An information measure for single link classification
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The information measure is an objective measure of the quality of a classification and results from an
information transmission view of the classification problem. So far information measures have only
been derived for the case where an explicit assumption is made about the form of the distribution
of attribute values within a class. One important method which involves no such explicit assumption
is single link. In this paper we derive a new information measure which is optimised by classifications
produced by the single link method. By investigating the properties of this information measure we
are able to gain more insight into the single link method and also determine the type of problem to

which it best applies.
(Received October 1973)

1. Introduction

Many methods of automatically classifying things on the basis
of a set of measurements (attributes) have been developed over
the last decade or so. Unfortunately, ‘comparative studies have
shown that when different methods are applied to the same data
set there are often major discrepancies between the results
obtained’, (Jardine and Sibson, 1971a). This state of affairs has
led a number of authors to consider ways of comparing the
quality of different methods, (see for example: Jardine and
Sibson, 1971a; Williams, Clifford and Lance, 1971).

Many classification methods are of the type that proceed via
a matrix of dissimilarities to a numerically stratified hierarchic
classification which is usually represented by a dendrogram.
Jardine and Sibson (1971b) have considered such methods and
set up a number of adequacy conditions which, they believe,
methods of this type should satisfy. The method called single
link (or nearest neighbour) is the only one which satisfies all
conditions.

We have proposed a clas51ﬁcat10n method which does not
involve any dissimilarity measure and hence is not a method of
the above type. It is based on a measure of classification good-
ness which is called the information measure as it results from
an information transmission view of classification. The classi-
fication structure is considered as providing a framework for
encoding a message which conveys the attribute value sets of all
the things being classified. The information measure is the
length of this message and we consider that the bestclassification
is that which minimises the information measure.

We have derived two information measures, one for non-
hierarchic classifications (Wallace and Boulton, 1968) and the
other for hierarchic classifications (Boulton and Wallace, 1973).
The basis of both is that the classification provides a simple
piecewise model of the distribution of things in attribute
measurement space. Within each class a separate multivariate
distribution, is used, whose form is determined by that expected
to be found within a class, e.g. normal distributions for con-
tinuous attributes. The composite distribution which results
when the class distributions are combined, is used to obtain the
probabilities of different sets of attribute values for obtaining
the optimum message segment lengths for conveying all the
things’ attribute values.

As classification methods of the same type as single link are not
based on any explicit assumption of the form of the distri-
bution of attribute values within a class, neither of the infor-
mation measures we have so far derived is really applicable.
In this paper we will derive a new information measure which
covers this other class of methods. With this new information
measure the attribute value sets of all things, and hence their
positions in measurement space, are encoded as a series of
vectors which each locate one thing relative to another.
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We will show that if the message length used to convey a
vector is considered as the dissimilarity of the two things io
connects, then the information measure is always minimise
by the single link classification. We will then go on to discusg
the applicability of the method of single link by considering th%
properties of the corresponding information measure.
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2. Derivation of the new information measure
The problem is to construct a message which will convey thB
attribute values of an ordered set of N things, or more conm
veniently, when the things are represented by points in attnbut@
measurement space, the positions of an ordered set of N pomtg
The message is constructed to have three parts as follows.
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1. The position of the first thing is specified relative to thﬁ
origin of measurement space.
For each remaining thing, say thing number i, the following twg

pieces of information are specified: %
2. the length and direction of a vector which defines the pOSith§
of this ith thing relative to the position of another thing, s ay
thing number j =
3. the identity of thing j, i.e. the value of j. @

If the above message is to convey unique positions for all the’
things and contain no redundancy, the vectors must form %
spanning tree. That is, a tree where:

1. no closed loops occur
2. each point (thing) is visited by at least one vector
3. the tree is connected.

These rules imply that, if we consider the positive direction oi
a vector descrlbmg thing i relative to thing j to be directed fronl
J to i, then the unlque route through the tree of vectors froms.
thing 1 to thing i is along the positive direction of each vectog
encountered, for all i > 1. N

An example of a spanning tree for six things and two con-
tinuous attributes is shown in Fig. 1. The corresponding message
to convey the attribute values (positions) of the things is

Vios Va6 65 V31515 Vas,5 V53,3 Ve 3.
where
V. ; is the vector which positions thing i relative to thing j,
V1.0 is the vector from the origin of measurement space to the
first thing.
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Notice that in this message the identity of the thing pointed to
by a vector is implied by the ordering of the vectors in the
message. For example, the third vector in the message specifies
the position of the third thing relative to the specified thing
(number 1) at the origin of the vector.

