is needed which
abstracts the essential features. A well known model for certain
parts of computer systems, such as the conditions of a control
program, is the finite-state model. This is described in texts such
as Minsky (1967); a finite number of conditions of the systems
are recognised and called states. Certain trigger actions in the
system are designated as input commands, and under the stimulus
of an input command the system moves from one state to
another. State transitions can be specified by diagrams of the
kind shown in Fig. 1, where the nodes represent states, and
the branches are labelled with input commands.

Experience and intuition is needed to abstract some part of a

|w)
9]
s
2
I}
o
Q
@
Q
=
o
3
>0
=
(2]
2
o
Q

O]
Q.
[}

w

_(_3-
o

system to a finite-state model; for example a communicationsS

controller might have states ‘transmitting’, ‘receiving’ and
‘waiting’, but it would not be sensible to consider the various

Q
o

=
Q

conditions of stored data in a database as constituting a ﬁnite_%_

number of states. Usually only a fragment of a system can be
abstracted to a finite state model. This fragment would probably
include control modes, but would exclude contents of mass
storage. Judgement is also needed in the recognition of the
activities constituting an input command.

2.1. Transition errors in finite-state models
After a part of a system has been abstracted to a finite state-
model its behaviour is simplified to making state transitions.

=1
=
o

=
Q
©

e

=
©

V.E/GELIC/

o
=
o
o

In this theoretical model only two kinds of error can occur,g

firstly an input command can be corrupted, and secondly the
system response can be faulty so that a false state transition
occurs; of course both errors can also occur together. In each
case the system reaches an incorrect state, and thereafter its

c
D
»
2
o
=]
N
©
>

states will continue to be incorrect. A first approach to errorS

detection and correction can be made by noting that some

N
o

command inputs might be invalid when the system is in certain’®

states. A monitoring device could now be added which detects
impermissible input/state combinations, and takes corrective
actions if they occur. In this approach the appearance of per-
mitted input/state combinations does not guarantee correct
system action, since several states may permit the same input;
there is thus a state ambiguity. This state ambiguity could be
further reduced by considering a sequence of successive input/
state combinations; for example, monitoring the last three
input/state values. Two drawbacks of this approach are that
it is difficult to choose the length of the input/state sequence to
be monitored, and that the monitor itself is subject to faults
which are not checked. The method given below overcomes
both these drawbacks.

*Department of Computer Science, Birkbeck College, London WCI1E 7HX.
tProject Management WAVELL, Ministry of Defence, For Halstead, Sevenoaks, Kent.

Volume 18 Number 2

135

Fig. 1

2.2. State resetting in finite-state models

Consider a system specified by the state diagram of Fig. 1, and
suppose that a fault has caused the system to move to an
unknown, and presumably incorrect, state. Apply the input
command sequence ‘coc,’ then assuming no further errors, the
system must be in state C. The input command sequence ‘coCo’
has restored the system to a known state. Sequences with this
effect have been studied in information transmission (see
Neumann, 1962), and are called synchronising sequences. Not
all input sequences are synchronisers; for example, the input
sequence ‘coc,’ leaves an ambiguity over states 4 and B.
Given a state transition diagram its synchronising sequence
may be found by constructing a forward successor tree diagram.
This shows the transitions of whole sets of states under the
various possible input commands. The root of this tree is the
complete set of states. Each successive node of the treeisfound
by collecting together the states resulting from each individual
input command acting on the states in a previous node. Suc-
cessive branches of the tree are constructed until a node
repeats, or becomes a singleton set. Fig. 2 shows the forward
successor tree for the model of Fig. 1, where each node shows a
state set, and the branches are labelled by the input causing the
transition.

{ABC}

{c} {ae} {ec} {AY -
Fig. 2

Fig. 3

{ABCD}

{AB} {c,D}

{AY {c3 18} {D3
Fig. 4

136

Fig. 3 shows a four state model, and Fig. 4 shows its forward
successor tree. It will be seen that every input sequence of
length two is a synchronising sequence, and the model will be
in a known state after any sequence of length two, i.e. ‘coco’
leads to A, ‘coc,’ leads to C, ‘cicy’ leads to B, and ‘c,c,’ leads
to D. A model which is forced to a single state after every
sufficiently long input sequence is said to be fully synchronised.

