On string concepts and their implementation

R. J. W. Housden

School of Computing Studies, University of East Anglia, Norwich, NR4 7TJ

A model is described for string handling, distinguishing between fixed length vectors of characters
and strings which vary in length under string operations. String processing facilities in PL/I and
ALGOL 68-R are considered with particular reference to variability of length of segments of
strings. Operators and procedures are defined in ALGOL 68-R for processing both fixed and

variable length strings.
(Received March 1974)

On string concepts and their implementation

A string is a set of scalar objects having a linear positional
relationship one to another. Some would say that the notion of
strings is an unnecessary one and that all strings are vectors.
Nevertheless, it is convenient to separate the concepts of strings
and vectors because of the different operations that are per-
formed on them. The string concept may be applied to any
_variety of scalar data; strings of characters and strings of bits
are recognised in some programming languages. In practice the
concept of a string is most often utilised with character data
and we shall consider only strings of characters.

Character-string attributes

Two important string characteristics which are independent of
any context in which a string is used are

(a) current length of a string

(b) variability of string length.

The first of these indicates at any time the number of characters
residing in the string. The variability of string length is a
distinguishing feature between strings and vectors.

String operations

The fundamental operations on character strings include the
following:

1. Create a string of characters.

2. Concatenate two strings to form a new string.

3. Extract a segment of a string.

4. Search within a string for a given substring.

5. Compare two strings.

6. Delete a substring or replace it with another substring.

7. Insert a string within another string at a specified position.
8. Interrogate the length of a string.

In addition to these processes there must also be defined
procedures for the transput (i.e. input and output) of strings.
From these and other basic processes can be built much more
complex operations on strings.

A model for string handling

1. String constants are enclosed in quotes,
e.g. “THIS, IS, A ,STRING,CONSTANT”
is a string constant of length 25. To retain a string constant in
a string variable S, say we use the assignment operator.

S = “BLACK ,CAT”

S now identifies BLACK , CAT, a string of length 9. An
embedded quote may be represented by a double quote;
thus “’“* has the value ”. A null string is represented by “”.
2. A common operation performed on strings is concatenation;
one string is concatenated to another by placing one at the
end of the other so forming a new string whose length is the
sum of the lengths of the original strings. Concatenation
is indicated by the operator +.
Example “SUN” + “DAY” has the value SUNDAY

150

3. A segment consisting of the Mth through Nth characters of a

string, S, is referred to as S(M:N). Thus as a result of
executing the two instructions

S = “ALIBI”

T=SQ2:4
T has the value LIB. The nature of the expression S(M:N)
is further illustrated by the instructions

S = “THE ,BLACK ,CAT”

S§(5:10) = «»
as a result of which S has the value THE , CAT. It is clearg-
from this example that S(M: N) returns addressability to the <
desired segment of S. It does not create a copy of the desired 3
segment. Such functions are referred to as pseudo varzablesm
(PL/I) or selection operators; they select and return address- 2.
ability to data. o

. For searching within a string we define a function INDEXU
which returns the index to the start of the leftmost substring S
of its first argument that matches the second argument.

The value of INDEX(“BANANA” “NA”) is 3. We use3
the convention that zero is returned if the search fails.

. For comparisons of strings we use the standard relational 5
operators <, <=, >, > =, =, #. If the two strings are of ©
different lengths the shorter string is extended by fictitious 2
‘empty’ characters on the right to match the longer one in =
length The empty character is defined to collate before any £ S
genuine character. Thus “FRED” < “FRED, , ,” has the X 3
value true. The comparisons yield lexical ordering. S

Yy WoJj papeojumoq

g/|ulooy

6,7. Substrmg insertion, deletion and replacement may becr

expressed in terms of operations involving segments of@
strings. For example

S(M:N) = “ABC”
replaces the Mth through Nth characters of the string S by ©
ABC. The length of the replacement string need not be thﬁ%>

same as that of the segment S(M:N). We have already seen N
that

uo jsen

¥20

S(M:N) =«”
deletes the Mth through Nth characters of S. Since a sub-
string is also a string it follows that substrings also exhibit
variability of length under string operations.

Insertion of one string in another at a specified position may
also be regarded as a special case of substring replacement in
which a null segment is replaced by the string to be inserted.
This raises the problem of notation for a null segment. We
adopt the convention that S(M:N) for M > N represents the
null segment preceding the Mth character of S. Insertion of
ABC before the Mth character of S is then the result of

S(M:M — 1) = “ABC”

Another way of denoting insertion of a string T before the Mth
character of S is
S(M:L)y=T+ S(M:L)

The Computer Journal

where L is the length of the original string S.

