Areas and record-classes

H. D. Baecker

Department of Computing Science, University of Calgary, Calgary, Alberta, Canada T2N 1N4

To date list processing facilities have been imperfectly incorporated into general-purpose algorithmic
languages. A brief survey of available forms of list processing is followed by an outline of required
features of a list processing facility. The syntax and implementation of such a facility in an ALGOL

like framework is then outlined.
(Received December 1972)

1. Introduction

Many problems in computation are partly or wholly soluble
using the techniques of list-processing. Should a programmer
wish to use these techniques then he has in general five options:

1. To construct his own list processing environment in machine
code or within a language such as FORTRAN 1V, or to use
another’s subroutine package if available

2. To use the random access file system of his installation to
provide the list space and access routines

(Note: the above two approaches can be combined profitably)

3. To use a special purpose list processing language such as
LISP.or IPL-V

4. To use the generalised facilities available in PL/I (BASED
attribute) or ALGOL 68 (heap modes) or ALGOL-W or
SIMULA 67

5.To use the more disciplined facilities available in PL/I
(BASED variables within AREAs) or PASCAL (record-
classes).

The remainder of this paper will be concerned with alternative
5, and with its relationships to alternative 4, but we shall first
state the present author’s prejudices and his reasons for not
expanding on alternatives 1-3. Software people are, meta-
phorically, in the business of making two blades of grass grow
where one grew before. We are toolmakers. In a world of
limited resources the only justification for our resource-
consuming activities is that we can ultimately help to ameliorate
the human condition. In any case the constraints upon and
goals of our activities are only minimally those of a natural
science, they are largely those of the social sciences. There is
now little problem in designing a computer, using it effectively
thereafter is another matter. The niceties of syntax and auto-
mata theory are not the summit of computing, they are the
underpinnings in the basement, just as James Clerk Maxwell’s
equations are to the BBC or CBS.

It thus behoves us to forge adequate tools for the problem-
solver to apply computers to his needs effectively. Just as a saw
is a compromise between the human handgrip and strength on
the one hand, and the properties of the materials of which it is
made on the other, so a programming language must be a
compromise between the conceptual-linguistic habits of the
user and the physical characteristics of the machine. This paper
explores aspects of the tools needed to use list-processing
techniques.

To superimpose a private list-processing package upon
FORTRAN or APL or ALGOL 60 is an unacceptable
solution on two grounds:

1. The resulting program statements obscure rather than cla{ify
the user’s intent, they do not describe the problem solution
within the terms of the problem statement

2. The source language compiler does not provide error-
detection aids for this class of operations.

Volume 18 Number 3

Use of the random access file system (if, say, you have a
sophisticated index sequential file facility) is appropriate if the
list structures to be manipulated will exceed working storage,
however even in such cases extensions to the area/record-class
concept would allow more fluent problem statement. This wi§
be discussed below. 2

The special purpose list processing languages are just thag
The reality we seek to model in computer programs is not thdt
homogeneous (nor as homogeneous as the simple data types of
ALGOL 60). We need a more versatile tool for most re
problems.

oe//:sdpuR

2. Survey Q
Both PL/1 (IBM, 1965), by means of the BASED attribute, and
ALGOL 68 (van Wyngaarden et al., 1969), by means of the
heap values permit the declaration of complex data objecis
instances of which can be generated independently of the scope
discipline that governs variables with the AUTOMAT. ()
attribute or of loc values respectively. These complex data
objects may include fields with the POINTER attribute or of
ref mode, thus permitting these objects to be ‘linked together
to form lists, trees, etc. 3

These data objects are presumed to be generated in whatevéx
is left of the user’s working storage allotment after acconfs
modating his program and his dynamic stack. Neitheg
language includes facilities for declaring the amount
BASED (and CONTROLLED) storage or size of heap required;
Neither does either language include library procedures th:
allow the user to interrogate the system to determine how mu
space he has left at his disposal. If he misjudges he gets bounced
The total program space is a function of the implementatior,
the installation, and of the job control language. S

The ALGOL 68 implementor is free to provide a garbage
collection routine in his run-time system so as to recover the
space occupied by heap objects that have become inaccessiblé
He is also at liberty to implement the heap in more than odé
level of storage (Baecker, 1970), so obviating some of the
difficulties raised in the previous paragraph and giving the user
access to random access secondary storage.

