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The problems of logic circuit complexity encountered in employing a conventional Boolean imple-
mentation technique for the synthesis of threshold gates have resulted in proposals for an alternative
technology for this purpose. In contrast to this, this paper presents a new technique for the efficient
synthesis of threshold gates from Boolean logic gates. Results obtained using this technique for a
range of different gate designs are shown to provide a highly efficient implementation without
incurring the large propagation delays created by factorisation of the minimised sum-of-product or
product-of-sum expressions. The technique thus provides an attractive solution for the implementation

of threshold gates from conventional technologies.

(Received October 1973)

1. Introduction

A threshold gate with n inputs and threshold ¢ (where ¢ < n)
provides a logic 1 output whenever the threshold ¢ is exceeded
and otherwise provides a logic @ output. In the case of all
inputs having unity weighting, the threshold ¢ is considered to
be exceeded when ¢ or more of the inputs are in the logic 1
state. In the case of inputs having other than unity weighting
(usually integers > 1) the threshold ¢is considered to be exceeded
when the sum of the weights of the inputs in the logic 1 state is
equal to or greater than the threshold ¢.

The requirement for threshold functions* arises frequently in
logic systems. In associative memories it is frequently necessary
to distinguish between single and multiple (2 or more) responses
to a match instruction requiring a gate with a threshold of two.
In a fault tolerant decoder with, for example, eight inputs, it
might be required to provide an output indicating when, say,
six or more of the inputs are satisfied. This function could be
provided either by a gate with a threshold of six detecting
satisfied inputs or a gate with a threshold of three detecting
unsatisfied inputs. An advantage of using threshold gates for
such applications is that by employing a gate with more inputs
than required, its effective threshold can easily be modified by
connecting the spare inputs to a logic 1 or a logic @ as required.

Threshold gates are not, however, only useful in these more
obvious threshold function areas. It is well known that
threshold gates can be employed in the implementation of
almost any logic function (including bistables) often offering a
considerable improvement in implementation efficiency (assum-
ing that the comparison is one of threshold gate count com-
pared to Boolean gate count). Because of this there is a strong
body of opinion which believes that ultimately threshold gates
will provide a higher level, more powerful, general purpose
building block in logic systems of the future, largely replacing
NAND and NOR gates which are in fact themselves specific
cases of threshold gates. Quite a lot of work has been published
on the use of threshold gates in the design of logic circuits and
is well summarised in the book by Hurst (1971).

Threshold functions, although conceptually very simple, have
so far proved difficult to implement. This is due to the large
number of terms appearing in their minimised sum-of-product
(SOP) or product-of-sum (POS) expressions. A direct imple-
mentation in Boolean logic gates would therefore result in a
prohibitively large number of gates. This could obviously be
reduced to some extent by factorisation, but the propagation
time is seriously degraded by this approach.

Because of the improvement in logic circuit implementation
efficiency offered by threshold gates and their consequent
potential as general purpose logic building blocks, it was felt

that there was a strong need for fully integrated devices.
However, due to the disadvantages arising from a straights
forward Boolean implementation approach, alternatlve:
methods were sought. The technique eventually employed waSv
one of analogue summation, whereby analogue current@l
generated by each input in the logic 1 state were summed ands
applied to a threshold level detector. Although this techmqu@
was used as early as 1967 to fabricate a fully integrated gatc’g
(Amodei, Winder, Hampel and Mayhew, 1967), the cost and’
fabrication problems of this process, so far, appear to havé‘»’
prevented fully integrated devices from becoming commercxall)%
available.

The technique presented here provides an attractive altere
native by which threshold functions can be implemented fron*”x3
currently available Boolean logic gates. The future fabrlcatlorg
of fully integrated threshold gates from existing processesy
such as TTL and MOS, is thus made possible without mvokm%
a new technology.
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2. Principle of the proposed technique
The technique is best illustrated by an example. Con51der thee
case of n =9, ¢t = 3. If the 9 input variables are representecﬁ
by ABCDEFGHJ then the minimised sum-of-productsg

expression consists of every possible combination of three o§
these, o
ie. ABC + ABD + ABE + ABF etc. g

and contains 84 terms. A direct implementation of this iff
Boolean gates would therefore require more than 84 gates. &
Consider the expression: S
ABC + DEF + GHJ . f

This contains all of the input variables, provides three of thé&
required terms and would require four gates for its 1mpIeN
mentation. Consider now the expression: R

A+B+COD+E+FG+H+J) .

