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A scatter table search technique incorporating methods of the quadratic quotient search as well as
the full table quadratic search is presented. The advantages of both techniques are retained. For
table sizes a prime of the form 4/ + 3, the full table quadratic quotient search can access the entire
scatter table via a computationally simple technique. Both primary and secondary clustering are
avoided as well. Simulation results are presented for seve!-al of the search techniques.
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1. Introduction

Scatter storage is a well-known technique for implementing
tables which allow rapid insertion, inspection, and deletion of
items in the table. Two aspects of scatter storage are central
here. First, there is the notion of transforming (scattering) the
item into an initial address within the table. Many methods are
available to do this; a common approach is to divide the item
by the size of the table and use the remainder as the relative
table address. Second, there is the choice of actions to be
followed in the event that at least two items have the same
initial address. These actions are referred to as search methods.
This paper presents a new search method which is referred to
as the full table quadratic quotient method, or as the FTQQ
method.

The current literature contains many search techniques
(Morris, 1968; Maurer, 1968; Bell, 1970; Bell and Kaman,
1970; Radke, 1970; Day, 1970; Hopgood and Davenport,
1972; Ecker, 1974) which represent substantial improvement
over the original scatter storage strategy (Dumey, 1956;
Peterson, 1957). One approach views the table as a directory.
Entries in the table are addresses of chains of items (stored
elsewhere in memory); each chain contains only those items
with the same initial table address. At the expense of additional
memory, this approach offers rapid insertion, inspection, and
deletion of items in the table (Morris, 1968). When additional
memory is not available, a significant improvement in the
performance of the scatter storage techniques is obtained using
quadratic search (Maurer, 1968). The quadratic search method
has been improved in several ways.

The first refinement is concerned with searches which follow
through identical (sub) sequences of addresses within the table.
In particular, those searches which begin at the same table
address and then follow through identical sequences of ad-
dresses within the table. This effect is referred to as secondary
clustering. One approach to avoiding this type of clustering is
presented in Bell (1970). The same ideas have been used in
conjunction with linear search to avoid secondary clustering
there as well (Bell and Kaman, 1970).

The second refinement is concerned with the fraction of the
table accessible during any particular search. It is possible to
modify the quadratic search in several ways such that the
fraction of the table accessible during any particular search is
changed from approximately 1/2 to 1. One approach is to use a
‘double’ quadratic search (Radke, 1970) and the technique
has been further refined in Day, (1970) to obtain a compu-
tationally simple algorithm for a full table quadratic search of
tables of size p where p is a prime of the form 4j + 3 for some
natural number j. Another approach to the quadratic search is
presented in Hopgood and Davenport (1972) which allows a
full table search for tables of size 2* for « > 1. A generalisation
of the quadratic search method is presented in Ecker (1974) and

upper and lower bounds for the search period are given as well.
Moreover, it is shown that for many table sizes other than a
prime, the entire table may be searched.

This paper is concerned with a scatter table search technique
which combines ideas of Bell, (1970); Bell and Kaman, (1970);
Radke, (1970); and Day, (1970) with quadratic search while =
retaining all the advantages of ancestors of the technique.
Simulation results are presented for several of the search
techniques.

2. The new search method

The full table quadratic quotient search method is presented as
two routines, SCATTER and RESOLVE. The routine
SCATTER is invoked knowing only the item for which a
search is to be conducted and determines the initial address for
the search. The routine RESOLVE is invoked as needed to
generate additional addresses to continue the search for the
item. The item is referred to as KEY and the table size is
referred to as SIZE which must be a prime of the form 4j + 3
where j is a natural number.

SCATTER:

Step 1. ADDRESS < KEY MOD SIZE
Q « (KEY/SIZE) MOD SIZE

Step 2. IF Q = 0 THEN
Q « IF ADDRESS = 0 THEN 1 ELSE ADDRESS

Step 3. INDEX « —Q * SIZE

RESOLVE:

Step 1. INDEX « INDEX + 2 x Q
IF INDEX = SIZE x Q THEN
‘all table addresses have been generated—set flag
accordingly’
Step 2. ADDRESS « (ADDRESS + |[INDEX])
MOD SIZE

3. Analysis

This section of the paper is devoted to demonstrating that (a)
the full table quadratic quotient search method does access the
entire table and (b) that the search method does avoid secondary
clustering. The investigation of secondary clustering shows
another interesting structural property of the set of sequences of
addresses generated by the method.

