and runs on an 8K IBM 1130 with Card Reader, Printer, Disk and
Calcomp Plotter. ‘
C. A. THROWER
Area Systems Manager (Engineering)
C. A. W. WELLS
Senior Systems Analyst
Derby Engine Division
Rolls-Royce (1971) Limited
PO Box 31
Derby DE2 8BJ
19 April 1974

BASE
PART 1

MOD 01
PART 2

MOD 02
PART 3

MOD 03PT1 MOD 03PT2
PART 4 PART 5

MOD 04
PART 6

MOD 05PT1 MOD 05PT2 MOD 05PT3
PART 7 PART 8 PART qa

MOD 06PT1 MOD 06PT2 MOD 06PT3
PART 10 PART 11 PART 12

MOD 07PT1 MOD 07PT2
- PART 13 .| PART 14

Fig. 1

To the Editor
The Computer Journal

Sir

The validity of D. W. Barron’s criticism of Job Control Languages
(Discussion, Job Control Languages and Job Control Programs,
The Computer Journal, August 1974) depends upon just what we
mean by ‘Job Control’. I question whether JCLs should duplicate the
facilities of high-level programming languages—all this IF, THEN,
ELSE, GOTO &c—in an area which is, surely, concerned with the
definition and allocation of the appropriate physical resources
required to run a job. What a job does with these resources is a
programming consideration, and as such correctly comes under the
responsibility of the Programming Languages, not of the Job
Control Languages. Looked at in this way it is quite the wrong
approach to suggest that ‘job control is just another sort of program-
ming’. The two titles identify distinct tasks which should be under-
stood to accord reasonably with the common language meaning of
words.

If we were to completely separate these two tasks, no job would
ever have more than one job step. But the need for flexibility has led
to the provision of program hook-up facilities at the job control
level, because of the specialised nature of the individual programs
available to users; to provide complete flexibility in the field would
anyway involve the use of a ‘command language’ which is again a
hook-up facility (though this certainly has its place, e.g. in conver-
sational programming systems). Unfortunately it is the gross misuse
of the multi-step facilities provided by JCL which leads to the ‘thick
overgrowth of JCL’ which Professor Barron compares with the
‘massive pollution of Lake Erie’. Pollution is a consequence of

Volume 18 Number 2

misuse, not an intrinsic fault in things (incidentally it is the JCL we are
polluting by the invasion of programming, not the other way round).

This is not to say that JCLs are wrong to provide for program
hook-up; rather we should beware of criticising those who have not
merely recognised a real practical problem but have provided a
convenient if primitive solution which should properly be dealt with
elsewhere. But the hook-up features already provided could resolve
into a dangerous precedent: by pandering to the demands for yet
more programming-like features JCLs would indeed ‘lose sight of
the indispensable maxim that simple things should remain simple’.
Fortunately this has not yet happened; the very awkwardness of
IBM’s ‘COND’ parameter, for example, does have the advantage
that we will prefer to avoid its use, and so discover the proper
solution for ourselves.

We all know that practical programming involves the use of control
features—the IF, THEN, ELSE, GOTO &c of the modern high-level
language—and Professor Barron’s concept of the ‘Job Control
Program’ fits so easily into modern languages by virtue of their
subroutine CALL facilities that there is scarcely any need to
distinguish between a ‘Job Control Program’ or any other sort of
program. The stand-alone program of the multi-step job becomes
just another subroutine in the comprehensive system (incidentally
it is at this point that the linkage editor shows its continuing value;Y
it is premature to claim its persistence ‘in large systems is to a larges
extent a triumph of faith over reason’). It is quite straightforwardo
(or ought to be!) to look up the system name and parameter list o
any stand-alone program in the relevant literature and hence invoke™
it as a subroutine, even if for the present this may involve low—le::ﬁ
language programming. Successors are nominated by ordin
programmmg within the invoking control routine and, if necessaryg3
core storage is managed by linkage editor overlay facilities (and/or\
other facilities such as PL/I ‘FETCH’ and ‘RELEASE’ statements).o
Everyday programming practices such as Update + Compile +!l
Link-Edit have responded as readily to this treatment as have applia
cations systems (for whose benefit Sort utilities may be mvoke@
directly from PL/I and COBOL). So there is no ‘necessity’ for %
program to delete itself and nominate a successor.

JCL should enable programming languages to refer to systetn?\
resources symbolically, so machine and installation dependent
odds-and-ends of information can be filled in later without the n
for familiarity with internal program design. Hence a generallys
available program (e.g. a compiler) may be tuned on-site to makes:
efficient use of the local hardware by the most appropriate choice oft®
secondary storage media, data blocking factors &c. It is a program=
ming design challenge to ensure that only those items which ought2
to be tuned need to be tuned. JCL should also enable access tg3
computing facilities via the minimum of administrative parametersg
Thus a well planned installation will construct JCL procedures tg3
relieve users even of the above tuning details. Stripped of.elegant
programming-like features in order to avoid an ‘obsession ‘withy
generality’ JCL may look like ‘an implementation in search of g
language’ because it can merely assign values to paramsters, bug
should we not rather be judging the implementation upon 1t&
conciseness and logical integrity ?

Vv 61 U

Yours faithfully,
J. Al TEMPLEMAQ
79 Piccadilly
Bulwell
Nottingham
2 November 1974

¥20¢ I

To the Editor
The Computer Journal

Sir
Management in the Computer Business

May I, through your columns, congratulate Mr. H. N. Coates on his
excellent and lucid article. Whilst under the heading ‘Systems
Analysis and Design’ the rather abrupt transition to the Liaison
Section makes one suspect a printers’ error or the editorial scissors,
the exposition of the functions of this section is most noteworthy.
Too few organisations have such a section and, in my experience, it
is they who are generally the most successful in receiving the full
co-operation of satisfied users.

In this context it is perhaps a pity that Mr. Coates does not stress