This also contains all of the input variables and requires an
identical number of gates and gate inputs and outputs but
instead of providing only three of the required terms it pro-
vides 27. Hence, by employing the minimum number of
expressions of the above form necessary to provide all of the
required sum of product terms an extremely efficient imple-
mentation can be achieved.

Initially the 9 (n) inputs are arbitrarily divided into 3 (¢) equal
groups (it is assumed that n/r is an integer), the members of
each group being OR-ed together and the groups themselves
being AND-ed together.

ie(A+B+CD+E+F)G+H+1J).

*A threshold function is defined as a logic function which can be realised using only a single threshold gate.
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As pointed out above, this expression provides 27 of the
required 84 terms.

To obtain the next expression every possible expression of

this form is exhaustively searched to determine which provides
the largest number of new terms.* All expressions of the above
form will provide 27 terms but in every case except the first, a
number of these will have already been provided by the pre-
vious expressmns For this particular example the second
expression is:

A+D+GB+E+HC+F+17).

This contributes 21 new terms, 6 having been provided pre-
viously. This procedure is repeated until no new terms can be
found for any expression searched. In this particular example
two more expressions are found before this occurs
ie. A+ E+J)B+ F+ G)C + D + H)
and
A+F+HB+D+I)C+E+G).

Each of these two expressions contributes 18 new terms, thus
satisfying the required total of 84. An exhaustive search of all
stored expressions for each of the required sum-of-product
terms in turn can be used to check that all terms are provided.
During this procedure any variables not required in the gener-
ation of any of these terms can, if required, be eliminated from
the expression concerned (e.g. C and D from the final expres-
sion for n = 6, ¢t = 2 in Appendix 1.1). In the example under
consideration here, all terms are required in all expressions
and the complete Boolean implementation expression is
provided by the sum of all generated expressions,

ie T=A+B+C)D+E+F)G+H+J)
+A+D+G)B+E+H)(C+F+1J)
+(A+E+J)B+F+G)C +D + H)
+A+F+H®B+D+JC+E+G).

This, it can be seen, provides an extremely elegant and attractive
solution requiring only 17 gates with a maximum fan-in of 4.
It has the additional advantage of a small propagation delay
(3 gate delays), a small loading on the circuit inputs (4 logic
loads) and the symmetry of the overall expression makes the
loading on every circuit input equal. The above expression
therefore provides an attractive solution both for implemen-
tation as a logic circuit from discrete gates or as a fully inte-
grated device from a conventional digital technology.

This approach has been applied with similar success to all
gates with 12 and less inputs subject to the conditions ¢ < n/2
and n/t is an integer. Their respective gate and gate input and
output counts are summarised in Table 1 and the complete
Boolean implementation expressions of selected examples are
given in Appendix 1. For low values of n and ¢ (e.g. n = 4,
t = 2) the number of sum-of-product terms is small and little
or no improvement over the already simple solution provided
by a conventional approach can be offered. However, as the
values of n and ¢ are increased and the number of sum-of-
product terms increases it can be seen that the technique
employed offers an increasingly efficient implementation.
Since ¢ < n/2 the number of SOP terms will always be greater
than the corresponding number of POS terms. The terms
themselves will, however, be proportionately smaller.* The
SOP and POS expressions could, of course, be simplified by
factorisation. This has not been attempted in every case since
a fairly sophisticated computer program would be required for
some of the larger circuits. Selected examples have, however,
been examined in detail and have yielded the following results.
In every case the number of gate delays is significantly greater
than for the proposed technique. Typically for n = 9, ¢ = 3

Table1 Summary of gate requirements of threshold gate

circuits

Threshold  No. of IPS No. of SOP No. of No. of Gate
(1) (n) Terms Gates IP/OP’s
2 4 6 7 21

