Analysis of self-indexing, disc files

S. J. Waters
LSE, Houghton Street, London WC2

This paper discusses the simplest, and often ‘best’, disc file organisation technique that supports all
processing modes. Timing formulae are derived for each processing mode and are then compared to
isolate significant parameters; once again, it is proven that generalisations can be misleading.

(Received July 1974)

This paper is further ‘fall-out’ from the CAM research project
at the London School of Economics; this research is investigat-
ing computer-aided methods of developing computer-based,
information processing systems. The project, outlined by
Waters (1972a) is financed by the Science Research Council.
The current area of research is computer systems design and
attempts are being made to formalise manual methods as a
necessary first step towards developing computer-aided
methods.

Dodd (1969) surveys the extensive literature and experience of
file organisation and processing techniques. Unfortunately,
this literature is mainly qualitative and lacks such vital,
quantitative aspects as estimating file sizes and processing
times. Further, simple file organisation techniques are often
ignored or summarily discarded as ‘freak’.

Probably the simplest yet most underused technique is a SID
(i.e. self-indexing, disc) file. This paper discusses the organis-
ation and evaluation of a SID file and derives and compares
timing formulae for the main processing modes. Once again,
simple rules-of-thumb are shown to be so dangerous that they
should be positively ignored. Instead, each particular case
should be analysed on its own merits.

Organisation of a SID file
Waters (1974) discusses the various file organisation techniques
that permit key retrieval of records (i.e. a record is located
from its unique key number). Of these techniques, only three
effectively support all of serial, skip-serial, sequential, skip-
sequential and random processing modes; these are indexed
sequential, indexed random and algorithmic sequential.

The simplest algorithmic sequential file organisation technique
is undoubtedly self-indexing (sometimes termed direct-addres-
sing or table look-up). In this case, the algorithmic function in

Record position = Function (Record key number)

is unity so that the record position equals its key number (e.g.
the nth record in the file has key number n). The physical
location of the record is given by

n
Track number, T = ¢, + 7 rounded down

T
Cylinder number, C = P rounded down

where
t, = absolute number of the first track in the file,

t = number of (fixed length) records per track, and
¢ = number of tracks per cylinder,

assuming disc numbering commences from zero.

Thus, a SID file is sequential and a record space is allocated on
disc for every key number, irrespective of whether it is used or
not. Old records are deleted by clearing their space and new
records are inserted by checking that their space is clear and
then setting up their new contents.

Harvey (1970) and others suggest that SID files only support
fixed length records, probably because they are over-influenced
by restrictive software. However, the record segmentation

- technique can be employed to split a variable length, logical

record into a variable number of fixed length, physical records.
Thus, a logical record consists of one header record and zero,9
one or more trailer records; the header record resides in thes
‘home’ position of the key number and any trailer records can3
reside in file overflow areas (which may be embedded into the§
‘home’ track and cylinder, by adjusting ¢ and ¢ above, and/or=
extended into cylinders at the end of the file); chaining can be3
used to retrieve trailer records. Clearly, the fixed physical=
record length is carefully chosen to reduce the number ofzé
trailer record accesses without unduly increasing the file size,3
due to unused space at the end of smaller records; Fig. 15
illustrates the data for making such a choice of record length.g_
(]

1

140001

7

120001
100001

40001

77 ///7/7/7/1

0 100 200 300 400 500 600 700 800
LOGICAL RECORD LENGTH (characters)

v
20z Idy 61 uo 3senb Aq 6G220%/002/€/81/3191E/|ufwod/woo dno

Physical Number of Minimum* file Possible

record length trailer records size (characters) number of

(characters) accesses per
logical record

100 176,000 22,600,000 4-52

200 76,000 25,200,000 2:52

300 42,000 27,600,000 1-84

400 24,000 29,600,000 1-48

500 10,000 30,000,000 1-12

600 4,000 32,400,000 1-08

700 2,000 36,400,000 1-04

800 0 40,000,000 1-00

*This must be increased by such overheads as unused overflow

areas and unused physical record spaces.