A representation of the forward successor tree which can be
handled easily in a computer is based on using Boolean tran-
sition matrices. Suppose a finite-state model has input command
set {¢;, C, - - ., C,}, and state set {s, 5, . . -, 5,}, then for each
input, ¢, there is an n x n Boolean matrix, C;, called a
transition matrix. This has entries d;;, 1 < i, j < n with

d;; = 1if input ¢, drives the model from state i to state j
= 0 otherwise.

Further, a subset of states, say {s,, s,, 5} is represented by an
n-vector with 1’s in positions p, g and ¢, and with 0’s elsewhere.
Given a state subset (node of the forward successor tree)
represented by S, the new state subset, S, caused by input ¢,
is given by

S’ = SC; .

In practical examples only a small fraction of the possibleq
number of state subsets actually occur in the forward successor =
tree. The largest system analysed by the authors had 10 states S
and 21 input commands, but only 44 state subset nodes. The =
difficulty experienced in going to larger systems arose fromg
presenting the result of the computation, rather than from thes

computation itself.

papeojumoq

e

2.3. Theoretical synthesis of fully synchronising finite-state
models
In designing practical systems it is sometimes possible to alter3
their specification so as to improve their synchronisings
behaviour; it is therefore interesting to bé able to constructg.
fully synchronising theoretical models. One way of doing this 5
is to start with simple resetting models, and then combineg
them so as to build larger resetting models. The simplest®
resetting models have as many states as there are different?
inputs commands, and each input causes the model to goto a_
particular state. Fig. 5 shows a two state reset component, andg
Fig. 6 shows a three state reset. ‘ N
The most general inter-connection of elementary resetg
components is the series-parallel connection illustrated ing
Fig. 7. The boxes labelled m1, m2, m3 represent componento
models; ml receives the external input as its only input, m23
receives a combination of the external input and the state of m1 §
(at the preceding time instant) as input. Going on, m3 receives a .
combination of the external input and the states of m1 and m2+-
as input. The series-parallel arrangement has states which are az
composite of the states of the component models. Given ans
input sequence, i1, i2, i3, on receipt of il component ml will®
be reset, on receipt of i2 component m2 will be reset, and so on.
Fig. 8 shows a pair of two state component models which
combine to give the model of Fig. 3. The state correspondences
are

9°dno-oiwep

O

(v, @) > 4, (x,) = B,(y,®) > D, (3, p)~> C .

3. Application of state resetting

The state resetting behaviour of a system is one specialised
feature which can be studied after a design meeting the main
requirements has been produced. In a favourable design a high
proportion of typical input sequences will be synchronising
sequences, and the system will have a natural tendency to pull
back into synchronism after an error, provided that the time
interval between errors is much longer than the duration of the
longest synchronising input sequence.

The Computer Journal

Fig. 5 Fig. 6
input
> >
J T T
mj >
1 ¥ H/
m2 >—
1Y
m3 p———>—
Fig. 7

Studies of synchronising behaviour have been done for the
WIPDOS interactive programming system, designed by one
of us (A.J.S.) for the Ministry of Defence. This system allows
a programmer working at a teletype terminal connected to a
small computer, to construct files of program and data, edit
these files and then run the programs against the data. The
control program was planned around a finite-state model from
the outset. Initially, error detection was based on noting
certain illegal conditions in the system. Later, the error be-
haviour was studied by looking for synchronising sequences,

(x ,c.\
C° (y» e
c (ysco) (x,Co)
G ° (x,¢1) (ys ¢

° ' (x,¢)
C‘ ' ' (Y,'C.)

Ist COMPONENT 2nd COMPONENT

Fig. 8

some deficiencies were brought to light, and it was possible to
modify the design to bring about an improvement.

peojumoq @

3.1. The WIPDOS system
A finite-state model for the WIPDOS system control prograng
actions was produced before any program modules werg
written. However for synchronisation analysis the model wa§
simplified still further to reduce the number of states and mputs:.
The simplified model had 11 states, four of these called EDI’I"’
BASE, USER, and SUSPEND were ‘wait’ states; the systexﬁi
moved from ‘wait’ states in response to a command from thg.
programmers terminal. Six states, designated by numbers werg.
‘processing’ states, the system performed the requested actlons
in these states, and moved from them in response to commands
generated by system software, or stored files of commands?
From the viewpoint of the simplified model (but not the actu
processing performed) several commands had the same eﬁ'ecg
and were grouped into collections of type A, type B, or type (i
commands. The transition diagram is shown in Flg. 9, and thB
21 different types of input command are listed in Fig. I(E