What meaning, if any, can be associated with S(M:N) when
either or both of the segment bounds, M and N, have values
outside the range of the current value of S, i.e. if M or N is less
than 1 or greater than the current length, L, of S ? We have
already dealt with the case N < M. If we also adopt the
convention that S(M:N) is equivalent to S(MAX(M, 1):
MIN(N, L)) then S(M:N) refers to a valid segment of S
(possibly null) for all integer values M and N. It follows that if
S has the value BE then as the result of

S(10:16) = “WARE”
S has the value BEWARE, a string of length 6. This is consistent

with the convention that no gaps are created as a result of
operations on strings.

Implementations of strings

Having set up a model for string handling we now consider
selected features of the string handling facilities provided in a
variety of programming languages and the extent to which our
model is realised in practice. There are a number of languages,
and extensions to languages, designed to handle strings.
COMIT (Yngve, 1962), SNOBOL-3 (Farber, Griswold and
Polonsky, 1966) and SNOBOL-4 (Griswold, Poage and
Polonsky, 1969), are three well known string-processing
languages. The early ‘general purpose’ languages were almost
entirely arithmetic and made no provision for strings. With the
increasing usage of computers in many different fields the
distinction between numeric and non-numeric computing has
become less apparent. The desire for a single programming
system incorporating efficient numeric and non-numeric
capabilities led to the development of several extensions to
FORTRAN and ALGOL to provide character and string
handling facilities. Two examples of such extensions, each
providing string facilities of the SNOBOL type, are DASH, a
set of procedures for dynamic string handling in ALGOL
(Milner, 1968) and SP/I, a string processor based on a set of
routines embedded in FORTRAN (Macleod, 1970). More
recent general purpose languages, notably PL/I and ALGOL
68, recognise strings but make no distinction between strings
and vectors and regard a string as a vector of characters.
BASIC, designed specifically for computing science education,
provides simple facilities for string handling. Another teaching
language with simple but adequate text processing capabilities
is EASNAP, an extension of SNAP (Barnett, 1969; Housden,
1971).

It would be impossible to give here a full description of the
string handling facilities in such a wide range of languages.
The reader interested in such details is referred to Sammet’s
comprehensive volume, Programming languages: History and
Fundamentals (1969).

SNOBOL and imitations of SNOBOL provide powerful
string processing and pattern matching facilities at a high level.
The SNOBOL user need not concern himself with the low level
realisation of these facilities PL/I and ALGOL 68 on the other
hand provide only primitive operations on strings in terms of
which more complex procedures may be defined. Since we are
concerned only with the fundamental concepts of strings we
shall confine our attention to their implementation at the lower
level. The two features in which we are primarily interested are
variability of string and substring lengths, and addressability of
segments of strings.

String length

Many systems impose some restrictions in that strings must be
declared with a maximum length. This is mainly for the con-
venience of implementors so that sufficient space may be
allocated for each string when it is first encountered. It also
avoids the inefficiencies of dynamic storage allocation and

Volume 18 Number 2

collection which would otherwise result from runtime variations
in string length, but it can waste a lot of space, since generally
an over-large margin of error is allowed. For most applications
the restriction is not serious.

The differences between implementations of string handling
facilities are more apparent when we consider_the results of
operations on segments of strings. In our model, ‘the length of a
segment of a string also exhibits variability under string
operations. This characteristic is reflected in only a few
implementations.

String handling in PL/I
String declarations
Example:

DECLARE S1 CHAR(15), S2 CHAR(20) VARYING,
S3(12) CHAR(20) VARYING;

S1 is here declared as a fixed length string of 15 characters that
is the length of S1 returned by the function, LENGTH (S1) is
15 throughout execution. A string shorter than 15 characters
assigned to S1 would first be extended by space characters on &
the right to a length of 15. Thus S1 is indistinguishable from a 5
vector of characters.

S2 is a variable length string with a maximum length of 208
characters. The current length of S2 at any time during execu-3
tion is returned by the length function, LENGTH (S2).

S3 is an array of 12 character strings each of variable length =
not exceeding 20 characters.

papeojuMm

wo.

eoe//:sdny

>
=
«
)
=
o
=]
ge]
[
=
o
)
1723
<]
o
=
-
o
[
w
(=g
=N
=
o
<
o
=
)
o
—
1)
)
(2]
(=
=
=
(1°]
o
)
—
)
-]
Q
=2

greater than the declared maximum length for that variable 2
results in truncation at the right.

woo dnoolwe

Concatenation
String assignments and concatenation are illustrated by the
following example. The double vertical bar is the built-ing
concatenation operator.

