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This paper deals with aspects of the ‘on-ground’ compression of satellite data. The Shannon-Fano,
Run-Length and Hadamard Transformation methods of data compression are considered and the
results obtained when applying the techniques to the compression of ESRO 1 satellite data are
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1. Introduction

In many space research programs the information obtained by
satellites is transmitted back to earth where it is then stored for
subsequent processing and use. During the last decade, space-
craft data rates have been relatively low and, it has been
possible to process the received data, store them and, at some
later time, to recover them from store without too much diffi-
culty. More recently, however, the trends have been towards
developing spacecraft with data rates of the order of 100K
bits/sec. and this has meant that problems have started to arise
with respect to the amount of transmission channel bandwidth
that is necessary and the amount of ‘on ground’ storage that
has to be provided if the received data are to be preserved for
subsequent analysis.

If the data could be compressed in the spacecraft, that is, if
the redundancy could be removed by equipment placed in the
spacecraft, then the channel bandwidth and on-ground storage
requirements would both be eased. At present, however, the
complexity and weight of the hardware necessary to provide
worthwhile redundancy reduction tends to limit the ‘on-board’
compression and this means that the problem of reducing the
data storage requlrements has to be considered in terms of the
on-ground compressmn of the received data.

This paper is devoted to a consideration of various techniques
for removing redundancy from the received data. The tech-
niques have been implemented using a general purpose com-
puter, and associated software compression packages have been
developed. The compression techniques are designed to take
advantage of the statistical regularity and predictability of the
data. By applying the techniques to the incoming data it is
possible to remove the non-information bearing elements from
the received signals and leave behind, for storage, only those
elements that actually carry information. In this way the
‘on-ground’ storage requirements for satellite data can be
reduced. In the sections which follow, the Shannon-Fano, a
modified Shannon-Fano, Run-Length and Hadamard Trans-
formation methods of data compression are considered and the
results obtained when applying them to ESRO 1 satellite data
are given. It is shown that it is possible to reduce the necessary
data storage capacity by factors of up to 10: 1, with some slight
loss of accuracy. The amount of reduction that can be achieved
depends on the statistics of the data and the fidelity with which
it is desired to reconstruct the actual input data from the
stored compressed data.

2. Data compression techniques

2.1. Introduction

The rigorous scientific foundation for bandwidth and data
compression is to be found in Shannon’s classic work on the
mathematical theory of communication (Shannon, 1948).
Shannon’s work can be divided into two quite distinct parts.
The first part deals with measures of information and with the
efficient encoding of the output of a data source. The second
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part, which is not important in the context of the present paper,
deals with the problem of the reliable transmission of infor-
mation over noisy communication channels, and gives rise to
specialised subjects such as ‘error correcting codes’.

In his work on information measures and source encodmg,
Shannon developed a measure of information called thke
‘entropy function’ and, in his ‘noiseless coding theorem’, IR
gave the entropy function direct physical meaning when l&
proved that it is possible, without any loss of ﬁdehty, to eithér
transmit or store the output of a data source using an averagc
number of binary digits that can be made as close to the entropy
function as desired. Shannon further proved that it is not pos-
sible to either transmit, or store, the output of a source W1ﬁi
complete fidelity when using an average number of bmag/
digits which is less than the value of the entropy function. THe

“branch of information theory called ‘Rate Distortion Theory’

(Berger, 1971) deals quantitatively with the question of how
many binary digits have to be used in order to transmit or stoge
the output of a data source to within a desired degree éf
fidelity.

To encode a data source, and to do so usmg an average numb@r
of binary digits that approaches the minimum number spemﬁélj
by the entropy function, it is necessary, in general, to employ 4
increasingly complex encoder and decoder. In general, the
average number of binary digits used approaches the entropy
function as a limiting process and only in certain rather spec%
cases can the source be encoded using an average number gf
binary digits equal to the entropy function without usmg@
complex encoder/decoder. The study of data compression is
really a study of how to encode a data source so as to reduce
the average number of digits used in encoding to a value tlﬁ)
approaches the value of the entropy function, and how to
this with fairly simple encoding/decoding equipment and
procedures.

In this paper a number of methods of data compression af?a
considered. The results of applying the methods to ESRO,@
satellite data are given and the efficiency of the compression ﬁ%
compared with that known to be possible from the zero-order
entropy of the source. As mentioned previously, the processes
of data compression and decompression were carried out
using a general purpose computer and associated software
packages.

2.2. Shannon-Fano, Run-Length and Hadamard transformation
methods of data compression

2.2.1. Compression by Shannon—Fano encoding
Two fairly simple methods exist for the encoding of finite-
length sequences of source symbols. The first method is due to
Shannon and Fano (1948) and the second method is due to
Huffman (1952).

The Huffman encoding scheme is optimum in the sense that no
other encoding scheme uses a smaller average number of code
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symbols and it is, therefore, generally slightly superior to the

Shannon-Fano scheme. However, it is found in practice that,

more often than not, the two encoding schemes result in code-

word lengths* that are identical, and, when differences do occur,
they involve the low-probability code-words and have little or
no effect on the overall compression ratio that can be obtained.

Also, the Huffman encoding procedure is slightly more difficult

to structure and to program than the Shannon-Fano scheme

and, therefore, since the Shannon-Fano encoding scheme is
near optimum it was decided to use it rather than the Huffman
scheme in the investigation of the compression of satellite data.