ERROR FROM

A PROCESSING
STATE

Fig. 9

ERROR

21
15
l SUSPEND
& L.
16 20 N\

\8

VZOgI!JdV 61 uojsenb Aq or0v.e/gE Lhz/8 L

RETURN TO THE SAME
STATE AFTER

CORRECTIVE ACTION

Volume 18 Number 2

1317

Input Input
Number Command Number Command
1 Type A 12 LOAD return
2 Type A return 13 BREAK
3 Type B 14 BREAK return
4 Type B return 15 RUN
5 Type C 16 RUN return
6 Type C return 17 SvC
7 EDIT 18 SVC return
8 EDIT return 19 SUSPEND
9 ENDEDIT 20 CONTINUE
10 ENDEDIT return 21 KILL
11 LOAD
Fig. 10

Fig. 9 has been further simplified by showing only transitions
from each state caused by permitted commands; impermissible
commands cause a return back to the state from which they
were issued.

3.2. Forward successor tree for WIPDOS

The Boolean transition matrix method described above was
programmed so as to print out forward successor trees for any
desired command sequence. First the forward successor tree
for ‘well behaved’ input sequences was constructed. ‘Well
behaved’ sequences were those in which only permitted inputs
were applied at each state. Fig. 11 shows the resulting tree
where both synchronising, and non-synchronising, input
sequences can be found. An example of a synchronising se-
quence is input 1 (a type A command) which always forces the
system to state 2. An example of a non-synchronising sequence
is the infinite input sequence 5, 21, 5, 21, . . ., which is a type C

command indefinitely alternating with a KILL command.

On the forward successor tree it can be seen that the non-
synchronising input sequences include the individual inputs 5,
6, 13, 14 or 21 ; these inputs are associated with type C, BREAK
and KILL commands. When the programmer issues a type C
command (input 5) an ambiguity over the wait states 2, 3, and 6.
results. Similarly the BREAK command (input 13) leads to an
ambiguity over the processing states 3 and 6; the return from
the BREAK, input 14, leads to an ambiguity over the wait
states USER and SUSPEND. The KILL command (input 21)
results in an ambiguity over the wait states BASE, USER and
SUSPEND. Further, it can be seen that input sequences con-
structed only from type C and BREAK commands (and their
respective returns) are never synchronising, and always result
in ambiguities over, at least, processing states 3 and 6, or the
wait states USER and SUSPEND. Sequences made up of
type C, BREAK and KILL commands will not be synchronising
if the state ambiguity associated with an input immediately
prior to the KILL command is over the state sets {2, 3, 6} or
{3, 6}. :

Summarising these observations—if a miscomputation occursg
which causes an incorrect transition to one of the states BASE, S
USER, SUSPEND, 2, 3, or 6, then the command analyserg
would remain out of step with the programmers terminal®
throughout the time that only type C and BREAK commands=:
were being issued. The same effect would occur if the program-%
mer himself lost synchronism by not being aware of the current=
state of the system. One of the original design aims of WIPDOS@
was to enable the programmer to readily put the system into a3
well defined state. After analysing the forward successor treed.
it was evident that this aim had not been achieved ; and that the3
minimum synchronising sequence associated with the KILLJ
command is ‘KILL KILL’. In this particular design it wass
possible to modify the synchronising behaviour by signalling3

w

g
=
{EBU,S,1,2,3,4,56% =
%
@
@
N
8
I 2,10 3,7,9 |4,8 5 6,2l " 12,16 |13 14 5,18 17 19 S
20 3
5
g
2 B | e {236} {8ust 2 U (3,63 {us} 4 5 s o
[0
(2]
6, 3
14, ©
21 1
{u,s} | S
~
2 6 12 14 I 5,13 7 15,20 |21
8 {sust u {us} 2 {36} | 4 B
1 5 7 13 15,20 |2
2 {236} {36} 4 B
Fig. 11
138 The Computer Journal

more information back to the programmers terminal. The
modified system then became fully synchronising for well-
behaved inputs.