The above freedoms do not apply to the PL/I implementor,
garbage collection, or any system action to relocate BASED
variables, is prohibited, as is the use of secondary storage
except in a virtual memory system. The reasons for these
restrictions will become apparent in our discussion of AREAs.

SIMULA 67 (Dahl et al., 1970), ALGOL W (Wirth and Hoare,
1966; Bauer et al., 1968), and PASCAL (Wirth, 1970) include
record-classes as data types. However, since a class instance in
SIMULA 67 is generated within an area of storage very much
like the ALGOL 68 heap and also need not be purely a data
structure we shall not discuss it further.

In ALGOL W a record is a structured value composed of
fields the declaration of which serves as a template. When the
declared record identifier is later used as a record designator a

223

new instance of the record is constructed, and may have its
fields initialised. The user may associate one or more reference
variable with each record class, such variables may themselves
be fields of records, so that list structures may be constructed.

Instances of records are generated in some undefined space
and become inaccessible according to the normal scope rules.
A garbage collector is assumed to exist.

PASCAL record variables correspond closely to the record of
ALGOL W. In addition PASCAL provides the class variables.
A class is declared to comprise a declared maximum number of
instances of a given record. The record instances are generated
by a system procedure alloc. Two or more class variables may
be ‘containers’ for the same record. Thus in PASCAL a pointer
variable is bound at declaration to a given class, not to a
record. Class variables follow the normal scope rules, on exit
from a scope a class disappears and on re-entry to that scope
the class is there once more, empty. There is no garbage
collection.

Before launching into a full-scale discussion of areas and
record-classes the reader’s attention should be drawn to the
Virtual Core System provided in the BASIC-PLUS language
under the RSTS operating system on PDP-11 computers
(DEC 1972a, 1972b, 1972c) as well as to NOVA ALGOL
(Data General Corporation, 1971).

3. Desiderata
It is possible to state several requirements for a useful list-
processing facility within an algorithmic language:

1. The syntax rules should enable as much checking of the
user’s intent as possible to be done at compile time

2. Those users who wish to make small scale use of list process-
ing facilities should not be penalised to provide for the
large scale user, whilst yet the large scale user should be free
to use the facilities fully and should bear the overhead costs
he generates

3. It should be possible to reclaim the memory space allocated
to a given list structure simply and cheaply when that
structure is no longer needed without affecting other
structures that may coexist in the program

4. If garbage collection is provided by the system then such an
event should only be triggered by overflow of and should only
affect the critical set of objects

5. The facility should be so designed as to aid the user in
achieving reference locality within a virtual memory, thus
avoiding page exceptions

6. It should be easy and efficient to file and retrieve a complete
list structure, and to transfer it from program to program.

4. AREAs
A PL/T AREA may be of any storage class. The language does
provide the facility to file a complete BASED AREA and then
to retrieve it, perhaps in another program activation, with all
internal cross-references in the AREA intact. This is achieved
by having two types of reference variables in the language.
A POINTER is a reference the value of which is the hardware
location at which the referenced variable is stored. An OFFSET
is a reference the value of which is the relative address of the
referenced variable within the AREA to which the OFFSET
variable was uniquely bound by declaration. An OFFSET
bound to a certain BASED AREA may be declared as a field
of a BASED structure that is subsequently allocated in an
entirely different AREA. Thus cross-references between AREAS
may be established. The EMPTY built-in function reinitialises
an AREA to have no contents.

An injudicious sequence of ALLOCATE and FREE statements
and/or of locator variable (POINTER, OFFSET) assignments

224

may leave a block of allocated storage inaccessible. As no
garbage collection is provided this space is lost to the user.

Similarly, careless use of FREE and/or EMPTY may leave
locator variables referring to garbage.

PL/I in no way meets desideratum (1). Locator variables are
not bound by declaration to any particular set of variables
having some declared attribute. This complete lack of discipline
makes both debugging and documentation too difficult. It is a
sufficiently severe fault to make the facilities unacceptable by
any programming standards worth having. Equally unaccept-
able is the run-time havoc resulting from being able to FREE
or EMPTY whilst leaving locator variables referencing limbo.

Our other desiderata are met fairly well by the PL/I facilities,
which makes it sad that there should be two such major
deficiencies in the language that make it unacceptable.