Fig. 1 A typical ‘space-time’ conflict in choosing physical record
length for a SID file with variable length, logical records
(a) Histogram indicating the distribution of logical record
lengths for a file of 50,000 records

(b) Table approximating the corresponding file sizes and
accesses for varying physical record lengths

The Computer Journal

Alternatively, any trailer records to a single header record can
sometimes be combined into a single, variable length trailer
record which is chained to an overflow area.

The following analysis is restricted to the more usual SID
files having fixed length records.

Evaluation of a SID file

Waters (1974) suggest twelve objectives (and constraints) of
computer systems design against which any design or technique
should be evaluated. Using this framework, a SID file can be
compared against its direct alternatives as follows.

Efficiency
A SID file is highly efficient with respect to disc time as any
record can be key-retrieved by a single disc access; indexed
files usually require extra accesses to search (at least part of) the
index and to retrieve any overflow records; algorithmic random
files usually require extra accesses to retrieve any synonym
records. Further, periodic disc reorganisation is not necessary
for a SID file.

A SID file is highly efficient with respect to CPU time as the
simplest algorithm is used and index searching is not required.

However, a SID file is only efficient with respect to disc storage
space if used key numbers are densely allocated (e.g. as with an
insignificant code). If used key numbers are sparsely allocated
(e.g. as with a significant code), then wasted space may be
prohibitive ; however, this space can sometimes be used to store
transient (e.g. print) files.

Timeliness

If a SID file cannot meet the turnaround/response time
constraints, then neither will an indexed nor algorithmic
random file.

Security
The usual generation, dumping and duplication methods of file
security, if used wisely, can guarantee a SID file.

Accuracy
A SID file is as accurate as any alternative, assuming
appropriate controls are applied.

Compatibility
A SID file can be compatible with different subsystems,
particularly as it supports all processing modes.

Implementability
A SID file is extremely simple to implement in most cases where
software is not too restrictive. .

Maintainability
Subsequently, this simplicity should not pose any additional
maintenance problems.

Flexibility

Fig. 2 indicates that a SID file supports all processing modes and
is therefore highly flexible; an algorithmic random file does not
support sequential processing.

Robustness

A SID file is robust, provided the maximum key number has
been accurately estimated, to provide room for file growth.
Indexed and algorithmic random files are often sensitive to the
volatility and overflow problems outlined in Waters (1972).

Portability

A SID file is usually portable from one hardware/software
configuration to another. In particular, Fig. 2 indicates that a
self-indexing file is relevant both to direct and random access
devices whereas an indexed sequential file is not relevant to
random access devices (because nothing is gained by searching
indexes instead of the file itself, as access time is independent of

data position).

Acceptability
A SID file should meet most sensible systems design standards.

Economy

apeojuioqg

Assuming dense key numbers, a SID file is cost-effective because::
it is highly efficient and simple to implement and maintain.§
Further, its additional benefits of flexibility, robustness andz

portability can cope with dynamic systems requirements. 2
Thus a SID file, unlike its usual alternatives, satisfies allg

o

design objectives when key numbers are dense. This conditions
implies insignificant key numbering which is often regarded as$
inconveniencing the user. However, this need not be true since:S

1.

C
Users of computer output can be supplied with both the>
insignificant code and its significant version or description,3
which is extracted from the SID file.

. Users of ‘predictable’ computer input are often supplie
with preprepared or computer turnaround documents whic
can include both significant and insignificant codes.

/ap!ﬁ/ﬁﬁum/

. Users of ‘unpredictable’ computer input must supply the(@g:
code themselves. If this involves looking up an on-line ory
off-line directory, even if only to establish a check-digit,E
then this directory can include the insignificant code. 3

3
Thus, it is probably true that insignificant codes, and therefore

SID files, are under-used in practice. It is certainly true that®
indexed sequential files are widely over-used in practice a.ndc%
often fail to meet the above design objectives, sometimes with2

catastrophic results!