The initial analysis above omitted illegal input sequences; an
analysis which included all possible commands applied at every
state was later done. A substantially longer computer run was
needed, and the printout was much larger. Many of the new
" sequences were found to be synchronising, but a number of new
non-synchronising sequences were also discovered. However, it
happened that the system modifications also eliminated most of
these new non-synchronising inputs. The overall result of the
analysis was a better understanding of system behaviour, and a
substantial improvement in the programmer command
interface.

Other practical systems have been analysed, and Sammes
(1973) describes the analysis of a controller in a computer

References

communications network. In this example an initial analysis
was done by computer, but a full analysis was beyond the
power of the available computer. An intuitive examination of
the tree was done, and uncovered a number of non-synchronis-
ing sequences. These were found to explain a number of fault
conditions which had been observed experimentally, but were
not understood.

5. Conclusions

Examining the synchronising behaviour of parts of systems has
proved to be useful. More computer aid would be helpful in
this examination. From the authors’ experience the most
pressing need is for a better means of displaying the essentials
of the forward successor tree to the systems designer; an inter-
active visual display terminal for showing selected parts of the
tree is an obvious possibility.

MInNskY, M. (1967). Computation: Finite and Infinite Machines. Prentice Hall Inc., New Jersey.

NEUMANN, P. G. (1962). On a Class of Efficient Error-limiting variable-length Codes IRE Trans. Information Theory, Vol. IT-8, pp. 260-266.
SAMMES, A. J. (1973). Error Limiting in Computer Operating Systems. Ph.D. Thesis. University of London, England.

Book review

Data base management, edited by W. C. House, 1974; 468 pages.
(Petrocelli Books, New York, £9-95)

This book contains reprints of thirty-five articles and papers
originally published between 1966 and 1972, and taken from 23
different periodicals, some relatively obscure. They are arranged in
six sections to each of which there is a brief introduction by the
editor and to each of which he has appended a page of ‘discussion
questions’ and a bibliography.

The six sections, all about equal length, are entitled: Data
collection: minimising time, cost, and error bottlenecks; Data
communications: key system components and design considerations;
Data organisation and storage ; Data base management: an emerging
function; Methods of processing data: batch versus continuous
processing; and Information retrieval and display: concepts,
alternatives and devices.

These headings are more or less a fair description of the material
the sections contain and, if one accepts the variability of level of
treatment inevitable with a collection of articles and papers origin-
ally written independently, they provide interesting reading.

The first section (pages 1-81) contains much discussion on the
obsolescence of the punch card for data preparation and the costs
and benefits of key to disc system or OCR. Also discussed is the
elimination of the data preparation function altogether by making
line staff responsible for direct data entry as a by-product of their
work. The second section (Pages 85-140) introduces various data
communications topics.

The third section (pages 141-226) commences with the 1969 paper

Volume 18 Number 2

1y woJy pepeojumoq”

by Dodd from Computing Surveys, ‘Elements of Data Managemeng
Systems’. It is followed by several shorter articles with t1tlesm

‘practical data base design’, computer storage and memory devices’2 3
‘magnetic tape, drum, disc memories’, ‘selecting computer memo:
devices’, and ‘IBM adds virtual storage technology’. The fourths
section (pages 227-322) contains mostly general discussion artxcle@
with a practical bias and there is some repetition. It includes the;
1972 introductory article by Shubert from Datamation on the basx@
ideas of the Codasyl DBTG proposals.

The papers in the fifth section succeed in making the point thaB
batch processing, in some circumstances, is both satisfactory anc%
cost effective but the material tends to range widely and even:
includes an elementary introductory article, ‘Computer Timesharing & o
a primer for the financial executive’. The sixth section (pages&;
399-468) agam ranges widely with discussions on non-unpactg
printers, voice response units, etc.

The reviewer was baffled by the very specific title the volume haé?,
acquired. Perhaps it was a mistake! For the blurb on the dust Jacketa‘
to state that the 35 articles reprinted ‘represent the best ideas ong
data base management’ is absurd. The editor’s knowledge of thlSy
field seems somewhat limited. What we have is some mostly interests
ing and occasmnally useful readings in data processing touchings
most of the topics in this field. A selection from these articles couldg
well serve as background reading for a general course on dat®
processing. The volume would have been more correctly tltledB
‘Some readings on current themes in data processing’. . 9

P. J. H. KING (Londong
N

139