5. The ALGOL 68 heap

The heap and ref values of ALGOL 68 are not open to the
objection advanced against PL/I. However, ALGOL 68
facilities fall pretty flat when matched against desiderata 2 to 6.
Clearly, there has to be some extension beyond the heap, it is
too undifferentiated a morass to be really useful and efficient.

6. Record-classes

Classes, as previously discussed, meet the objections made
against PL/I and also meet most of our other desiderata.

PASCAL comes closest to our requirements, particularly now
that a later version of the language incorporates a limited
facility to free part of the space allocated in a class. However,
PASCAL does not meet desideratum 6, at all, nor does i

incorporate garbage collection.

At this point we may as well state the primary problem that ©
arises if we wish to implement together areas or classes, garbage
collection, and file facilities. If a record of a class can reference a 3
record in another class then garbage collection must embrace all 2
classes at a time as long as references are direct hardware
addresses. Secondly, if the contents of a class could be on a file
then references from that class to others cannot be taken into
account during garbage collection. Thus a validly referenced
record could disappear for lack of full information. Yet both
filing facilities and garbage collection would seem essential for
maintaining long-lived list and tree structures.

7. Outline of a solution

A rather immature solution to this problem has been proposed
elsewhere (Baecker, 1973) by the author in the context of
ALGOL 68. In later sections we shall borrow ALGOL 68
syntax to give flesh to the present proposal. Initially’ let us
confine ourselves to class objects that follow the scope rules,
corresponding to ALGOL 68 loc values. We shall call them
areas.

To declare an area it must have a name and some size must be
given it upon generation. This size could be a language or
implementation or installation default, but that is not helpful
to the user. But once we place the size under user control that
raises the question of what unit the size is expressed in. It must
be a unit that is independent of hardware and of implemen-
tation if we are to achieve a satisfactory high-level language.
We shall borrow from PASCAL and express the size of an area
as a multiple, or upperbound, of the objects to be generated in
the area. This removes the need to know the particular hard-
ware and implementation details of the size of integers, strings,
etc. But it does not remove the problem of fields in these objects
that are arrays with dynamic bounds. PASCAL avoids the
problem by not permitting such objects. We could take the
same course, or the language could specify some default
average expected size per dimension, or we could resort to some
facility like an ALGOL 68 pragmat to permit the user to give
an estimate. If the third option is made available then the

The Computer Journal

o

|Luepeoe//:sdnu LUOJ} pGpBO|UMO

©
o

3
e}

1810v/€22/€/81 /911HE/|UlWod)/

w
o
<

202 1udy 61 uo }sanb

second would probably be needed as a default in case the user
gave no estimate.

To build list structures we require reference variables. We can
try to bind each reference variable at declaration to a particular
area, not to the objects that populate it. This follows PASCAL
and the reason is clear if we consider the following fragment of
ALGOL 68:

begin
real y ; ref real yy ;

begin real x ;
x:=314;yp:=x
end ;
yi=yy;
end

What is assigned to y? In ALGOL 68 it is undefined. The
PASCAL solution makes it necessary that the scope of a
reference variable is conterminous with that of the object
referenced, and so this confusion cannot arise.

We shall here state the rule that if the user wishes to con-
struct rings or other re-entrant list structures then such a
substructure must be entirely contained within a single area.
The rule will be explained below.

If a user is allowed to build complex structures that straddle
many areas, and to file these in whole or in part, then it must be
possible to retrieve only the relevant part of a structure for
some later processing. The parts that are retrieved may contain
references to areas not retrieved, these references can have the
well defined value of the null reference. Note that two distinct
possibilities for the absence of a part of a structure exist, that
no area to contain it has been declared in the current program,
or that the area exists but its expected contents have not yet
been retrieved from file.

The obverse of the above discussion is the fact that some
program may need to process concurrently areas that originate
in more than one previous program. The problem that this
poses is that of a unique mapping of any cross-references in the
current program activation. Declaration ordering cannot
provide this. For example: Program 1 generated areas Al, A2,
A3, which contain cross-references and were declared in that
order. Program 2 generated areas it identified locally as A1 and
A2, which also cross-reference each other. In Program 3 we
wish to process all five areas. Declaring them locally with
different identifiers is no problem, but resolving the cross
references is. To achieve this we are forced to seek the same sort
of solution as PL/I OFFSET locator variables. The type of
reference we have described above, bound to an area, corre-
sponds to the PL/I OFFSET. If, in any program elaboration,
each area has a locally unique identifier then its whereabouts
can be determined as for any other variable. However, the
stored reference within an area object has to be relative to the
target area. Elaboration of the reference consists of combining
the relative address held as the value of the reference with the
origin of the area to which it has been bound by declaration.