Parameters of a SID file

udy 61 uo

A SID file can be read and/or written either serially, skip<]
serially or randomly. Numerous variables are necessary tq§

File organisation Access device

File organisation

Processing mode

Access Sequence Serial Direct Random
method (e.g. tape) (e.g. disc) (e.g. core)
Search Sequential / Vv J

Search Random ./ Vi W

Index Sequential x Vv X

Index Random x v J
Algorithm Sequential x v v
Algorithm Random x J J

Access Sequence Serial Skip- Sequen- Skip- Random
method serial tial sequen-
tial

Search Sequential ./ X J X x
Search Random ./ X X X X
Index Sequential ./ v J J v
Index Random ./ Vi Vi v J
Algorithm Sequential / Vi W J J
Algorithm Random ./ v X Vi v

*The simplest algorithmic sequential file is a SID file.
Fig. 2 File organisation method versus supporting access devices versus supported file processing modes from Waters (1974)

Volume 18 Number 3

derive timing formulae, usually as follows (asterisked para-
meters being independent variables).

1. Parameters defining the self-indexing file
*1.1 Fixed record length
*1.2 Number of records in

= R characters

block (integral) = B(=1)
1.3 Fixed block size = BR characters, from 1.1 and
1.2
*1.4 Number of records in
file =N
1.5 Number of blocks i N
ﬁlgm er of blocks 1n —Bfrom 1.2 and 1.4
1.6 File size = NR characters, from 1.1. and
1.4
*1.7 Number of used
records in file = M(<N)
1.8 File packing density = ?v—l(<1), from 1.4. and 1.7.

2. Parameters defining the file accessing during a run
*2.1 Total number of

accesses to file =T
*2.2 Number of (used)
records hit = H(<T and <M)
H
2.3 Record hit ratio = JTI(<1), from 1.7. and 2.2
T

2.4 Fan in/out ratio (> 1), from 2.1 and 2.2

*2.5 Number of (consecutive)

records in hit group = G (<H)
*2.6 Number of accesses to
hit group records = S(<T)

2.7 Since a hit group has high activity, by definition, then
S/G > T|N, from 1.4, 2.1, 2.5 and 2.6

2.8 Number of blocks hit = J } discussed in Waters

2.9 Number of cylinders X (1975)

hit

3. Parameters defining the (common) disc pack_
*3.1 Fixed track length = [characters (= BR), from 1.3
3.2 Number of blocks in

track =n = I/BR (>1), from 1.3 and 3.1
*3.3 Number of tracks in
cylinder (integral) =c
3.4 Number of cylinders in
file = NR/cl, approximately, from

1.6, 3.1 and 3.3

*3.5 Seek time (i.e. arm
movement time) = f (cylinders traversed) ms
and Random Seek time = f, ms.

*3.6 Revolution time = r ms.
*3.7 Transfer rate = tkc
3.8 Iftransfer of data is dominated by revolution speed, then

1
=2 approximately, from 3.1, 3.6 and 3.7

*3.9 Track searching
method =
(0 if a search commences from any point on the track,
1 if a search commences from the track start point)

3.10 Latency time (i.e.
rotational delay time) = Lms

r n —
(i

Appendix

1
s) ms, from

*3.11 ‘Read-after-write check’
indicator =0
(0 if no check, 1 otherwise)

*3.12 ‘Disc dedicated to file’
indicator =d

(0if file is the only one processed on the disc, 1 otherwise)

Thus, a large number of parameters contribute to the sub-
sequent timing formulae and the above analysis is by no means
exhaustive. This complexity offers some excuse for designers
relying on simple rules-of-thumb but they do so at their peril!
Any parameter can be critical to the effectiveness of file
organisation and processing.