Let us begin by assuming that the table size is p, a prime of the
form 4j + 3 where j is a natural number and that Z, denotes
the integers mod p. It is apparent that the approach generates
a sequence of differences of addresses equivalent mod p to the
following sequence:

(P - 2)Q’ (p - 4)Qs .. SQa 3Q’ Q: Qa SQ: SQ
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The variable ABS(INDEX) generates this sequence exactly.
Thus, the function f:Z, x Z, x Z, - Z, specified as follows:

fG, 0, R) =
{R—Qi(i+l) ifo<i<g
R—Qqg+ 1)+ QG—q? ifg<i<p
where g = (p — 1)/2

yields the ith address generated by the technique for initial
address R and parameter Q (approximately a quotient). This
expression for f is obtained from an algebraic manipulation of
the difference sequence. By making suitable restrictions on f; it
is possible to obtain search techniques which are similar to
certain other previously mentioned searches.

Restrictions Reference
@@=1and 0<i<p Radke, 1970, Day, 1970
b)Qo=1 g<i<p Maurer, 1968
1<Q0<pg<i=sp Bell, 1970

To show that the search method accesses the entire table, we
verify the following.

Claim
If the table size p is a prime of the form 4k + 3 for some natural
number k, then the FTQQ search method generates all table
addresses.

This may be seen as follows. First, observe that any particular
sequence of addresses generated by the technique is equivalent
mod p to the following sequence.

R QsRﬁ+Q9R+4Qa’ﬁ+(q—l)2Q,
R + q%*Q

where R = R + ¢2Q, since the sequence of differences for this
sequence is identical to (1).

To substantiate the claim, it suffices to show that each of the
following lemmas hold.

1. If p is a prime then there does not ex1st distinct integers i and
j(© < i,j < q)such that R + i?Q = R + j*Q.

2.1f p is a prime of the form 4k + 3 for some natural number
k then.there does not exist integers i and j (0 < i < g and
0 < j < q) such that R — i2Q = R + j?0Q.

Once these are shown to hold, the full table quadratic quotient
search method will be seen to access the entire table since
(@) during the first ¢ + 1 accesses the addresses will all be
distinct by 1, (b) during the last g accesses the addresses will all
be distinct by 1 as well, and (c) there will be no duplication of
addresses in the first and last set of accesses by 2. The choice of
intervals for i and jin 2 is due to the way the term R is generated
by the search method. This may be seen in the specification of
f, where it is possible to advance an alternate (but equivalent
definition) of f; i.e.,

. _ JR— Qi+ 1) ifo<i<
f(l,Q’R)—{R_Qq(q+1)+Q(i—q)2 iqu;S; .

Since p is prime, the first lemma reduces to the following.

If p is a prime then there does not exist distinct integers i and
_1(0<z]<q)suchthatz = j2.

Assume not; then there exists distinct i and j as above such that
i2 = j2. Then i%> = j? is equivalent to (i + j)(i —j) = np for
some natural number 7 and this implies 7 is zero since p is not a
factor of either term on the left-hand side of the equation.
And we have a contradiction.

The second lemma reduces to the following.

If p is a prime of the form 4k + 3 for some natural number k
then there does not exist integers i and j (0 < i < g and
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0 < j < q) such that —i? = j2.
Assume not; then there exists distinct i and j as above such
that —i2 = j2. Then —i? = j?is equivalent toi? + j2 = np for
some integer n less than p because i < g andj < q. The follow-
ing number theoretic result is applicable here (Dumey, 1956).

The equation x> + y? = m has integer solutions for x and y
if, and only if, the canonical factorisation of m into prime
powers contains no factor p® with p of the form 4k + 3and e
odd.

Thus, if p is prime of the form 4k + 3, there are no distinct
integer solutions since ¢ = 1 in this case. Note that the case
i = j = n = 0is relevant to the previous comment concerning
the alternate definition of f.

