A new approach to the computation of the

Jardine-Sibson B, clusters
F. J. Rohlf

Department of Ecology and Evolution, State University of New York at Stony Brook,

Stony Brook, New York 11794, USA

A new approach to the computation of Jardine and Sibson’s (1968a) (fine) k-cluster method B is
described. The algorithm makes use of the fact that the set of dissimilarities which are invariant
under the By clustering transformation can be represented as an abstract graph. The proposed
algorithm for computing this graph obtains both the (weak) k-ultrametric dissimilarity matrix and

the k-clusters simultaneously.
(Received March 1972, revised March 1974)

This paper reports on a new approach to the computation of
Jardine and Sibson’s (1968a; 1968b) nonhierarchic stratified
cluster analysis methods B,. This type of cluster analysis has a
number of desirable mathematical properties (for example, it
uses only rank order information from the dissimilarity matrix
and the implied k-ultrametrics are continuous functions of the
input dissimilarities (Jardine and Sibson, 1971). However, it
should also be pointed out that other properties are considered
more important by other workers (e.g. Fisher and Van Ness,
1971). Method B, is the single linkage method; B, yields a
system of clusters in which clusters at a given level may over-
lap so as to have at most one object in common; in general
B, yields a system of clusters in which any pair of clusters can
have at most k — 1 objects in common at a given level. As one
increases k one obtains increasingly better fit between the
original dissimilarity matrix and the k-ultrametric dissimilarity
matrix implied by the results of the cluster analysis.

The presently available programs for the computation of B,
clusters are based upon algorithms which successively transform
the original dissimilarity matrix into a k-ultrametric matrix of
dissimilarities (B, represents an important special case for
which simpler techniques are well known). A simple procedure
for carrying out this transformation was described by Jardine
and Sibson (1968b). Itis based upon repetitive complete searches
of all possiblé sets of k + 2 objects (until no modifications can
be made). More complex procedures which eliminate much of
the redundant computations were published by Cole and
Wishart (1970). In addition a program by Dr. J. K. M. Moody
is described in Jardine and Sibson (1971, Appendix 3). A
disadvantage of these algorithms is that they yield the k-ultra-
metric dissimilarity matrix rather than information on cluster
membership. For this reason a separate and rather complex
program is needed to analyse the k-ultrametric matrix to isolate
all clusters at a specified threshold level of dissimilarity.
Algorithms for doing this are described by Cole and Wishart
(1970) and in Jardine and Sibson (1971, Appendix 5 based
upon the work of J. K. M. Moody and J. Hollis). The pro-
cedure described below has the advantage that the clusters at
each distinct threshold level can be found directly and can be
programmed quite easily in FORTRAN or any other higher
level language.

Relationship between B, and B,G

Jardine and Sibson (1971) have pointed out that it is useful to
view a cluster analysis as being a function which transforms the
original input dissimilarity coefficient, d;;, into a new output
dissimilarity coefficient, u;;, which has various properties
depending upon the type of cluster analysis employed. The
output dissimilarities represent the similarity among objects
implied by the results of the cluster analysis. If a hierarchical
clustering method is applied which yields nested clusters then
the output dissimilarities will satisfy the ultrametric inequality

164

u;; < max {uy, uj}
for all objects i, j, and k in the study. An example is shown in
Table 1. Jardine and Sibson (1968a) have proposed a generalis-
ation, B,, of the single linkage method in which the output
dissimilarities satisfy the (weak) k-ultrametric inequality.

u;; < max {u,, : xe Sv {i,j}, ye S}
where S is a completely connected set of objects of size k and=

i, j, x, and y, are any objects in the study (Jardine and Sibson,S
1971). Examples for k = 2 and 3 are given in Table 2. ForZ

apeojumoq

Table 1 Dissimilarities between 10 hypothetical objects.g’
Original dissimilarity matrix (above the diagonal) and>-
ultrametric dissimilarities (below the diagonal) re-36.
sulting from the application of clustering method B,.0
Asterisks identify the invariant elements discussed in°

the text. g

e

A B C D E F G H I I g

A 0 4 22 18 25 22 1 14 23 252
B 3 0 21 16 23 15 3 8 19 32¢
C 13 13 0 2 6 9 24 26 22 342
D 13 13 2 0 7 10 21 24 21 44-
E 13 13 6* 6 0 12 26 29 23 46=
F 13 13 9 9 9 0 20 17 11 343
G * 3* 13 13 13 13 0 5 21 225
H 5 5 13 13 13 13 5 0 13 245
I 13 13 11 11 11 11* 13 13* 0 23c
J 2 22 2 2 2 2 2¢ 2 2 0§