Timing formulae for a SID file 9
In a companion paper, Waters (1975) discusses techniques fog
estimating disc seek times for serial, skip-serial and randong
processing modes. The following SID file formulae supplemenﬁ

this by concentrating on other disc timing aspects. 3
3

Serial processing g
The serial read time is given by o
SRT = Seek time + Latency time + Read time S
Q.

= [Number of cylinders in file x Single-cylinder seekd
time 5

o]

or 5

Number of blocks in file x Random seek tlme§

depending on whether disc is dedicated or not]
+ [Number of blocks in file x Latency time]
+ [Number of characters in file = Transfer rate]

= |a - o5 sy + a5

EL NR
+ B + - ms
d L R
:N[Ef,+§+-t-]ms

since from Waters (1975), dedicated serial seeks are usuall
insignificant for a single file pass.
The serial write time is given by

SWT = [Serial read time]

+ [Number of blocks in file x Read-after-writ
revolution time, if check is applied]

$8N6 Aq 6G.207/002/S/8 | /2IPIHE/|UlWOdy

vzoz“wdv 61 U0}

= [SRT] + [DI_\”] ms
L R vr]

B
zN[f,.+ t1 +glm

The serial update time is given by
SUT = SRT + SWT

d L R ur
zZNl:—Bf;'I'E‘f‘;-l-ﬁ]ms

Skip-serial processing
The skip-serial read time is given by

SSRT = Seek time + Latency time + Read time

= [Number of cylinders accessed x Skipped-cylinders

The Computer Journal

seek time
or

Number of blocks accessed x Random seek time,
depending on whether disc is dedicated or not]

+ [Number of blocks accessed x Latency time]
+ [Number of blocks accessed x Block transfer time]

=[a—@ﬁ(aﬁg%ﬁ)+ad
| + [JL] + [Jlitl—z] ms

R
zJ[df,.+L+BT]ms

since, from Waters (1975), dedicated skip-serial seeks are
usually insignificant for a single file pass.

The skip-serial write time is given by
SSWT = [Skip-serial read time]

+ [Number of blocks accessed x Read-after-write
revolution time, if check is applied]

= [SSRT] + [vJr]ms
zJ[df,+L+B-TR+vr]ms

The skip-serial update time is given by
SSUT = SSRT + SSWT

BR
z2J[df,+L+—t+vz—r]ms

Random processing
The random read time is given by

R_ﬁl_‘ = Seek time + Latency time + Read time
= Number of accesses to file x [Random seek time
+ Latency time
+ Block transfer time]

=T[f,+L+¥]ms

Although it can be argued that the number of blocks accessed
randomly is less than the number of accesses to the file, since
consecutive accesses may hit the same block, the difference is

.. . TB .
usually negligible, being N approximately.

The random write time is given by
RWT = [Random read time]

+ [Number of accesses to file x Read-after-write
revolution time, if check is applied]

= [RRT] + [vTr]ms
BR
=T[f,+L+ - +vr] ms
The random update time is given by

RUT = RRT + RWT

— [Number of accesses to file x Random seek time, if
disc is dedicated]

BR
=2T[f,+L+—?-+g]

- [A -ad)IfIms

2BR
=T[(1+d)f,+2L+—t-+vr]ms-

Volume 18 Number 3

Clearly, the complexity of the above timing formulae emphasise
that each particular case should be considered on its own merits
and that generalisations are dangerous.

Serial versus random updating for a SID file

Waters (1972) qualitatively denounced the ‘record hit ratio’
rules-of-thumb which are essentially based on serial versus
random processing. The following disc time comparisons add
quantitative evidence in a final attempt to convince the
‘diehards’.