2 6 15 10 35

2 8 28 10 43

2 10 45 13 59

2 12 66 13 69

3 6 20 13 43

3 9 84 17 69

3 12 220 29 141

4 8 70 28 103

4 12 495 59 255

5 10 252 56 214

6 12 924 93 407

)
the factorised SOP and POS expressions yield 10 and 14 levelg

circuits respectively as comparcd to 3. In many cases the gate =
and gate IP/OP’s required remain significantly greater than for &
the proposed technique. Typically, for the above example

O
Q
Q

these are 27 and 86, and 31 and 94 respectively as compared to S S

17 and 69. Factorisation techniques can often also be applied

to the solutions obtained by the proposed technique. Small G
terms frequently occur in more than one expression and large 5

terms can usually be split into factors which occur in more
than one expression.

3. Extensions to the proposed technique

It is apparent that the frequent exhaustive searches required for g
execution of the algorithm described are only possible with the
use of a computer. A DEC PDP 12 computer was used to

obtain the results given here and the program was written in'S

assembly language to provide the maximum possible speed of
execution. Apart from the obvious disadvantage of requiring &
a computer to obtain solutions to any further problems, the =
execution time of the algorithm increases rapidly for larger &
circuits; this means that for a significantly larger circuit, the
solution would be impossible to find due to the execution time =
of the algorithm even though a relatively simple solution may 3
exist. Although the range of possible problems could be &
extended by improving the algorithm, employing a faster2
conventional computer and ultimately by reverting to parallel €
processmg techniques the same problem would still eventually
arise. To overcome this problem, an algorithm which arrives
at each required expression without reverting to an exhaustive

search of all those possible is required. This has not yet been .
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achieved for the general case but in the special case of a thres- :)

hold of two a technique has been devised and is discussed in g
Section 6.

4. Gate realisation when 7/t is not an integer

Although solutions for the case where n/t is not an integer have
not been attempted here, they are obviously possible to obtain
using a similar technique, the only difference being that the
expressions in this case would consist of unequal groups.
Solutions can however be obtained from the existing solutions
by the elimination of unwanted variables. These can either be
replaced by logic 0 in the final expressions or clamped to logic 9
in the circuit. A further alternative exists in the case of ¢ > n/2.
It was hinted in the introduction in connection with error

*Frequently there will be more than one expression providing the same number of terms, the choice is then arbitrary and in this example the

first one encountered is chosen.

*The product of the number of terms and the number of variables per term is identical for SOP and POS expressions for any » and ¢.
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tolerant decoders that threshold gates have in fact two thres-
holds. One is exceeded when ¢ or more of the inputs are in the
logic 1 state causing the output to change from logic 0 to logic 1.
The other is exceeded when (n — ¢ + 1) or more inputs are in
the logic 0 state causing the output to change from logic 1 to
logic 9. Clearly if ¢t > n/2 then (n — ¢ + 1) <n/2. It can
easily be shown by De Morgan’s theorem that for any ¢ > n/2
the solution can be obtained from that for a threshold of
(n — t + 1) by merely interchanging AND and OR signs. In
general this will result in a more efficient implementation when
these conditions apply.

5. Effect of non-unity input weightings

No mention has so far been made of the application of this
technique to gates with non-unity input weightings which
certainly represent an extremely important requirement. The
technique can obviously be used to implement gates with any
positive input weightings, provided they are integers, by
initially including an appropriate number of additional inputs
in the expressions. These can then either be allocated in the
required numbers to the actual inputs in the final expressions
or alternatively be connected to them in the final circuits. This
approach, although adequate, does not appear to exploit the
technique to its maximum advantage. Any increase in the
weight of an input results in a simplification of the sum-of-
products expression. Preliminary investigations have indicated
that the technique, in all probability, can be successfully
extended to take advantage of this.

Consider, for example, the case of n = 12, ¢ = 3 where 9 of
the inputs, ABCDEFGH]J, have unity weighting and 3, KLM,
each have a weighting of 2. A solution in this case can be
obtained intuitively from the unity weighted solution forn = 9,
t = 3 given previously, i.e.