R

Table 2 (weak)2-ultrametric dissimilarities (above the diagonal}
resulting from the application of clustering method B;:
to the data in Table 1 and (weak) 3-ultrametric dis%3
similarities (below the diagonal) resulting from the
application of clustering method B;. Asterisks identify
the invariant elements.

A B C D E F G H I ]

0 4 17 17 17 1 1* 8 17 23

44 0 16 16* 16 15+ 3* 8 17 23
21 21 O 2« 6* 9% 17 17 17 23
18* 16* 2* O 7¢* 10 17 17 17 23
21 21 64 7* 0 10 17 17 17 23
20 15%* 9% 10* 12* O 17 17* 11* 23

1* 3* 21 20 21 20* O 5% 17 22*
14 g% 21 20 21 17 5% 0 13* 23
20 19* 21 20 21 11* 20 13* O 23*
24 24 24 24 24 24 22% 24* 23* O

“-mQmugawy>

The Computer Journal



Fig. 1 Minimum spanning tree (solid lines) and the B,G graph (solid
and dashed lines) for the data in Table 1. Edges correspond to
the elements of the U1 and Uz matrices in Tables 1 and 2
which are marked with asterisks (¥).

Fig. 2 BsG graph for the data in Table 1. Edges correspond to the

elements of the Us matrix in Table 2 which are marked with
asterisks (*). Dashed lines indicate the edges which must be
added to B:2G to obtain the B3G.

k = 1 this reduces to the ordinary ultrametric inequality.

Since the B, methods are examples of what Jardine and Sibson
(1971) call subdominant methods the output dissimilarities
must not only satisfy the (weak) k-ultrametric inequality but
must also be as large as possible subject to the restriction that
uy; < dy; (i.e. the elements which are invariant under the B,
clustering transformation) contains sufficient information to
determine B, clusters and hence all of the other u;;. These
invariant elements are indicated by asterisks in Table 1 and 2.
As shown in Rohlf (1974) it is convenient to define an abstract
graph, B,G, whose vertices consist of the objects in the study
and edges connect a pair of vertices i and jif and only if u;; =d;;.
Edge e;; is of length u;;. The B,G graphs are at least k-connected.
A graph is said to be k-connected if every pair of distinct ver-
tices i and j are joined by at least k chains which have no com-
mon vertices (except, of course, for i and j). A chain is the set
of edges one traverses in moving from one vertex to another in
the graph (Busacker and Saaty, 1965). There can be, however,
many additional edges present beyond what would be required
for the graph to be k-connected. It appears to be difficult to
characterise the graph in general in any way other than that it
represents the set of edges corresponding to the dissimilarities
invariant under the B, clustering transformation.

If k = 1 and the d;; are distinct the resulting graph B,G is the
minimum spanning tree MST, (Fig. 1, solid line). This is, of
course, not a very efficient method for its computation. If the
d;; are not distinct then there may be more than one MST. In
such a case B,G would be the union of all the possible MST’s.

For k > 2 the graph is more difficult to characterise. A not-
able feature is the presence of what may be called k-chains.
These can be defined as an ordered progression of completely
connected sets of size k + 1, ‘adjacent’ pairs of which have k
vertices in common. For k = 1 this is the usual notion of a
chain. In Fig. 1 (solid and dashed lines) we have the 2-chain
progression: (4, G, B), (G, B, H), (B, H, F), (H, F,I) and in
Fig. 2 we have, for example, the 3-chain progression:
(4,G, B, H), (G,B,H,F), (B,H,F,I). Unfortunately (from
the point of view of simplicity) there may be additional edges
present in the graphs and not all vertices may be part of a
k-chain. However, even if they are not (e.g. object J) they will
have at least k connections to other vertices so that the graph
will still be k-connected. The graph as a whole has the property
that just enough of the shortest edges from each vertex are
included so as to assure that if the following B, cluster rules are
applied one will end up with a single set containing all of the
objects (ties can, of course, result in many additional edges).