Probably the most common situations are given by
d=s=v=0

whereby a dedicated disc searches from any point in a track
and read-after-write check options are not taken. These
conditions yield

r R
SUT=2N|:0+2—B+;+0:|mS
[r 2R

=N_E+——t—]ms, g
and §
[2BR o
RUT=Tf,+2§+—t+0]ms 2
L .3
_ 3
2BR >
=T f,+r+7]ms S
g

If the SID file is pre-defined so that block size (BR) is fixed fo

all processing modes, then %’
B =

RUT=T[f,+N§gZ’]ms g

..TB 8

> SUT if N 1 3

whatever the value of f, (even if it is zero, as for a fixed-head
drum or disc). Notice that in this condition favouring seri
updating

TB Number of accesses to file

N~ "Number of blocks in file
_THM
HMN

= Fan in/out ratio x Record hit ratio

x File packing density x Number of records in blockg

[0}

B

Aq 69[1017/002/8/8L/9I3!1?é/

Thus, record hit ratio and file packing density (both being les§
than or equal to unity) have similar effects on the condition;
whereas fan in/out ratio and number of records in block (botl%>
being equal to or greater than unity) have similar counter=:
effects. For example, even if the record hit ratio is very lov%
(e.g. 19) for a moderately packed SID file (e.g. 80%; file packing*
density) with average block size (e.g. 10 records per block), then
serial updating is faster than random updating for common
fan in/out ratios (e.g. >12-5).

Further, RUT 2z SUT
if
2BR r 2R
= = - 4+ =
rlnere 2 2|3+ H]

ie. if

TB _ 2BR + tr
N <[2BR+t(f, +r

which is a function, indicated by Fig. 3, of the block size and
the disc. For example, let the SID file occupy a common disc
pack typified by

203

2L+t)

SUT « RUT

it TBN s
above curve.

Threshold

2BR +tr
2BR + t(ftr) RUT < SUT
BA is

below curve.

BLOCK SIZE (BR)

Fig. 3 Graph of threshold between serial and random updating for a
pre-defined SID file

I = 4,000 characters per track

¢ = 10 tracks per cylinder
f, = 75 ms random seek time

r = 20 ms per revolution, and

t = 200k characters per second

noticing that relation 3.8 holds, then
TB _ BR + 2000

RUT> SUT if — N 2 BR + 9500

TB 4
.. RUT > SUT whenever — > - since BR < 4,000 from 3-1

N~ 9

TB 4
and RUT < SUTwheneverW < 19

Notice that TB/N is not merely record hit ratio, from above.

Alternatively, if the SID file is not predefined, then block-size
(BR) is chosen to suit the processing mode. Serial updating
time is minimised by maximising B to reduce latencies; thus,
block size may be chosen by the Waters (1971) algorithm
which often yields block size equal to track size (i.e. BR ~).
Random updating time is minimised by minimising B in
order to reduce the transfer of spurious records; thus, single-
blocking is chosen (i.e. B = 1). These choices yield

since BR > 0 -

SUT N [Rr 2R]
] t
and RUT=T[f,+r+—2§]ms

RUT 2 N2 1f =

[((2R + 5,—) /2R + 1(f, +)]-

For example, using the particular disc above,

T 3R
RUT 2 SUT if 3 2 52519000
T 4
. RUT > SUT whenever — N 9as before and RUT < SUT

generally for only minimal values of T .

N Once again, note that

T/N is not merely record hit ratio.

These conditions for the serial versus random updating
threshold yield numerous counter-examples where low record
hit ratio favours serial updating and high record hit ratio
favours random updating. (Reductio ad absurdum?) Further,
this threshold varies with the record size and the disc.

Finally, skip-serial updating can be drawn simply into the
comparisons by observing that

JB
SSUT = 3 SUT -

Thus, serial update time is never less than skip-serial update

%r’ and the above conditions can be modified

to compare random updating with skip-serial updating by

time, since J <

N
replacing B by J.