=A+B+CMD+E+FG+H+1J)
+A+D+GB+E+H(C+F+))
+(A+E+J))B+ F + G)YC+ D + H)
+A+F+HB+D+N)C+E+G)
+[(A+B+C)+DO+E+FH+(G+H+1J)+K]
[L + M]
+[(A+B+O0O+MD+E+FH+G+H+J)+ L]
[K+M].

Alternative implementations of similar efficiency are obviously
also possible. It is anticipated that a detailed investigation into
such possibilities will form an important area of future work.

6. Special cases

1.t = 2, n = 2" where r is an integer.

The solution in this case requires r expressions. Consider for
example the case of 16 input variables denoted by
ABCDEFGHJKLMNPQR. This will require 4 expressions.
The input variables are divided into two, four, eight and sixteen
equal subgroups in the manner shown below, the final sub-
groups having only one variable each. The four expressions are
then formed by combining the alternate subgroups in each case,
ie.

T=(A+B+C+D+E+F+G+H)
J+K+L+M+N+P+Q+R)
+A+B+C+D+J+K+L+M)
E+F+G+H+N+P+Q+R)
+A+B+EBE+F+J+K+N+P .
C+D+G+H+L+M+Q+R)
+A+C+E+G+J+L+N+0Q
B+D+F+H+K+M+P+R)
ABCDEFGHJKLMNPQR

ABCDEFGH JKLMNPQR
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ABCD EFGH JKLM NPQR
AB CD EF GH JK LM NP QR

ABCDEFGHIJKLMNPQR.

This is identical to the computer solution which ‘would be
obtained for this example. This approach can easily be applied
to all cases which satisfy the above conditions.

2.t = 2, n # 2" where r is an integer.

The solution in this case will require r expressions where
2" > n > 2""1. The solution can be obtained by solving for
n = 2 in the manner described above and then eliminating the
unwanted variables from the expressions by assuming that
they will always be in the logic @ state. Obviously the best
solution is achieved by removing pairs of variables which
appear in different groups in every expression (i.e. A and R,
B and Q, C and P, etc. in the case of n = 16 given above) so
that the symmetry of the expressions is preserved. An examl-
nation of the expressions for each of the required sum-of<
product terms can then be used to eliminate any redundant
variables. This usually only results in the elimination of a fews.
variables from the final expression. The solutions obtained
using this procedure are identical to the computer solutions’
obtained, except that the input variables are denoted by dlﬂ‘erent3
letters.

?
N
7. Conclusions 8
Because of the problems encountered in applying a conventiona. E
Boolean implementation technique to the implementation o

threshold gates and the undesirability of reverting to a nevsg
technology, an investigation into a more efficient means of;
implementing this type of gate from Boolean logic elements®
has been made. As a result, a technique whereby the require

function is expressed as the sum of a number of product-of-sums
terms has been proposed together with an algorithm fog
providing this expression in the general case. In addition, &
simpler technique for the implementation of threshold gatesA
with a threshold of two without the use of a computer has beem
described and the future possibility of extendmg the techmquéﬁ
to handle non-unity input weightings is shown to appeaﬁs
promising. Results of all relevant cases up to and including lﬁ
input variables are summarised and are shown, in general tdn
provide a highly efficient 1mp1ementat10n without incurring thé&
large propagatlon delays experienced in factorised SOP and?
POS expressions. a

Hurst has predicted that, due to the problems of tolerancings
threshold gates with more than 7 input variables are unlikelys
to be built using ‘threshold’ technology. The proposed techZ
nique requires only 93 gates, most of which have only twcg
inputs to implement a gate with 12 unity weighted inputs and aﬁ
threshold of 6. This and larger gates could therefore easily be
fabricated on a single IC chip from a conventional digital
technology. The majority of the solutions obtained are of
similar complexity to TTL MSI integrated circuits and would
therefore prove even simpler to implement in MOS. The
technique thus provides solutions equally attractive for imple-
mentation of threshold functions from discrete gates and for the
fabrication of fully integrated devices from conventional
technologies.