To determine how the three parts of the message are encoded
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Fig. 1 A spanning tree connecting six things

we must consider the principles of efficient encoding. These
were first set down by Shannon (1948), who showed that a
message can be considered as signalling one of a set of possible
events and that to minimise the expected message length the
optimum message for event i should have a length given by

_logb D; (21)
The base of logarithms is arbitrary and is equal to the size of
the code alphabet. For convenience we use natural logarithms.
It is when applying the principle of efficient encoding to
obtain the optimum message lengths for each part of the total
message that we are forced to make assumptions about the
probabilities of different events. There are three sets of different
events, one for each of the three parts of the message:

1. all possible positions of the first thing relative to the origin
of measurement space

2. all possible vectors which can be used to position one thing
relative to another

3. all things relative to which another thing can be located.

Consider the specification of the position of the first thing.
The most colourless assumption is that all positions within a
predetermined fixed region of measurement space are equally
likely. Then the resulting message length is independent of the
attribute value set the first thing happens to have. However,
because the attribute value set of the first thing is fixed by the
data, this first part of the message, regardless of its length,
cannot alter the classification which minimises the complete
information measure. Thus the distribution assumed for the
position of the first thing is irrelevant when different classifica-
tions of a single data set are being compared, so this part of
the message can be omitted from the information measure.

Consider next how the third part of the message is encoded.
If there are N things being classified then the position of a thing
can be specified relative to any of the remaining (N — 1) things.
The most colourless assumption is that with equal probability
any one of the remaining (N — 1) things could be chosen.
Thus the optimum message length is

In(N—-1). 2.2)

This message segment will appear (N — 1) times in the whole
message, so contributing a total length of
WN-DInhN-1). 2.3)
As this length depends only on N, it is independent of the
classification and can, together with part (1), be ignored when
comparisons are being made.
Finally we come to that part of the message wherein the
(N — 1) vectors, which position one thing relative to another,
are conveyed. To simplify the following discussion we will

assume that the distribution of different lengths and directions
a vector can have, is independent of the position of the vector
in measurement space. We can thus consider just one distri-
bution, and hence code, which will be used for all vectors. It is
important to note, however, that this assumption does not
invalidate the discussion which follows.

Let the probability density of vectors of different length / and
direction 6 be

f, 0 . 4
If each vector points to somewhere in a small region* éu and
f(l, 6) is reasonably constant over this region then the prob-
ability of a vector (/, 0) is given approximately by

£, 0)6u . (2.5
Thus the optimum message length to convey the vector is
—1In f(, 0) 6u . (2.6)

The total message length to specify all the (N — 1) vectors is
given by

z "In £, 0)) du .
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The function f(/, 0) can, in principle have any form. It shouldg
be chosen to conform with our expectation of different vectorsg
but for the time being let us not commit outselves to any choice&2
of f(l, 6). In fact we will now show that if the message lengths’
to convey a vector is treated as a dissimilarity measure on the®
two things at the vector’s ends, then regardless of the form off
f{, 0) the classification which minimises the informatior
measure is the same classification which would be yielded b)g
single link with this dissimilarity measure.

Gower and Ross (1969) have shown that a spanning tree w1tl§
branches whose lengths are equal to the dissimilarity of the>
pair of things at their ends, represents a single link classiﬁ
fication when the sum of the lengths of the branches (the lengths
of the tree) is minimised. The only term in the informationg
measure which depends on the structure of the spanning trc@
used in the encoding process is part (2) which defines the lengthg
and directions of all the vectors in the tree. Thus, if the message:
length to define a vector is a dlss1m11ar1ty then minimising thex
information measure is equivalent to mm1m1smg the sum of th%
dissimilarities of things directly linked in the spanning trees
Therefore, the information measure will be minimised by thed
minimum spanning tree, that is by the single link classﬁicatxong
In other words, if the contours of constant f(/, 6), i.e. of equalS
probability, about a thing coincide with contours of equafy1
dissimilarity then the information measure is minimised by
the single link classification; this is so because Inx is &
monotonic increasing function of x. ‘ 8

Let us now consider the form we would expect for f(/, §) on.
the basis of the structure we expect a classification to possess.
We consider that classification is profitable when the distri=.
bution of things in measurement space is nonuniform. Thé3
things should form groups each having members concentrated?
in a small region of measurement space. This implies that we
expect short interconnecting vectors to be more probable than
longer ones. Thus f(/, 6) should be some monotonic decreasing
function of increasing /, i.e.

Uy, 0) < f, 0); 1, > 1, .

Under such an assumption of f(/, 8), the implied dissimilarity
of two things is also a monotonic increasing function of
increasing distance between them. This property is, in fact,
possessed by many dissimilarity measures. Ball (1970), for
example, has plotted iso-dissimilarity contours for a number
of popular measures and all but measures based on the corre-
lation coefficient exhibit the above monotonic property.

n

*When f(/, 0) is a density (i.e. when continuous attributes are involved) the message length to specify a vector will be infinite unless each
vector ends on a region §u of finite size. This implies that each continuous measurement is made to a finite accuracy.
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Discussion

We have shown that an information measure designed for
numerically stratified hierarchic classifications favours the
method of single link providing that the probability of finding
one thing close to another in measurement space is a monotonic
decreasing function of increasing dissimilarity of the two things.
We have also shown that a reasonable form for the above
probability is a function which is monotonic decreasing with
increasing distance from a thing. This form of probability
density function f(/, 6) implies that dissimilarity is also a
monotonic decreasing function of increasing distance between
two things. Many dissimilarity measures in use actually have
this property.