DECLARE DAY CHAR(9) VARYING;
DAY = ‘SUN’|‘DAY’;

Result: DAY identifies the string SUNDAY.

Searching
Searching within a string is accomplished by the INDEX
function as described in our model for string handling.

Example:

DECLARE FRUIT CHAR (12) VARYING;
FRUIT = ‘BANANA’;
N = INDEX(FRUIT, ‘AN’);

Result: N = 2.

dV 61 uoisenb Aq /Z1L/€/0G1/2/8L/a1me/|ulod

¥20c 4

Substring selection
The PL/I substring selector functlon SUBSTR has the general
form

SUBSTR(string, i,j)

where ‘string’ is the parent string from which the substring is to
be extracted, i is the index to the first character of the substring
and j is the length of the substring. Note the difference between
SUBSTR(S, I, J) and S(I:J) as defined in our model. Some
implementations of PL/I allow the form SUBSTR(S,I)
meaning the Ith and successive characters of S.

The length of the substring returned by SUBSTR is equal to J
if J is specified, or is LENGTH(S) — I + 1.

SUBSTR may be used on the left of an assignment statement
and in PL/I terms is therefore a pseudo-variable, i.e. it returns
addressability.

It is important to note that SUBSTR(S, I, J) is a substring of
fixed length whether applied to a fixed length string or to a

151

variable length string, so SUBSTR does not have the properties
of S(I:J) in our model.
Example: X = ‘BEWARE’;
SUBSTR(X, 3, 3) = ‘IG’;
Result: X = ‘BEIG,F’;)

Similarly an assignment of length greater than J to a substring
SUBSTR(S, I, J) results in truncation at the right before the
assignment takes place. Thus we see that the utility of SUBSTR
as a substring selector function which returns addressability is
very limited.

The desired results may be obtained by instructions such as

S = ‘BEWARE’;
S = SUBSTR(X, 1, 2)|'IG’|]SUBSTR(X, 6, 1);

Result: S = ‘BEIGE’
and S = ‘THE ,BLACK ,CAT.’;
S = SUBSTR(S, 1,4)|‘GREY’||SUBSTR(S, 10, 5);
Result: S = ‘THE ,GREY ,CAT.
S = SUBSTR(S, 1, 4)|‘BLACK ,AND , WHITE’|
SUBSTR(S, 9, 5); '
Result: S = ‘THE ,BLACK ,AND , WHITE , CAT.’

Execution of such instructions involves unnecessary creation
and copying of substrings whose value and position in the
string are not changed as a result of these operations. For
example to delete the Mth through Nth characters of a string
it is only necessary to replace the Mth and successive characters
by the (N + 1)th and successive characters leaving the first
M — 1 characters unaffected.

String handling in ALGOL 68
ALGOL 68 recognises the need for flexibility in string declar-
ations. The user may choose between efficient operations on
character strings declared with fixed length, and inefficient
manipulation of strings which are truly variable in length. The
declaration
[1:100] char s;

defines s as a character array of 100 elements. At no time can the
length of s differ from 100. Although this form of declaration
of s, as a fixed vector of characters, ensures efficient handling
of s and of segments of s, the ALGOL 68-R implementation
imposes restrictions which are not immediately apparent. For
example when a string value for s is input from a data stream
the input is terminated after reading 100 characters or sooner
on encountering some specified string terminator. In the latter
case the length of s is reduced from 100 to the number of charac-
ters actually input to s. The length of the string s cannot then be
increased as a result of further operations on s. Once the length
of s has been fixed by execution of either a string assignment
instruction or an input instruction, any attempt to vary it
without first redeclaring s results in an execution error.*
Clearly this facility is inadequate for general string processing.
However, it is possible in ALGOL 68 for the user to define his
own assignment operator for vectors of characters so as to
overcome this difficulty. User defined operators are described
below in connection with operations on segments of strings.

An alternative form of string declaration is

[1:100 flex] char s;

(or flex [1:100] char s; in the Revised Language) ,
s is here defined as a one dimensional character array (or row
of characters) of variable length. Initially sufficient space is
allocated to store up to 100 characters but at any time during

execution this length will be automatically extended or con-
tracted if necessary to accommodate a string of different length.
The actual length of the string value currently held in the
variable s is obtained by applying the array operator upbh which

gives the upper bound of the array, in this case the number of

characters in s. A special case of the declaration of a character
string variable of flexible length is
string s;
The mode string is defined in the standard library prelude as
mode string = [1:0 flex] char;

A string variable declared in this way is allocated no space until
a string value is actually assigned to it. The necessary space is
then obtained from the heap, a pool of free space. Any array
variable declared with flexible bounds is allocated heap space
and as a consequence incurs considerable run-time overheads.