8. Syntax

The simplest illustration of the proposed syntax for the facility
would be a sample piece of program following the style of
ALGOL 68.

begin

struct student = (int number, ref (course) left, right, ref
(detail)data);

struct data = (co some structure of fields of student attributes,
co);

area course [1000*student], detail [1000*data];

ref (course) root := nil, last, where;

Volume 18 Number 3

data buffer;
int ident;
proc find = (int 1D) ref (course):
co find finds a student by his ID on the binary tree in area
course, if no match is found find returns il co
begin
ref (course) this := root;
last := nil
while this 71 = nil and number of this 71 = ID do
begin last : = this;
this := if ID > number of this then right of this else
left of this fi
end;
this
end;
proc add = (int ID) ref (course):
co0 add adds a student to the binary tree in area course returning
his location or nil if a duplicate co
begin
ref (course) here := find (ID), temp;
if here 71 = nil then nil else
temp := student := (ID, nil,nil,nil);
if last = nil then root := temp else

if 1D > number of last then right of last else left of last:
fi := temp
fi temp
fi
end;

while 71 logical file ended (stand in) do
begin read ((ident, buffer));
where := add (ident);
if where = nil then ERROR else
data of where := data := buffer fi;
end;

wiBo/woo°dno-olwepeoe//:sdyy wolj papeojumoq

all of which builds a data structure in two areas and doe
nothing with it.

(723

9. Implementation

/B se10mse/1Uf

@)
2
-
<
o
-
o
g’
o
g
(gl
o
)
=]
&
®
[=]
S
[}
Q
-
[¢]
2
@]
-
(o
®
)
=2
8
[N
3]
)
=

address. We propose the technique suggested elsewhereZ
(Baecker, 1970, pp. 407-409). In this case an area declared to@
hold n objects would have a reference vector of length n at its>
beginning. Each element of the reference vector has twoa'o
components, a reference count (Collins, 1960) of the number ofm
references to this kth object from other areas and the current;
relative address of the object within the area.

A reference to an area object is its cell number in the reference”’
vector, which does not change. This reference, note, is just that,>.
the compiler uses the declarations in the program to generate
the association with a particular area.

When an area object is generated its name becomes the indexr
of the first free cell in the reference vector of its area. Garbage'\’
collection from time to time will free reference cells and space.

If variable length objects are prohibited then the relative
address component of the reference vector is unnecessary, the
reference itself can be the relative address, as on garbage
collection relocation is then unnecessary. The reference count
would then be a hidden field of the object.

Garbage collection is normal in tracing references from the
program reference variables to area objects and within a given
area. References from other areas are accounted for by the
reference count. An object is only collected if it is unreachable
from the program local variables or from within the area and if
its reference count is zero. The reference count is needed to
account for references from areas not currently present in the
program activation. It should now be clear why circular or
recursive lists may not straddle areas.

When an object is collected the reference count of any refer-

|ud

225

enced object in another area that is co-resident is decremented.
However, the reference counts of absent objects cannot be
decremented. In time areas will come to contain inaccessible
objects that have not been collected. Should this be a problem
in some application then the solution is a utility program that
simultaneously garbage-collects all the areas on file that cross-
reference each other. Such a program is feasible but the
parameters it would require are complex.

10. Extension

If this scheme is embodied within a language that already
provides a heap and an orthogonal system of references, as
does ALGOL 68, then the mode heap area can be accom-
modated. The extension is obvious. So is the accommodation
of orthogonal references from program variables to area object
fields. What could not be permitted is that any field of a
structure that is an area object should be an orthogonal

References

reference, rather than one bound to an area. Thus would
orthogonality be violated.

11. Conclusion

The desiderata outlined are achievable within an algorithmic
language. APL has not been considered and would prove a
difficult case.

The run-time overhead of the proposed solution would be high
but would be no higher than a user’s attempts to provide these
facilities without the proposed language extensions, and the
overhead is proportional to the use made of the proposed
extensions.