One of the attractions of threshold gates is that a single gate
can be used to realise a large range of different Boolean logic
functions (Hurst, 1970). This is also true of programmable

read-only-memories; these, however, exhibit poorer propa-
gation delays and are considerably costlier than conventional
logic ICs as proposed here for the implementation of threshold
gates.
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Appendix 1 Examples of threshold gate designs
1.1. Threshold = 2
No. of Inputs = 6.
Input variables are denoted by ABCDEF.
T=A+B+CD+E+F
+(A+B+D)C+E+F)
+(A+E®B+F).

1.2. Threshold = 3
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Book review

APL Congress 73, edited by P. Gjerlev, H. J. Helms and Johs
Nielsen, 1973; 506 pages. (North-Holland, Dff 75.00.)

Since birth, APL has had its proponents and its opponents and,
as in other areas, reactions generated in any discussion quickly
become emotional to the extent of a love/hate relationship. Nat-
urally, the book under review, which represents the proceedings of
the APL Congress 1973 in Copenhagen, reports only the views and
attitudes of lovers. But this reviewer was pleased to note that he is
apparently not alone in developing a schizophrenic attitude to the
language. .

The conflict stems from the fact that, as demonstrated also by
many papers in the book, APL is an extremely useful language
when one wishes to get correct results in specific application areas.
That is, it is a valuable tool for the researcher in almost any area
and an aid whereby one may develop information processing tools
that may subsequently be used effectively by the uninitiated.
Pragmatically, APL has proved itself in many situations.

On the other hand, when APL is viewed from the point of view of
the programming theorist or the software engineer, it may be held
up as a model of what a programming language should not be.
Richness of operators, a single machine-oriented control statement,
outstanding interactive attitudes, are examples of language and
system features that facilitate the creation of unintelligible, poorly
structured and therefore, unmaintainable software. APL is just too
good to be put into the hands of mere humans.

Perusal of APL Conference 73 reveals that others share this un-
easiness. In the first paper ‘Program Writing, Rewriting and Style’
for example, Phil Abrams in his references to APL pornography
and to syntactic glue clearly outlines the traps one may so easily
fall into in developing large APL programs. By the time it is com-
pleted the program will be unintelligible even to the author. And
intelligibility of a program is perhaps its second most important
attribute.

The most important property is, of course, ‘correctness’ and this
topic is addressed in related papers by Feldbrugge and by Vervoort.
But practical program verification makes demands on the program-
ming language used, on programming style and on programming
methodology. Papers in this volume discussing this issue suggest,
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correctly of course, that freely used APL as such is inadequate from
this point of view and requires augmentation, particularly with
user-oriented primitives for control structuring. Equally important—
though the papers do not say this—is the fact that in practice,
protocol limiting the use of language primitives and features would
have to be adopted if confidence in the correctness of a proof is to
be greater than confidence in the correctness of the program in the
first place.

The proceedings contain some 67 papers, most of which are ap-
plication oriented; many with exotic titles and even more exotic
content. The breadth of coverage is remarkable and almost everyone
should find at least one paper of interest, though papers will usually
be understandable only to those who are already familiar with APL.
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In general then this is an interesting book to browse through for S

those who know APL. It is not a book to buy. And we may look
forward to even greater things from the (at the time of writing)
forthcoming Second APL Conference in Pisa.

M. M. LeamaN (London)

Field-effect Transistors in Integrated Circuits, by J. T. Wallmark and
L. G. Carlstedt, 1974; 153 pages. (Macmillan, £4-50.)

This book is well written and well translated, well structured and
well thought-out by authors who are truly authorities on the subject.
It introduces the principles of field effect devices adequately and
describes and demonstrates their use thoroughly in several relevant
applications. It is also uncompromisingly dull; it has no real
alternative to being so. The information with which it is packed is
valuable and much of it is essential knowledge for computer hard-
ware men if they are to be masters of the tools of their trade. But it is
hard reading for anybody who is not an enthusiast about electronic
devices for their own sake. It should provide a valuable library
book for teaching and engineering organisations in the computer,
field, since it contains the answers to many questions that computer
engineers must want to know as the use of field effect devices be-
comes increasingly widespread. It is not a book for reading by a
warm fireside with the TV on, after a hard day—but the wise hard-
ware man should find time to read it.

B. S. WALKER (Reading)
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