Apart from assignments, comparisons and transput operations
ALGOL 68-R provides few built-in string operations. The use
of string constants in assignment and print instructions is
illustrated by the following example.

Example:
begin string s;
S := “THE ,BLACK ,CAT.”;
print ((“STRING, S:, ,”, S, Newline,
“LENGTH:, ,”, upbS, Newline))
end

Resulting output

STRING S: THE,, BLACK , CAT.
LENGTH : +14

olWepeo.//:sd)y Wolj papeojumoq

Although defined in full ALGOL 68 concatenation is not a2

system defined string operation in ALGOL 68-R but the con-3
catenation operator, +, is easily defined as follows. §
op + = (string A, B) string: g
begin int m = upbA, n = upbB; [1:m + n] char s; El
if m > O thens[1:m] := A4 fi; o]
ifn>Othens[m + 1:m + n] := Bfi; o

s =
end; S

First we declare a row of characters just long enough to holdZ
string A followed by string B. Then if A4 is not null its value is<
assigned to the ‘trimmed’ array consisting of characterg
positions 1 to upbA of s (trimmed arrays are described below). !
Similarly if B is not null its value is assigned to the remaining>
character positions in st and finally the value of s is returned5

as the result of the operation.
The concatenation operator, +, may now be used as follows.
string s;
s := “SUN” + “DAY”;

Z ludy 6| uojs

Two further string concatenation operators plus and prus areg
defined in the official report. a plus b is equivalent to*™

a:=a + b; aprus b is equivalent to b: =a + b.

String segments

To refer to a string segment we use the concept of a trimmed
array. Thus if s is of mode string or [] char (pronounced row of
characters) the trimmed array S[M:N] refers to the mth
through Nth elements (characters) of s. Unlike the segment
S(M:N) of our model, no meaning can be associated with
S[M:N7] unless it is within S; that is S[M:N] is not defined
for M > N, M < 1 or N > upbS.

*These observations are based on test programs compiled and run on an ICL 1900 series computer using the ALGOL 68-R compiler (Currie,

1970; Woodward and Bond, 1972).

tIn Ch. 0.10.6 of their Informal Introduction to Algol 68 (1971), Lindsey and van der Meulen define a concatenation operator possessing a
routine in which these assignments are unconditional but tests on ALGOL 68-R show that assignments to s[1:0] are illegal in this imple-
mentation (this is due to a known bug in the index checking). Hence the necessity for conditional assignments.

The Computer Journal

The length of S[M:N]is N — M + 1 and even though S
may be declared with flexible bounds the length of S[M:N]
for given values of M and N remains constant under all string
operations. It follows that a sequence of instructions such as
the following will not produce the results that we may desire.
Example:

string S := “THE ,BLACK ,CAT ,CLIMBED A ,
TREE.”;

print((S,newline));

S[5:10] := “WHITE,”;

print((S,newline));

S[5:10] := “GREY,.”;

print((S,newline));

S[5:9] :=“;

print((S,newline));

S[5:upbS] := “BLACK ,AND ,WHITE ,” + s[5:upbS];

print((S,newline));

A program containing this sequence of instructions was
compiled and run using the ALGOL 68-R compiler and
produced the following output.

THE , BLACK ,CAT ,CLIMBED , A , TREE.
THE , WHITE ,CAT , CLIMBED , A , TREE.
THE , WHITE , CAT ,CLIMBED , A , TREE.
THE , WHITE , CAT ,CLIMBED , A , TREE.
THE , WHITE , CAT, CLIMBED , A , TREE.

We see that assignment of a string to a trimmed row of charac-
ters, or segment of a string, is performed only if the length of
the string to be assigned is equal to the length of the segment
on the left of the assignment, otherwise the instruction is
ignored and no warning given. This is a rather worrying
feature of this implementation. It would be reasonable to
expect either that fixed length assignments would be performed
as in PL/I, that is with short strings extended by spaces on the
right and long strings truncated at the right before assignment,
or that an error message would be output. The following
instructions produce the desired results but are subject to the
same criticism as the similar sequence in PL/I above. We
assume that the concatenation operator + has already been
defined.

string S := “THE ,BLACK ,CAT ,CLIMBED ,A ,
TREE.”;

print((S,newline));

. S[5:10] := “WHITE,”;

print((S,newline));

S := S[1:4] + “GREY,” + S[11:upbS];

print((S,newline));

S := S[1:4] + S[10:upbS];

print((S,newline));