Note that the above comparisons are restricted to disc times
and ignore other wider but relevant factors (e.g. sort and CPIE;
times). Thus, since generalisations have been proven incorrect;
for these particular aspects, they are even more absurd ing
general.

dpy wouy p

Conclusion
This paper has discussed the organisation of a SID ﬁlew
including the implications of variable length records. This ﬁlm
has been evaluated against twelve design objectives to demohs}g
its usual alternatives when key numbers are dense; thi§
condition could probably be applied more, in practlceO'
Timing formulae have been developed for the main processmg
modes and compared to indicate significant parameters (whicks
include the oft-forgotten fan in/out ratio and file packing
density). Even this simple file organisation technique deﬁeg
generalisations so that each variation should be considereds
on its own merits; therefore the same will be true for 1ndexed_¥,
and algorithmic ﬁles with their additional complications o%
indexes and/or overflow overheads.

Some practltloners might regard this paper and its compamom
‘seeking paper’ as purely academic since they no longer estlmatg
disc times (partly due to insufficient manufacturers’ speci=
ﬁcatlons) Instead, they often choose file organisation and:‘,
processing techniques on the basis of the generalisations thato
these papers disprove! Timing is a vital aspect of systo:méy
evaluation and must be pursued unless users are prepared to:
place themselves at the mercy of computer salesmen!

Acknowledgement
The author wishes to acknowledge the assistance of his col
leagues in the LSE Systems Research Group.

20z Iidy 61 U0 Ise

Appendix Estimating latency time

Whenever a block of disc information is read or written a
latency (or spin or rotational delay) time may be suffered while
the read/write head searches for the required block’s starting
point. This time may be estimated as follows:

Case 1:

s = 0 so that searching commences anywhere.

1.1 If the disc accessing is completely controlled by the user
program (e.g. via channel command language) and the
computer is single-programming and the disc is serially
processed with double buffering and the program’s
CPU time is relatively small, then the latency may be the
minimum of zero ms. These ideals are seldom met in
practice, other than for fast file dumping.

1.2 In the worst case a complete revolution is necessary to

The Computer Journal

reach the block starting point, then latency is the
maximum of r ms.

1.3 Thus, the average latency can be taken as r/2 ms, which
, is usual in practice.
Case 2:
s = 1 so that searching commences from the track starting
point. Thus, from 1.3 above, an average delay of r/2 ms is
suffered to reach this point. If there are n blocks per track
then a further delay of i — 1/n of a revolution is suffered to
reach the starting point of block i (i = 1, 2, . . ., n). Thus, the
average latency can be taken as

References !

r 1 1 2 n—1
A~ O+ -+-4+... 4+ rms
n n n n
r o ing:
=§+’?Z;;o’zms
r(n — 1)
—i-l-Tms
Thus, in general, latency can be taken as
__r 1+’l—1
=5 S| ms .

Dobp, G. G. (1969). Elements of Data Management Systems, ACM Computing Surveys, Vol. 1, No. 2, pp. 117-133.
HARVEY, T. A. (1970). Data Organisation for Very Large, Low Activity Files on Disc, Proceedmgs of BCS Conference on Data Organisation.
WATERS, S. J. (1971). Blocking Sequentially Processed Magnetic Files, The Computer Journal, Vol. 14, No. 2, pp. 109-112.

WATERS, S. J. (1972).

File Design Fallacies, The Computer Journal, Vol. 15, No. 1, pp. 1-4.

WATERS, S. J. (1972a). A Survey of CAM and its Publications. Proceedings of NCC Conference on Approaches to Systems Design.
WATERS, S. J. (1974). Introduction to Computer Systems Design, National Computing Centre, Manchester.
WATERS, S. J. (1975). Estimating Magnetic Disc Seeks, The Computer Journal, Vol. 18, No. 1, pp. 12-17, February 1975.