1. All objects which are a part of the same CL-set (completely
linked set) are defined to be in the same set.

Volume 18 Number 2

2

5.

)
. All objects which are a part of the same k-chain are defined to%
be in the same set (any unconnected pairs of vertices in the setg

are considered to be connected from this point on). g

(o}

. All objects which have at least k connections to objects in thez
same set are defined to belong to that set (with unconnected=
pairs of vertices connected). z
. Any sets which have at least k objects in common can be%
merged to form a single set (this new set is made a com-Q
pletely connected set by connecting any unconnected pairs ofo
vertices). 2

N

dhool

Steps 1 to 4 are to be applied iteratively until no furthe
changes can be made in the membership of the sets.

woo

Each edge in these graphs correspond to a clustering level in3
the k-dendrogram at which two or more objects or clusterss.
fuse. Gower and Ross (1969) have pointed out the relationship%
between single linkage cluster analysis and the MST (i.e2
between B, and B,G). They show that given the MST one cam®
easily produce the clusters obtained by single linkage cluster®

al

nalysis. Rohlf (1973) presented an efficient technique fors

simultaneously producing a single linkage cluster analysis®

(including a dendrogram) while computing the MST. This worlé’
led to an investigation of the possibilities of computing B,G5
directly and either at the same time or subsequently computin,

the B, clusters and (weak) k-ultrametric dissimilarities. Rohlf
(1974) discusses a set of simplified rules for obtaining the Bé
clusters given only B,G as well as examples of their applicaﬁon§

N

[¢e]

Algorithms ~
A number of possible algorithms for computing MST’s weré&.
investigated for possible generalisation into procedures fors
finding B,G’s. It does not appear to be possible to generalise
Prim’s (1957) algorithm for computing a MST into a more
general algorithm for computing B,G even in the case where
there are no ties. The obvious generalisation of this algorithm
would seem to be: (at a given step in the computation) to add
to the fragment that vertex whose kth smallest dissimilarity to
any vertex already in the fragment is the smallest. This yields
graphs in which all vertices either belong to k-chains or have k
connections to other vertices but they do not always match
B,G nor are they always unique for a given set of data. Itis a
rapid algorithm so that this approach may be useful from
problems involving large .numbers of objects in which an
approximate solution may be satisfactory.

The algorithms of Kruskal (1956) can, however, be easily
generalised. One method (his ‘construction A’) is—perform the
following step as many times as possible: among the edges of
the graph not yet chosen, select the shortest edge which does



not make the graph more than simply connected (i.e. does not
connect objects already in the same single link cluster). This can
be generalised to—perform the following steps as many times
as possible among the edges of the graph not yet chosen: select
the shortest edge which does not connect objects already in the
same B, cluster. In actually performing this algorithm there
are two basic computational tasks. The first is of sorting the
dissimilarity values so that one can process them one at a time
in order of increasing dissimilarity. Since dissimilarity matrices
can be quite large it is important that an efficient sorting
procedure be used. Thus the rather commonly used ‘bubble
sort’ is simply too inefficient to be considered. The second
problem is that of determining when a dissimilarity value
would correspond to an edge which enables one to merge sets
using the rules given above. If (as edges are accepted) one builds
up ML-sets (maximal CL-sets) and merges them whenever two
or more such sets have k or more vertices in common, then one
can reject an edge whenever it connects two vertices which
were already in the same set. This algorithm has the advantage
that the B, clusters are explicitly computed. The entries in the
k-ultrametric matrix can also be computed with a small amount
of additional effort. While feasible this algorithm requires an
efficient set of routines to create, delete, merge, and search list
structures. The computational effort goes up rapidly with both
nand k.