Acknowledgement
The author wishes to thank the National Research Council of
Canada for their support of this work under Grant No. A7130.

BAECKER, H. D. (1970). Implementing the ALGOL 68 Heap, BIT: Nordisk Tidskrift for Informations behandling, Vol. 10, No. 4, pp. 405-414.

BAECKER, H. D. (1973). On a missing mode in ALGOL 68, Machine Oriented Languages Bulletin, No. 2, April 1973.
BAUER, H. R. et al. (1968). Algol W Language Description CS110, Computer Science Department, Stanford University.
CoLLINs, G. E. (1960). A method of overlapping and erasure of lists, CACM, Vol. 3, No. 12, pp. 655-657.

Common Base Language, Norsk Regnesentral, Oslo.

DATA GENERAL CORPORATION (1971). EXTENDED ALGOL User’s Manual 093-000052-02.

DEC (1972a). BASIC-PLUS programming manual. PL-11-71-01-01-A-D.

DEC (1972b). BASIC-PLUS Language Manual. DEC-11-ORBPA-A-D.

DEC (1972c). RSTS-11 System User’s Guide. DEC-11-ORSUA-A-D.

DaHL, O-J., MYRHAUG, B., NYGAARD, K. (1970).

IBM (1965). PL/I Language Specifications. Form C28-6571-4.

VAN WINGAARDEN, A., et al. (1969). Report on the Algorithmic Language ALGOL 68, Numerische Mathematik, Vol. 14, pp. 79-128.
WIiRrTH, N., HOARE, C. A. R. (1966). A contribution to the development of ALGOL, CACM, Vol. 9, No. 6, pp. 413-418.
WIRTH, N. (1970). The Programming Language PASCAL, Acta Informatica, Vol. 1, No. 1, pp. 35-63.

Book review

Signals, Systems and Controls, by B. P. Lathi, 1974; 524 pages.
(Intertext, £8-50.)

In this book Professor Lathi attempts to bring together all the
basic ideas of network theory, signal analysis and processing, and
control systems. The main approach is with control problems. It is
an ideal text for those who wish to learn the elements of modern
control theory but as such has little to do with digital computing
systems directly (excepting of course those applications of control
which contain some element of digital working). The principal use
of this book and indeed the one for which it is written is as a text
accompanying a lecture course.

The first third of the book presents time domain and frequency
domain analysis. As is now customary Professor Lathi presents
a unified view in that essentially they are the same apart from using
different methods of representing the input signal. Some consider-
able effort is justifiably expended in showing that the Fourier and
Laplace transforms are tools for representing a signal in the com-
plex frequency domain and are not mere mechanical aids to solving
integral and differential equations. After treating feed back and
control, a chapter is devoted to the increasingly important method
of state space analysis. This chapter, which is really introductory to
the space state method of representation and analysis, is very clear
in its exposition and should help dispe! any difficulties in the con-
cept of state of system. For this purpose the author uses the simple

6 Aq £28.0%/€22/€/81/9101E/|UlWO0/W00"dNO"D1WaPED.//:SANY WOy PAPEOJUMOQ

n

device of identifying the initial conditions with the initial state. Ap
seemingly obvious but often ommitted step. The final chapter of5
the book begins to treat discrete time systems. It introduces the’
transform and relates it to the Laplace transform for continuou§
systems and treats transform and state space analysis methods fo
both discrete data and sampled time systems. N
Specialised appendices on differential operators, partial fractior3
expansion, Bode plots, vectors and matrices and the Nyquist™
stability criterion are included. The text is extensively sprinkled
with mathematics. These are not used to illustrate the virtuosity of
the author but to assist the physical understanding. In most cases
these mathematical results are interpreted heuristically and further
illustrated by simple yet sufficient examples. Professor Lathi has an
engaging style which gives the impression that he is communicating
personally.
For instance (page 367) ‘Anyone who tries to solve a problem this
way is bound to say . . . “There must be a better way!”. A better way
there is.” ‘Some readers might find this slightly annoying but for

myself it enhances the text.” Indeed Professor Lathi’s style leads the
reader along at a very fast pace. It is possible to read through quite

long sections to obtain an overview of the development and then to

return for more detailed study of the mathematics and its full

implications.
C. A. MERCER (Southampton)

The Computer Journal