It is interesting to consider the form of the probability density
p(x) of finding a new thing, with coordinates (attribute values)
X, amongst or near a group (i.e. a class) of things. Although no
explicit assumption has been made about this density, it is
unavoidably implied by the length of the optimum message
used to encode the attribute values of such a new thing. This
message length must have the form

—In p(x) ou ,

where p(x) éu is the probability of finding a thing within a
small region éu of measurement space with coordinates x.
As the position of a thing is optimally encoded by specifying
the length and direction of the vector linking it to its nearest
neighbour, the distribution p(x) assumed in the region of a class
of things is a piecewise combination of sections of the function
S, 6) each centred on a thing. A single section of f(/, 0) centred
on a particular thing surrounds the thing as far away as it
yields a higher probability than sections of f(/, §) centred on
other things.

The above composite model distribution for a class can be
visualised as a number of ‘mounds’ which are butted together,
not summed. Each mound is centred on a thing and has a
shape given by f(/, ). Thus we see that the probability of
finding a thing in a densely populated region of measurement
space can be no greater than finding a thing in a sparsely
populated region. All ‘mounds’ have the same height and the
probability of finding a new thing only depends on the distance
from the nearest thing. In fact the only way the class distri-
bution responds to dense clusterings of things is by raising the
levels of the valleys as they are filled by more and more
‘mounds’.

The above shape of class model distribution is extremely
uncoloured. It says: we don’t know exactly what shape of
distribution to expect within a class so all we will assume is that
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if a thing is observed at some point then it is likely that another
thing will occur nearby, that is with similar attribute values.
This seems a reasonable assumption when the set of things
being classified contains all known things of this type, as when
all species in a single family are being classified. In such case
the set of things is not a sample from a large population and so
the classes cannot be samples from a number of large sub-
populations. Therefore we are not really justified in setting up a
model probability distribution, such as a normal distribution,
within each class.

However, it is probably more often the case that the set of
things being classified is a sample from a large population.
In this case the form of the class distribution implied by single
link is not suitable because it is very limited in the way it can
respond to variations in the density of things in measurement
space. The probability of finding one thing at a small distance
& away from another thing is assumed to depend only on ¢ and
not on the density of the surrounding region of measurement
space.

The main manifestation of this problem is the well known
effect called chammg This has been described by Jardine andy
Sibson (1971b) as ‘one substantial defect’ of the single lmlg
method. Other undesirable effects can also be demonstrated$
For example, the hierarchic level of dissimilarity at which twc%
classes are combined will tend to decrease if the size of the;«
sample being classified is increased. The resulting increaseds
density of things in measurement space will tend to decrease the?
distance between nelghbourmg things so causing them to»
combine at lower levels in the hierarchy.
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Conclusion
By showing how the single link method of classification can be2
expressed in terms of an information measure we have beer
able to gain more insight into the method. We find that3
although single link makes no explicit assumption about they
expected distribution of thmgs within a class in measuremen@
space, such a distribution is actually implied in the methodg,
The form of this distribution turns out to be based on a mosts
uncoloured assumption. However, on further consideration we2
find that the distribution is only reasonable when the things?
being classified constitute all such things known. It is not suit-3
able when the things are a sample from a large population.

4 .6.6.0%/9¢€

Acknowledgement
We are grateful to C. J. Van Rijsbergen for his helpful<
comments and for pointing out a number of relevant references.c S

18y 61 U0 1SS

202 |

GOWER, J. C., and Ross, G. J. S. (1969). Minimum Spanning Trees and Single Link Cluster Analysis, Applied Statistics, Vol. 10, pp. 54- 64.Q
JARDINE, N., and SiBsoN, R. (1971a). Choice of methods for automatic Classification, The Computer Journal, Vol. 15, No. 4, pp. 404-406. R
JARDINE, N., and SiBsoN, R. (1971b). Mathematical Taxonomy, Wiley, London.

SHANNON, C E. (1948). A Mathematical Theory of Communication, Bell Sys. Tech. J., Vol. 27, pp. 379-423.

WALLACE, C. S., and BouLTON, D. M. (1968). An Information Measure for Classification, The Computer Journal, Vol. 11, p. 185.

WiLLiAMs, W. T., CLiFFORD, H. T., and LANCE, G. N. (1971).
The Computer Journal, Vol. 14, No. 2, pp. 157-162.

Group-size dependence: a rationale for choice between numerical classifications,

The Computer Journal