Other algorithms were investigated to avoid the time consum-
ing operations of finding all ML-sets (which places a large
demand upon the list structure manipulation routines). In the
following algorithm less use is made of list structures so that it
is sufficient to implement them using threaded lists in
FORTRAN. This algorithm (as the previous one) processes
edges one at a time from the smallest dissimilarity to the largest.
The determination of whether an edge belongs to B,G is made
more efficient by creating the k-ultrametric matrix, U, as we go
along. Edge e;; belongs to B,G if and only if u;; has not yet
been filled in. The updating procedure for the U-matrix
requires iterative searches as before but only for the relatively
few edges which actually belong to B,G. Thus most elements
of the input dissimilarity matrix can quickly be skipped over
(this is also an important feature of the Cole and Wishart
(1970) algorithm).

The proposed algorithm is as follows:

Step 1

Clear the array which will be used to contain the final (weak)
k-ultrametric metrix U, and the vector keeping track of the
degree of each vertex in the graph implied by the U-matrix
(which is not the same as B,G since U contains all of the implied
edges). At this point the input dissimilarity matrix must have
been sorted so that one can obtain the dissimilarities in order
from smallest to largest. Clear lists L and M (lists of sets).

Step 2

Find the next input dissimilarity, d;; whose corresponding
element in the U-matrix, u;;, has not been filled in. Edge i~/
(of length d;;) is added to B,G. u;; is set equal to d;j, the set
{i,j} is added to L, and we proceed to Step 3.

Step 3
Delete the set at the top of list L and store it in C. Let NC equal

the size of set C.

Step 4

Search the U-matrix to determine the By clusters. ,

(@) If NC < k, then search for objects ¥ connected to all
members of C for which the set CuU V & a cluster in M.
If m > 2, objects V;, are found then add to L the sets C U {V;}
for i = 2,..., m. Add the first object found, V;, to C. If at
least one ML-set was found go to Step 4, otherwise go to

166

Step 5 Note if NC + m < k then further processing can
result in the recognition of new clusters but no changes are
possible in the U-matrix.

(b) Else search for objects connected to at least k members of C.
Add them to C and update U. If NC now equals n processing
is complete, STOP. If k£ > 2 add to list L sets consisting of the
two objects associated with each edge being updated in U and
continue the search until no further additions can be made,
then go to Step 5.

Step 5
Save Cin M unless C is a subset of a set in M. If L is not empty
delete from L any sets of size >k which are subsets of C.

Step 6

Go to Step 3 if L is not empty. Otherwise the current clusters
(in M) can be printed. This output can be rather large if n and k
are not small. Go to Step 2 for the next d;;.

At completion U will be completely filled in and will satisfy the
(weak) k-ultrametric inequality. The algorithm is similar to
Jardine and Sibson’s (1968a, p. 476) suggested procedure for
finding B,-clusters by hand for small numbers of objects. Their
procedure was to draw a graph whose vertices are the objects
and whose edges join just those pairs of objects having dis-
similarities <h. All ML-sets are then found. If two such sets
have >k vertices in common then the two sets are merged and

|w)
o]
=
2
o
o
Q
@
=
o
3

=
f=o

further edges are drawn so as to make the resultant set of%

vertices completely linked. ML-sets are redetermined and the
process of merging is iterated until no further changes can be
made. The resultant ML-sets are the B,-clusters at level 4 and
all pairs of vertices are connected whose (weak) k-ultrametrie

g
=
o
Q
O
Q.
o
3

,(_3-
o

dissimilarity is <h. The proposed algorithm performs theses

operations in a stepwise manner for each distinct dissimilarity

level starting from the smallest. This method is practical if oneZ
makes efficient use of the results obtained in previous steps.

For large ¢ and small k no computation is necessary for most
levels. Only at the critical ‘splitting levels’ (which correspond
to the edges in B,G) does one actually need to carry out
operations like those described above. .

At the lowest distinct threshold, ko, corresponding to the
smallest inter-object dissimilarity, d;;, we set u;; = d;;. At this
point there is only a single cluster containing objects i and j
and B,G consists of a single edge connecting vertices i and j.
This is obvious since this set is the largest (and the only)

Q

o

2
Q

o

3
2
=
QO

=
Q
@

2
=
(o]
g
N
I\
=
(o]
=
=
w
b
N
=
(o]
o

ML-set at this threshold level and u;; must be the largest=

dissimilarity <d;; (by the subdominance property).