Continuing the analysis of the FTQQ method, our attention is
directed toward clustering of addresses. Let us further assume
that S, is the set of 3-permutations of Z,, and that H,, is the
set of all sequences of addresses generated by the full table
quadratic quotient search. Observe that the cardinality of H,
is p(p — 1). We begin by giving a characterisation of the
elements of S,,.

Lemma

For every a = (a, b, ¢) in S, either

lL.a+c—-2b=0,0r

2. there exist integers i and ¢ such that
0<¢<pand
0<i<g—2orqg<i<p-—3with
a+c—2b=2¢and
b—a=2+1).

The lemma is proved by demonstrating that if i =¢g — 1, o

p — 2,orp — 1 (when ¢ > 0) then the element (a, b, c) cannotU

be in S,. Suppose (1) does not hold, i = ¢ — 1, and (a, b, ¢) is3

in S,. Then
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b—a=2yq
a+c—2b=2¢

from which it follows that @ = ¢, contradicting our assumptions
that (a, b, ¢) is in S,. Similar contradictions are reached 1f*°
z—p—-2orl—p— 1 is assumed.

The next step is to show that the number of 3-permutat10ns otJB
Z, produced by truncating elements of H, is exactly\
p(p — 1)(p — 2); that s, all 3-permutations of Z, are produccd\‘
by the search technique. Since at most p(p - D -2
3-permutations can be produced this way because of thecr
cardinality of H, it follows that every element of S, appears asQ
a subpattern in exactly one element of H,. Thus the secondaryfI>
clustering is avoided as it is in the quadratlc quotient searcho
method.

There are three cases to consider to show an arbltrary;(>
3-permutation of Z, to be a ‘subpattern’ of an element of H,2

e/ ulwoo/wo:

gL u

Let (a, b, ) be in S Then the following can be verified. B
1.Ifa + ¢ — 2b = O then let R
i=q-—1
Q=b—-a
R=a+&9@q—-1) .

2.Ifb—a=2(+1),9<j<p-—3anda+c—2b=2¢
then let

i

o . ,

R=a+&@+1)-¢—-9° .

3.fb—a=26(G+1),0<j<qg-—2anda+c—2b =2
then let

I Ill
m\d

J
a+ &G+ 1) .

1)

In all three cases
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Loading factor (A) (B) ©)

0-500 2:01 2:12 2-01
0-555 2-25 2-39 2:25
0-605 2-54 276 2-53
0-656 2:90 321 2-91
0-706 3-40 3-76 3-40
0-757 410 4-64 411
0-807 5-17 5-83 519
0-858 6-97 7-96 7-02
0-908 10-79 11-77 10-84
0-959 2370 24-35 23-66
0-984 58-35 58-75 58-40

A = full table quadratic quotient search

B = full table quadratic search (Day 1970)

C = full table linear quotient search (Bell and Kaman, 1970)
table size 991.

Fig. 1 Sample values of average search length

JG O R =a,
fi+1,0,R=b,
and fi+2,0,R)=c.

Thus each element of S, can be located in a suitable element of
H, and since the cardinality of the domain of f relative to
locating elements of S, in elements of H,, is p(p — 1)(p — 2)
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(Q = Ois not applicable; norisi = p — 1 orp — 2), it follows
that no element of T, can be located somewhere other than as
described above.

It follows from the above analysis that the period of the FTQQ
search method is always equal to the table size and the primary
and secondary clustering are avoided as well. In particular,
every 3-permutation appears in exactly one sequence of
addresses generated by the FTQQ search method.

4. Results
A lower bound on the average number of accesses to the table
required to insert another item into the table is approximately

given by
1/(1 — k/p) ,

where k is the number of items presently in the table and p is the
table size. The ratio k/p is referred to as the loading factor.
The simulation results, tabulated in Fig. 1, show the averages
achieved by search technique presented here are very close to
the lower bound (on the average). Results for two other full
table techniques are presented as well. Each entry in the right-5
most three columns of the table is the average number ofS
addresses generated to insert each of 20,000 keys into six§
different initial tables. The sample variance of the search length®
is smaller for the full table quadratic quotient search method =
than that for either the full table linear quotient or full table3
quadratic searches.
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