S := S[1:4] + “BLACK ,AND ,WHITE ,” +
S[5:upbS];

print((S,newline));

Assignment to fixed length strings

It is of course possible to define our own assignment operator
for fixed length strings to produce results compatible with those
obtained in PL/I. We define a string assignment operator

‘< —’ so that the result of
S1¢<-"82
is assignment to S1 of a copy of S2, extended by spaces or
truncated at the right, if necessary, to a length equal to that of
S1.
op ‘< —’ = (ref string A4, string B) void:
begin int m = upb4, n = upbB;
if flexible 4 then 4 := B elsf
m = 0 then skip elsf

Volume 18 Number 2

n = 0 then clear A elsf
m < n then 4 := B[1:m]else
A[1:n] := (clear 4; B)

end;

The first condition deals with the case in which the operand 4
has been declared with flexible bounds and therefore no adjust-
ment to the length of B is necessary. The operators flexible and
clear are special features of ALGOL 68-R.

Example:
[1:25]char S; clear S;

S‘<—’“A BLACK,AND, WHITE, CAT.”;
S[g 18] < 9 €6,
Result: S = “A,BLACK , s« x paxnnnnCAT.r o "

String segments of variable length
In our model the segment S(M:N) of a string S was defined,
but possibly null, for all possible integer values of M and N.
S(M:N) could be used on the left of assignment instructions,
and exhibited variability of length under assignment operation§g
We now consider the implementation of S(M:N) in ALGOE
68. We have seen that the trimmed row of characters S[M :Na
does not have the desired properties. First we define a mode
substring as a structure composed of three fields S, M and Ig
mode substring = struct (ref string S, int M, N);
Next we define an operator str which when applied to an obje@
of mode substring extracts and returns the value of the strmg
segment to which the object refers.

op str = (substring A) string:

begin string T'; int 7, J;
T:=SofA;I:=MofA;J:=Nof 4;
if I <1then/7:= 1 fi;
if J > upbT then J : = upbT fi;
if I > J then > else T[I:J] fi

end;

Now we can define our operator ‘<
segment of a string.

—’ for assignment to

op ‘< —’ = (substring 4, string B) void;

begin substring SS1, SS2;
SS1:=(Sof 4,1, Mof A — 1);
SS2:=(Sof A, Nof A + 1, upbS of 4);
Sof A :=str SS1 + B + str SS2

end;

Having defined a mode substring and operations on objects
this mode, we may wish to write instructions of the form
@S, 5,10) ‘< -’ “BLACK ,AND ,WHITE”;
to replace a segment of a string S by a longer string or (S, 5, l@
‘<= “”; to delete a segment and (S,5,4) ‘< —3
“GREY ,AND,”; to insert a string before the ﬁfth character
of S. Unfortunately this is not possible. A ‘collateral’ such as
(S, M, N) can only be used to display a structure when the
context clearly distinguishes it from an array, i.e. only in strong
positions. The following example illustrates assignment to
segments of strings using the operators defined above.
example:

begin string S := “THE ,BLACK ,CAT.”;
print((S,newline));
(substring val (S, 5, 10)) ¢
print((SS,newline));
(substring val (S, 5, 10)) ‘«
print((S,newline));
(substring val (S, 5, 4)) ‘«
print((S,newline))

end

v 61 uoS§enb Aq /2L ¥/€/0G1/Z/8 L/aE/|UlWoo/ W00 dNo"oILSPED

«’ “WHITE,”;

9 (132 0%

> “BLACK ,AND , WHITE, ”;

153

output: THE ,BLACK , CAT.
THE , WHITE , CAT.
THE , CAT.
THE ,BLACK ,AND , WHITE , CAT.

The Revised ALGOL 68 provides a new form of the cast which
allows us to write instead of
(substring val (S, 5, 10)) ‘<’ “WHITE”;
the tidier form
substring (S, 5, 10) ‘<’ “WHITE”;
At this stage we might ask what we have achieved. Clearly we
‘have demonstrated that the concept of a segment of a string, as
defined in our model, can be implemented in ALGOL 68.
The implementation is obviously so inefficient as to be of no
practical value. Each time the operator ‘< —’ is encountered
the routine possessed by it is invoked to achieve the desired
effect. This routine in turn invokes the routine possessed by the
operator str. That an experienced ALGOL 68 programmer
could define more efficient procedures for assignment to
segments of strings is not doubted, but it is questionable
whether it is possible to improve on simple concatenation and
assignment such as
S := S[1:4] + “BLACK ,AND ,WHITE,” +
S[5:upbS];
The last clause in our definition of ‘< —’ has precisely this
form. It appears that there is no simple way of avoiding the
inefficiency inherent in variable length assignments to trimmed
- strings. On the positive side the routine possessed by str deals
with all possible integer values for M and N.