Assuming the U-matrix and the B,G are correct at an arbitrary
threshold level h,, let h, = h, + & such that a single additional
dissimilarity, d,;, is now less than or equal to h,. Whether or

not the edge i — jis added to B,G depends upon the state of thec

i, j element of the U-matrix.

If u;; has already been defined, then objects i and j must
already belong to the same cluster at level 4. Thus no additional
changes need to be made to the U-matrix at level k,. In B,
cluster analysis objects in the same cluster at level 4, must also
be in the same cluster at level /,. Edge i — j need not be added
to B,G since the connection between i and j must be implied
by the other edges (we assumed B,G was correct at level A,).
Thus all d;; for which the corresponding u;; are already
defined are ignored in Step 2.

If U;; has not yet been defined then it is now set equal to d;;
(since u;; must be <d;; by the subdominance property of B,)
and the edge e;; is added to B,G. We must now determine
whether additional changes must be made to the U-matrix as
well as the changes in cluster memberships. No further changes
need be made to B,G, however. Any further changes to be
made in the U-matrix are a consequence of the (weak) k-tran-
sitivity condition. That is, all elements u, will now be set

The Computer Journal

an

(2]

—
o
S
N

[¢e]

0¢ |Hay

N
=



equal to d;; if and only if two presently unconnected objects
a and b (i.e. u, is presently undefined) are completely con-
nected to a completely connected set of size >k. Each time an
element of the U-matrix is defined this changes the ML-sets
so that additional changes may become possible. Each such
u, that is defined corresponds to two objects a and b being
placed together in the same cluster for the first time by the
merging of two B clusters. Hence all new clusters at level &,
can be found by determining the clusters ML-sets for those
pairs of objects corresponding to the changed elements of U.
Due to the amount of effort required to determine all ML-sets
at a given threshold level it is useful to note that all new
ML-sets at the given threshold level k, = d;; must contain
either objects i and j or some other pair of objects which are
connected in U for the first time at level 4, (any other pairs are
either already in the same cluster or not yet in the same cluster).
Note that if k < 2 then only a single cluster is formed at each
level which must obviously contain both objects i and j. For
k = 1 this is true since the only criterion for cluster membership
is that the set be connected. For k = 2 it is true since a new
cluster can only be formed if a new edge is added so that a
larger ML-set can be found. But a new edge can only be added
by the application of the (weak) k-transitivity condition and
each edge must, of course, connect two objects. Thus any new
ML-sets will be merged since they must have at least two
objects in common. This means that a complete determination
of all ML-sets defined by the connections in the U-matrix is not
necessary at each distinct threshold level 4. The procedure used
in the algorithm is to define a list, L, of sets of objects for which
ML-sets must be determined. Initially this list contains only
{i,j}. For k > 3 every pair of objects (a, b) for which u,, is
updated at the current level A is added to this list [Step 4(a)].
As each pair is checked it is deleted from the list [Step 3].
Eventually no further changes to U are possible and L becomes
empty [Step 6] and the processing is complete at the current
threshold level.

Let (i, j) be the next set of objects in the list, L, described above.
The procedure for finding ML-sets is based on the following:

If vertices i or j are of degree <k or i and j are both of degree k
(as defined by the connections in the U-matrix), then i and j
cannot both belong to an ML-set of size >k + 1 since each
object in an ML set of size m must have m —1 connections.
No further changes to U are then possible at level A,. It is
possible that some clusters should be merged but such mergers
cannot result in any change to U. This must be true according
to the definition of the (weak) k transitivity condition. Any
new clusters formed must contain both objects i and j. Since
i and j cannot have been members of the same cluster pre-
viously (since they were unconnected) the new clusters to be
found must be the set of ML-sets which contain both i and j
at the current threshold level. These can be found rather simply
by the following procedure (see Step 4(a)): place objects i and j
in a set C and delete this set from L. Find all objects which are
completely connected to all objects in set C. For each of these
objects form a new set consisting of that object and all of the
objects in set C. Store each of these sets in list L (unless it is a
subset of a previously found cluster). If no such objects are
found then store set C in M (the list of clusters). Repeat this
process for each of the sets in L until L is empty. The results in
M are the ML-sets (clusters) at the current level which contain
both i and j.