Book reviews

Numerical solution of integral equations, edited by L. M. Delves and
J. Walsh, 1974. (Clarendon Press—Oxford Books, £4-50)

In July 1973 numerical analysts of the Universities of Liverpool and
Manchester arranged a Summer School on the numerical solution of
integral equations. This book sees the publication of the lectures
given at the School. It is mainly expository in character, but ranges
widely over the subject. The school was evidently well prepared for
there is very little overlapping in the presentations by the various
speakers. The result is a goldmine of information on the numerical
methodology for solving linear integral equations.

The first fifth of the book gives background theory required for the
numerical analysis—with chapters covering an introduction to the
theory of integral equations, theory of quadrature, numerical
linear algebra, function spaces and linear operators and theory of
approximation. Following this scene setting, the main body of the
book amounting to three-fifths of the content systematically works
through numerical techniques, amply illustrated by examples.
First is a chapter on quadrature methods basically stemming from
-Fox and Goodwin’s 1953 paper in Phil. Trans. Roy. Soc. There then
follow chapters on methods using series expansions of the function,
linear programming methods based on approximation theory,
Rayleigh Ritz and Galerkin methods. Next follow chapters devoted
to the particular cases of eigenvalue problems, Volterra equations of
the first and second kind, Fredholm equations of the first kind and
linear integro-differential equations. This part of the book is
completed by three short chapters covering some 40 pages on
non-linear integral equations. It is perhaps indicative of the state of
the art that so relatively little can be said about this important
branch of the subject.

The book concludes with a third part, again about a fifth of the
whole, devoted to applications—all problems of mathematical
physics.

The content of this book appears to be really up to date and must
surely be regarded as providing a prime source book. If I have any
criticism to make of it in this respect, it is a fault of omission rather
than commission. The various eminent teachers who contributed to
the work of the school have covered their allotted tasks well, but the
numerical practitioner, coming to a problem involving integral
equations, perhaps for the first time, will not find here any general
discussion of the comparative advantages and disadvantages of the
various methods; he will find excellent descriptions of the methods
available, but little guidance on how to choose one for his problem.

Volume 18 Number 3

opeoe//:sdjy Woly peapeojumoq

The book would have been more complete with some attempt at 3
critical comparison of methods—although I write this with an awaré2
ness of how difficult such a comparison is to make. £

One other criticism concerns the editing. Each chapter has its own
bibliography. In aggregate these add up to a very considerable asse§
but they are somewhat repetitious, and in the absence of an authcg
index they are less useful than they might have been.

However, Professor Delves and Dr. Joan Walsh have provided |§
with a valuable work which will long remain essential reading fog
numerical analysts, and they are to be congratulated for their
achievement.

/81

A. YouNG (Colerain%

Computers in Production Management Decisions, by T. A.
Nicholson and R. D. Pullen, 1974. (Pitman Publishing, £4-

NS 6 91§o$700

This book reports on a number of topics, drawn broadly from t
production management area, of which the authors have personai
knowledge. They make qunte clear that they did not intend to wrltg
a detailed academic review but aimed to provide a bridge betwee@’
the production manager and the computer specialist. Their aim ha§
been reasonably true.

A dozen topics are covered of which some five or six are set square}f
in the batch production environment. The emphasis being, quitg;
rightly, on using a computer as a planning aid rather than a generatog’
of shop paperwork. The rest of the book tackles assembly liné
balancing and production capability over the short and long-term.
Each topic is treated in roughly the same fashion: a description of
the problem, the appropriate modelling and a demonstration of a
computer-based approach towards a solution, illustrated with
specimen printouts and so on. In most cases the proposed approach
is via a specially developed interactive program or an off-line general
purpose package.

A minor criticism concerns the rather sketchy analysis of costs
involved in developing a computer-based production control system.
The development of such a system is as much an investment as new
plant and should be appraised accordingly. This omission is perhaps
surprising in view of the authors’ chapter on investment decisions.

Nevertheless, the book should alert computer people to the fas-
cination of production problems. And if production managers can
cease contemplating their escalating work-in-progress long enough
to read it also, then so much the better.

C. D. EASTEAL (Tunbridge Wells)