String comparisons
When comparing strings of characters in ALGOL 68, successive
characters from each string are compared, using the relational
operators <, < =, > and > =, until a decision is made or the
shorter string is exhausted. Details of the routine possessed by
the operator < are given in Ch. 0.10.6 of An informal intro-
duction to Algol 68 (Lindsey and van der Meulen, 1971).

The ordering so obtained is lexicographic, that is “AB” <
“ABC” is true and “AAB” < “AB” is true.

To test the identity of two strings the operators = and # are
used.

Searching a string
The procedure index receives as parameters two strings,
searches for the first occurrence of the second string as a sub-
string of the first and returns the index of the start of the sub-
string if found and zero otherwise.
proc index = (string A, B)int:
begin int M := 0, N: = upbB — 1;
if upbB > 0 then
for L to upbA — N while M = 0 do
if B= A[L:L + N]then M := L fi fi,
M
end;

A similar procedure char in string, to locate a given character
in a string, is described in the ALGOL 68 report, section
10.5.1.2(n).

ALGOL 68 operations on strings—conclusion

Many of the string operation declarations considered in the
preceding paragraphs belong to the standard-prelude of
ALGOL 68, i.e. they are built-in. Some of the built-in ALGOL
68-R operations do not satisfy the requirements of our model
and as we have seen some phrases although legal do not have
the desired effects. In some cases there are alternative and
perhaps better ways of achieving the desired results, particu-
larly in the case of variable length assignments to segments of
strings and of course nothing prevents us from declaring our

154

own string operators within each particular program. If we
wish to apply our own operations in several string processing
programs, or to enable others to use them, then they can be
implemented efficiently as a ‘library-prelude’, i.e. as an extension
to the standard-prelude.

String handling in BASIC

There is as yet no agreed standard for BASIC and the differ-
ences between various dialects are most apparent when we
consider the facilities for handling strings. A preliminary
specification for the language has‘been prepared (Bull and
Freeman, 1971) which conforms, with few exceptions, to
Dartmouth BASIC version six. In many implementations string
variables may be declared with a maximum length. The current
length of any string is returned by the LEN function. The
proposed standard provides a variety of string functions for
insertion, deletion and replacement of substrings. Also pro-
vided is a function POS(A S, B$, X) which is similar to our
index function but returns the index to the Xth occurrence of
BS in AS (0 if not found). The value of a segment consisting o
of the Xth through Yth characters of a string A $ is returned 2 5
by the function SEG$(AS, X, Y), whilst the substring of Yo
characters of A§ starting with the Xth is returned by SUB$ Q
(AS$,X,Y). Neither function returns addressability but the
functlon REP$(AS, BS, C$, X) is available for replacing the S S
Xth occurrence of B$ in A$ by CS. It is not clear from the =
preliminary specification whether REP$ performs ‘fixed length’ §
replacements, with truncation or appended spaces at the right 'Q;
as necessary, or ‘variable length’ replacements as in our model.
Concatenation of strings and ass1gnment of string expressions
are available as primitive operations in BASIC.

An interesting dialect of BASIC particularly with regard to
string handling is the Hewlett Packard 1mplementat10n 3
(1970). This provides a substring expression A$(I,J) which 3 3
returns a reference to the Ith through Jth characters of AS. 8
It can therefore appear on the left of string assignment=
instructions. The abbreviated form A $(I) refers to the Jth and
successive characters of A$. In assignments to a substring & g
AS(I, J) the source string is truncated or extended by spaces if =
necessary to the length J — I + 1 of A$(, J).

no- OILUSpEO

LUO

He/|

A FORTRAN string processor

Standard FORTRAN does not recognise objects of type string. =
There are in existence several extensions to FORTRAN to -
provide facilities for handling strings. Some are purely semantw<
extensions consisting of library routines for string declaration, € =
storage organisation and processing. Other extensions provide % i
additional syntax so that string operations may be expressed S
in a more natural form. The syntax extensions must then be ©
preprocessed to produce standard FORTRAN. Theu
FORTRAN implementation of our model for string processing = N
is at the semantic level only and consists of a package of hbrary N
functions and subroutines. The use of some of these routines is
illustrated by the text analysis program below. For comparison
an equivalent ALGOL 68 program is given in Appendix 1.