If i or j is of degree >k and neither is of degree <k then
changes to the U-matrix are possible but only if i and j actually
belong to at least one ML-set of size k + 1. Some (but not all)
of the new clusters need not contain either objects i or j. At
this point one must consider locating all ML-sets and merging
any with >k vertices (in common with the resultant set made a
maximal complete subgraph by making the necessary changes
to the U-matrix) iteratively until no further changes are possible

Volume 18 Number 2

as described by Jardine and Sibson (1968b). The procedure
given above for finding all ML-sets could be used here also.
One need only add a procedure for merging all such sets which
have k or more vertices in common. Whenever two clusters
are merged elements of the U-matrix must be updated for all
pairs of objects which are placed into the same cluster. The
actual procedure used for finding and merging ML-sets is as
follows:

The procedure described above to find ML-sets involving
objects i and j is used initially [Step 4(a)] but once a set C is of
size k (always the case if k < 2) the rules can be modified
[Step 4(b)]. Any ML-sets which need to be merged with C can
be found by simply adding to C all objects which have at least
k-connections to the objects presently in set C. When an
object, a, is added to this set any object, b, in the set to which the
new object is not already connected is now connected by
setting u,, equal to d;;. This procedure works since if objects i
and j belong to an ML-set, C, of size >k +1 and if there exists
an ML-set B to which it should be merged, then there must
exist at least k objects in B each of which has at least & con-
nections to the objects in C. The remaining (if any) objectsy
in B must (by definition) each have at least k connections to3
these vertices belonging to both B and C. Thus the iterativeS
procedure [Step 4(b)] of adding vertices to C which have at§
least k connections to objects presently in C will always=
result in the proper merging of sets B and C. If i and j belong to=
more than one ML set then this process must be performed forZ
each (the order makes no difference). It is computationally?
important to note that these steps need not be carried out ong
any set of size >k if it is a subset of a set resulting from the§
application above steps to a previously found ML-set since3.
it would result in the same final ML-set [Step 5]. If theres
exists an ML-set D which has fewer than k objects in commonS
with C then none of the objects in D (other than those whichS
belong to both C and D) can have at least k connections to thes
objects in C. Thus the algorithm will correctly fail to merge sets§
Cand D. 2

If all the dissimilarity values are not distinct then one must2
modify Step 2 in the algorithm so that if one finds a tie then ones
tests each of the edges to determine whether the correspondinge
u;; entries have been defined. If they have, then these edges are™
ignored. If more than one edge remains, then they are all added®
to B,G and to list L so that Steps 3 to 5 can be carried out for%
each edge (the order is irrelevant). The clusters formed at thisg
level must be accumulated until all of the tied edges are pro-2
cessed at which point the maximal clusters can be printed.

01senb A

Discussion
The proposed algorithm is sufficiently complicated that”
problems were encountered verifying its correctness. As a®
partial check the program was tested against the simpler butS
less efficient method of searching all sets of size k + 2 des+v
cribed by Jardine and Sibson (1968a) for a large number o@

Table 3 Average CPU time (in min. for an IBM 370/155) for
various combinations of n» (number of objects) and k.
The time to read and/or generate the dissimilarity
coefficients has been excluded.

k
1 2 3 4 5

20 | 00025 0-0030 0-019 0-022 0-027
40 | 0013 0-016 0-24 0-26 0-26
n 60 | 0033 0-044 1-15 1-13 1-21
80 | 0-084 0-095 31 31 32
100 | 016 0-19 7-1 72 73

167



random matrices. In all cases the resulting U-matrices were
identical.

