Correspondence

To the Editor
The Computer Journal

Sir

In a recent article in this Journal (Vol. 17, No. 2) Presser and Benson
imply that ‘arithmetic expression in logical IF’ and ‘illegal statement
label in arithmetic IF° should both be detectable error types in
FORTRAN. However, the mistaken inclusion of an arithmetic
expression in a logical IF statement, for example IF(A — B)GOTO 10,
transforms that statement into an arithmetic IF statement with an
error of the form ‘illegal statement label in arithmetic IF’. No
compiler could be expected to determine which of the two mistakes
the programmer had actually made, but the latter diagnostic message
might be expected.

In the same way the statement IF(A . EQ . B)10, 20, 30 for example
would probably give rise to the diagnostic message ‘illegal statement
following logical IF’ rather than ‘logical expression in arithmetic IF’,
but Presser and Benson do not explicitly consider this particular case.

Yours faithfully,
S. E. WaALLIS
Division of Computing
Thames Polytechnic
Wellington Street
London SE18 6PF
22 November 1974

To the Editor
The Computer Journal

Sir

As one who learnt PL/1 before any Algol, and who is now deeply
involved in teaching Algol 68, I should like to comment on S. H.
Valentine’s excellent comparison of these two languages.

The default processes in PL/1 are so obscure that they often defeat
sophisticated programming; practically anything compiles and
practically nothing runs as expected. Most PL/1 programs really
seem to be FORTRAN or COBOL (perhaps this is a plus?).

The conclusion of the article contradicts itself in stating that
Algol 68 looks well in publications, but is harder to read than PL/1.
Bold and ordinary type are much easier to read than endless capitals.

Finally, the Revised Report has been available for some time, and it
is a pity that the examples were not taken from it.

Yours faithfully,
A. LEARNER
Mathematical Sciences
Queen Mary College
University of London
London E1 4NS
26 November 1974

To the Editor
The Computer Journal

Sir

We sympathise with Mr. H. N. Coates’ call for more business papers
to be submitted to The Computer Journal. In the same issue as Mr.
Coates’ letter (Vol. 17, No. 1, Februarv 1974) appeared Algorithm
81, Dendrogram Plot. Although, as we have since discovered, in the
biological world this is a familiar topic, it was completely foreign
to us. However we were able to recognise the pictures and Dendro-
grams are what we would call ‘Family trees.” It seems that the
routines we have developed may be of use in Numerical Taxonomy.
How often is lack of interest caused by inability to interpret another

discipline’s terminology ? This then is an industrial application of a
similar technique to Dendrogram plots.

FAMILY TREES OF COMPONENT PART NUMBERS
At Rolls-Royce (1971) Limited Derby we are generating every week
several hundred new part numbers or new applications of existing
parts for our gas turbine engines. Certain components undergo
many changes over the period of several years that it takes to develop .
the engine. Each change is instructed as the deletion or addition of
features to a previously designed part number e.g. by altering the
angle of incidence of a blade part number A, we create part number
B. Tokeep track of the features embodied in every part number of the
high change rate components we draw ‘Family Trees’ of the designg
progression. s
In November 1972 we implemented a system on an IBM 1130 toz
plot family trees of components from cards in random order con-§
taining the following data:

New Part Number, Modification Number, Replaced Part Number.g

The method adopted was the result of only a short analysis but=
proved to be sufficient as only minor modifications have been intro-3
duced. One additional requirement arose that caused a new routines
to be inserted in the program, this requirement was that where a3
modification is applied to more than one previous part number then®
the new part numbers are to appear in a line i.e. part number siblings%
to be at the same level. ¢
PROCESS

Read cards into table A.

} P

Routine 1 Find base part number (level 1)
i.e. part without a replaced part number.

Routine 2 From the base part number compute the
levels and numbers of sons for each
part number.
Insert these into tables B and C.

17%9/88L/Z/8L/GIO!UE/IU[LUOO/LUOO'dHO

2
7]
a
S
8
<

Routine 3 Starting with level 2
Insert dummy elements in table A< omitted if mod '»
so that all applications of a lining up is not —
modification are on the same level. | required.

Routine 2
lowest level reached—no

Routine 4 Starting with the lowest level insert
the reverse levels into table D.

20z Idy 61 uo isenb Aq

Routine 5 Starting with the longest chain insert
chain numbers into table E. In reverse
level sequence allocate chain numbers.
Where two or more are of equal length
take the chain with least width
i.e. least number of sons.

Routine 6 From tree width and levels compute
which of four layouts will fit an A4
or A3 size sheet.

Plots chains in sequence.
See Fig. 1 for an example of typical output.

Recently the Air Transport Association have ruled that where
modifications (post introduction of the engine into airline use) to a
component exceeds six then a family tree must be published with the
Modification Bulletin to the airline. The system is written in Fortran

The Computer Journal