$JOB,A240 HOUSDEN

$LIB,STRINGS
MASTER TEXT ANALYSIS
WRITE(2,101)

101 FORMAT(14H1TEXT , ANALYSIS //))

C Declare a string variable ITEXT, maximum length 500
CALL DECLST(ITEXT,500)

C Declare a string IS of length 6 characters
CALL DECLST(IS,6)

C Assign the constant *“, ., ; —<" to IS

C

VAE/OQL/Z/EB

CALL COPYST(IS,ICONST(6,*, ., ; —<"))
Read a string and print it
CALL READST(ITEXT)
CALL WRITST(ITEXT)

The Computer Journal

CALL NEWLINE(2)
C Initialise counts and a flag, LASTSP
NS,NW,NC,LASTSP = 0

DO 20 | = 1, LENGTH(ITEXT)
C Search IS for Ith character of ITEXT
L =1 + INDEX(IS,ISUBST(ITEXT,LI))
GO TO (10, 12, 11, 20, 20, 20, 12), L
C Ith character of ITEXT not in IS
10 NC=NC+1
LASTSP = 1
GO TO 20
C full stop: increase sentence count
11 NS = NS + 1
C space or newline: increase word count
12 IF(LASTSP.EQ.0) GO TO 20
LASTSP = 0
NW = NW + 1
C ignore comma, hyphen and semicolon
20 CONTINUE
AVW = FLOAT(NW)/NS
AVC = FLOAT(NC)/NW
WRITE(2, 100) NS,NW,NC,AVYW,AVC
100 FORMAT(1HO, ‘NUMBER OF SENTENCES =’,l4//

1 1H,,'NUMBER OF WORDS ="14//
2 1H.,'NUMBER OF SYMBOLS ="14//
3 1H.,'AV. NUMBER OF WORDS /SENTENCE T=i;
4 1H,,'AV. NUMBER OF SYMBOLS/ WORD =’,
F8.2)
STOP
END
FINISH
$DATA

HOUSTON IS ON THE TEXAS GULF COAST. THE
CLIMATE IS SEMI-TROPICAL AND CONDUCIVE TO
OUTDOOR ACTIVITIES. HOUSTON IS THE SIXTH
LARGEST CITY IN THE UNITED STATES. IT IS ALSO
THE THIRD LARGEST SEAPORT.

In this system string input is normally terminated by a newline
but an asterisk immediately preceding the newline causes the
newline character to be stored and not recognised as the
terminator. The ALGOL 68 program in the Appendix uses a
similar input procedure. As one might expect, the FORTRAN
string processor is not particularly efficient compared with the
equivalent ALGOL 68 program.

* * ok k X

Concluding remarks

The principle features of our model for string handling are first
the variability of length of both strings and segments of strings
and second the addressability of segments of strings. The
importance of variability of length of a string segment under
string operations is debatable and it is not surprising perhaps
that few implementations distinguish clearly between strings
and rows or vectors of characters. Most disturbing is the dis-
parity between implementations of assignments to segments of
strings. In most languages it is a simple matter to write a suite
of subroutines for string processing as defined by our model but
equivalent syntactic extensions would be more elegant. Of the
systems considered only ALGOL 68 allows the user to define
his own string operators and even with this facility we were
unable to express S(M:N) in a simple form suitable for use in
string expressions and assignations.

References

Appendix 1 An example string processmg
program in ALGOL 68
Text Analysis
begin
comment define concatenation operator + comment;
op + = (string A, B) string:
begin int m = upbA, n = upbB; [1:m + n]char a;
if m > 0 then s[1:m] := A fi,
ifn>O0thens[m + 1:m + n] := Bfi,
s
end;
comment long string input procedure comment ;
proc read string = string:
begin string ss : = “”, s;
while read((s,newline)); ss := ss + s; ss[upbss] = “*”
do ss[upbss] := “«"’;
sS
end;

comment procedure to output a long string comment;
proc write string = (string s):
begin for i to upb s do
if s[i] = “«” then print(newline) else
print(s[i]) fi
end;
comment procedure to search a string comment;
proc index = (string a, b) int:
beginint m :=0,n: =upb b — 1;
if upb b > O then
for k to upb @ — n while m = 0 do
ifb=alk:k + n]thenm :=kfi
fi;
m
end;
string s;
intns :=0,nw :=0,nc:=0, lastsp := 0;
s := read string; write string (s); print((newline, newline));
for i to upbs do
begin
case index(“, ., ; — <7, s[i]) + 1
in goto L10, goto L12, goto L11, goto L20,
goto 120, goto L20, goto L12
esac;
L10; nc plus 1; lastsp := 1; goto L20;
L11: nsplus 1;
L12: if lastsp # O then
lastsp := 0; nw plus 1 fi;