It is now feasible to consider more extensive empirical testing
of the usefulness of the B, cluster techniques. Previously
available algorithms were limited to about 60 objects due to the
amount of computation involved for k > 2. Cole and Wishart’s
(1970) improved algorithm required 18 minutes to compute
only the U-matrix for the sequence k = 1,2,...,5 for 35
objects on an IBM 360/44..The present technique required
only 0-5 minutes to compute both the U-matrix and the clusters
on an IBM 370/155 (average for random matrices with no ties).
It is difficult to realistically compare times on different com-
puters, but the ratio of speeds is less than 36 to 1. Table 3
furnishes average computational time (on an IBM 370/155)
as a function of n for k = 1, 2, ..., 5. The large difference in
time for k = 2 and k = 3 is due to the fact that for k > 2 a
much larger number of sets must be tested as a result of going
through Step 4(a). It should be emphasised that for the special
case of k = 1 other algorithms are much more efficient. The
fastest appears to be the method given in Rohlf (1973) which
also produces B,G (the minimum spanning tree) at the same
time. The SLINK program of Sibson (1973) is only half as
fast but may be useful if the matrix is so large that it must be
kept on a sequential file. More efficient programs for other
particular values of k can undoubtedly also be written.

As pointed out by Rohlf (1974), the fact that the program can
output clusters as an automatic byproduct of the algorithm to

References

find B,G and U is a convenience but it is not essential to the
application of the method. For large n the By clusters can be
very complex unless £ = 1 or 2. One may, therefore, not wish
to attempt to construct a k-dendrogram. One can either report
only those B, clusters which are particularly distinct (large
gaps) or depict the results by drawing in the edges in the B,G
on a principal components or (preferably) a non-metric
multidimensional scaling analysis plot of the » objects. If the
lengths of the edges are given then the clusters at any threshold
level can usually be found quite easily by using the rules for
determining cluster membership given above and in Rohlf
(1974).

Acknowledgements
This work was supported in part by a grant GB-20496 (from

"The National Science Foundation). This paper is contribution

number 52 of the program in Ecology and Evolution at the
State University of New York at Stony Brook. Dr. J. S. Farris
read the manuscript and made a number of suggestions which
improved the efficiency of the program. Drs. N. Jardine and
R. Sibson criticised various versions of the manuscript which
stimulated its development to its present stage. The respon-
sibility for any remaining errors rests, of course, with the author.
A copy of the computer program (written in FORTRAN IV)
is available upon request, both as an independent program and
as part of the NTSYS system of programs.

BUSACKER, R. G., and SAATY, T. L. (1965). Finite graphs and networks, McGraw-Hill, New York, 294 pages.
CoOLE, A. J., and WisHART, D. (1970). An improved algorithm for the Jardine-Sibson method of generating overlapping clusters, The

Computer Journal, Vol. 13, pp. 156-163.
FISHER, L., and VAN NEss, J. W. (1971).

Admissible clustering procedures, Biometrika, Vol. 58, pp. 91-104.

GOWER, J. C., and Ross, G. J. S. (1969). Minimum spanning trees and single linkage cluster analysis, Applied Statistics, Vol. 18, pp. 54-64
JARDINE, N., and SiBsoN, R. (1968a). A model for taxonomy, Math. Biosciences, Vol. 2, pp. 465-482.
JarDINE, N., and SiBsoN, R. (1968b). The construction of hierarchic and non-hierarchic classifications, The Computer Journal, Vol. 11,

pp. 177-184.

JARDINE, N., and SiBsoN, R. (1971). Mathematical taxonomy, Wiley, New York, 286 pages. '
KRUSKAL, J. B. (1956).. On the shortest spanning subtree of a graph and the travelling salesman problem, Proc. Am. Math. Soc., Vol. 7,

pp. 48-50.

PriM, R. C. (1957). Shortest connection networks and some generalizations, Bell System Technical Journal, Vol. 36, pp. 1389-1401.
RouLF, F. J. (1973). Hierarchical clustering using the minimum spanning tree, The Computer Journal, Vol. 16, pp. 93-95.
Routr, F. J. (1974). Graphs implied by the Jardine-Sibson By, overlapping clustering methods, Journal American Statistical Association, Vol.

69, pp. 705-710.

SissoN, R. (1973). SLINK: an optimally efficient algorithm for the single-link cluster, The Computer Journal, Vol. 16, pp. 30-34.

168

The Computer Journal

202 udy 61 U0 1s8n6 AQ 091 2€/491/2/81/81014e/|ufL0d/W0d"dNO"oILLSPEDE//:SARY W) PAPEOUMOQ