20z udy 61 U0 188nB AQ LZ1L1/€/0S L/2/81/51014e/|ufoo/W0d"dno"oIepED.//:SARY W) PAPEo|umMoQ

L20: skip

end;

print

(“NUMBER OF SENTENCES =" ,ns,newline,newline,
“NUMBER OF WORDS =" ,nw,newline,newline,
“NUMBER OF SYMBOLS ="",nc,newline,newline,

“AV. NUMBER OF WORDS/SENTENCE =",
nw/ns,newline,newline,
“AV. NUMBER OF SYMBOLS/WORD =",
nc/nw,newline))
end
finish

BARNETT, M. P. (1969). Computer Programming in English, Harcourt Brace and World.
BuLL, G. M., and FreeMAN, W. (1971). BASIC—a preliminary specification, The Hatfield Polytechnic, Department of Computer Science,

Techmcal Memorandum No. 1.
CuUrrig, L. F. (1970).

Working Description of ALGOL 68-R, Royal Radar Establishment, Malvern, Memorandum No. 2660.

ELson, M. (1973). Concepts of Programming Languages, Science Research Associates.
FaBer, D. J., GriswoLp, R. E., and PoLONsKY, I. P. (1966). The SNOBOL-3 Programming Language, Bell System Technical Journal,

Vol. XLV, pp. 895-944.

GriswoLD, R. E., PoAGE, J. F., and PoLoNsky, I. P. (1969). The SNOBOL-4 Programming Language, Prentice-Hall.

Volume 18 Number 2

HEWLETT PACKARD (1970). 2000B: A Guide to Time Shared Basic, Hewlett Packard Software Publication HP 02000-90010.
Houspen, R. J. W., and Kusawa, R. T. (1971). EASNAP—an on-line system for Arts students, The Computer Bulletin, Vol. 15, No. 8,

pp. 295-299.

LiNDsEy, C. H., and VAN DER MEULEN, S. G. (1971). An informal introduction to ALGOL 68, North Holland.

MaAcLEeoD, L. A. (1970). SP/I—A FORTRAN integrated string processor, The Computer Journal, Vol. 13, No. 1, pp. 255-260.
MILNER, R. (1968). String handling in ALGOL, The Computer Journal, Vol. 10, No. 4, pp. 321-324.

SAMMET, J. E. (1969). Programming Languages: History and Fundamentals, Prentice-Hall.

VAN WUNGAARDEN, A. (Ed.) et al. (1969).

Report on the algorithmic language ALGOL 68. Numerische Mathematik, Vol. 14, pp. 79-218.

‘WooDWARD, P. M., and BonD, S. G. (1972). ALGOL 68-R Users Guide, London: HMSO.
YNGVE, V. H. (1962). COMIT as an IR Language, CACM, Vol. 5, pp. 19-28.

Books received

"We give below a list of new books received recently from publishers.
Reviews of many of these may be expected to appear in future
iissues of The Computer Journal or Computer Bulletin.

A Technical Index of Interactive Information Systems, National
Bureau of Standards technical note 819

Cost-Benefit Analysis of Computer Graphics Systems, by Ira W.
Cotton, 1974; 47 pages National Bureau of Standards technical note
826

Computer Representation and Manipulation of Chemical Informa-
tion, edited by W. T. Wipke, S. R. Heller, R. J. Feldman and E.
Hyde, 1974; 328 pages, John Wiley £8-:00

Computer-based information services in science and technology—
principles and techniques, by M. F. Lynch, 1974; 96 pages, Peter
Peregrinus Limited £3-65

156

Design Methods for Digital Systems, by J. Chinal, translated by
A. Preston and A. Sumner, 1973; 506 pages, Springer-Verlag
US$36.10

Introduction to Switching Theory and Logical Design, by F. J. Hill
and G. R. Peterson, second edition, 1974; 596 pages, John Wiley
£8-50

Applied Finite Mathematics, by H. Anton and B. Kolman, 1974
475 pages, Academic Press Inc US$10.95

Numerical Methods, by G. Dahlquist and A. Bjorck translated by
N. Anderson, 1974; 573 pages, Prentice-Hall

Decisions, Strategies and New Ventures, by W. G. Byrnes and B. K.2
Chesterton, 1973; 195 pages, George Allen and Unwin antedo
£4-25

Digital Electronic Circuits and Systems, by Noel M. Morris, 1974 =
143 pages, Macmillan £2-25

M

“papeo]

20z Iudy 61 U0 159nB AQ 2ZL1/€/0G L/2/8L/3I0MME/|ufw00/ W00 dno-ojwapeoe)/:sd

The Computer Journal