The basic idea underlying the Shannon-Fano method is that
the most frequently occurring source signals are encoded using
short-length binary code words and the less frequently occur-
ring signals are encoded using longer binary code words. A
similar idea forms the basis of the familiar Morse code.

The Shannon-Fano encoding technique was applied to ESRO
1 data. To do this software packages were written which
enabled the following operations to be performed:

1. The data were examined and an estimate, P;, formed of the
probability that the data source would generate as signal
output the amplitude i. In the case of ESRO 1 data the output
was in the form of 8-bit PCM words, and hence it was

possible for i to have, at any one time, an integer value in the
range 0 to 255.

i=255
2. The zero-order entropy, H = 2 P;log, (1/P;), was com-

puted.
3. The Shannon-Fano encoding book was constructed using

the information obtained in operation (1), and the data were

encoded and the compression ratio computed.
4. The encoded data were decoded to obtain the original data,
and the decoding time was evaluated.

The_ results obtained from applying the Shannon-Fano
technique to a number of ESRO 1 data channels are given in
Table 1. The compression ratio, which is defined as:

Number of binary digits in input sequence

CR = ’
Number of binary digits in output sequence

varies from a maximum of 1-81:1 to a minimum of 1-44:1,
with an average compression ratio of 1:60: 1. The compression
ratios obtained are seen to be close to the maximum ratios that
the zero-order entropies indicate as possible. This closeness
indicates that the Shannon-Fano technique is highly efficient
as a means of encoding 8-bit outputs, rather than that the
maximum possible compression has been achieved. The zero-
order entropy indicates only the maximum compression that
can be achieved when successive outputs are statistically
independent. In the case of ESRO 1 data, successive outputs
were found not to be statistically independent and higher
compression ratios are thus possible. One method of increasing
the degree to which the data could be compressed would be to
use the Shannon-Fano technique to encode groups of source
signals rather than to encode individual source signals. The
difficulty with this technique is that the number of code words
in the encoding book increases exponentially as the number of
source signals encoded at any one time, and this thus places
excessive demands on the available core storage. With ESRO 1
data, for example, the source can generate any one of 256
different possible outputs, and hence to encode pairs of

Table 1 Shannon-Fano encoding applied to individual data

samples

Zero order Compression  Compression

entropy (bits| ratio based on

8-bit sample) zero-order

entropy

MIN 4-34 1-44:1 1-46:1
MAX 5-46 1-81:1 1-83:1
AVERAGE 507 1-60:1 1-58:1

Table 2 Shannon-Fano encoding applied to difference between
adjacent data samples

Zero-order Compression ~ Compression
entropy of ratio ratio
differences on zero-order
(bits/8-bit entropy
sample

MIN 3-22 2:04:1 2:08:1

MAX 3-84 246:1 2:48:1

AVERAGE 3-52 2:24:1 2:28:1

outputs it would be necessary to have an encoding book
consisting of 256> = 65,536 binary code words.

In an attempt to take advantage of the statistical dependence 5
between adjacent data samples, and to overcome the sen-
sitivity of the Shannon-Fano technique to changes in datag
StatIStICS'l' a modified application of the Shannon-Fano tech-
nique was investigated. This modification consisted of applymg

"OlWepeo.//:sd)y Wol) papeojumoq

O

O

o

the technique to differences between the adjacent data samples.%

The results obtained when using the modification are shown in &
Table 2. From the table it is clear that the modification results &
in an increase in the compression that can be achieved.

2.2.2. Compression by Run-Length encoding
Run-length encoding has been used successfully as a means of
reducing the bandwidth necessary for the transmission of
television signals (Cherry et al., 1967).

In this section a number of modlﬁed versions of the basic
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run-length encoding techniques are considered and the resultsg
obtained when using them to compress satellite data are given. &

The basic idea of run-length encoding is that if a number of g
adjacent data samples have the same value (amplitude) thenz

o

N

they can be considered to constitute a run, and the information >
contained in the run can be either transmitted or stored usmg—-
only the amplitude of the first sample, and the length of the run. o

It is not necessary to transmit or store all samples in the run. *
Modifications to the basic run-length encoding technique are
associated mainly with the way in which the ‘length-of-run’
information is encoded. When studying the compression of
ESRO 1 data three methods of encoding the length of run
information were investigated. In the first method the lengths
of all naturally occurring runs were encoded using a Shannon—
Fano code, in the second method naturally occurring runs
were broken down into sequences of permissible sub-runs and

*With Shannon-Fano and Huffman compression schemes a source symbol, or, in more complex encoding, a group of source symbols are
encoded into and are therefore represented by a sequence of binary digits called a ‘code-word’. The number of binary digits in the code word
is referred to as the ‘code-word length’ and the complete set of binary code words used to represent the source symbols is termed ‘the encoding

book’.

+It can be seen (Fano, 1961) that the structure of the encoding book depends on the probability with which the various source signals occur.
It thus follows that if the probabilities change then the encoding book should be changed. Failure to do so may result in data expansion

rather than compression!
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Table 3 Natural runs divided into permissible sub-runs

Length of run Sequence of permissible sub-runs used to
represent run
1 1
3 2,1
8 52,1
30 92,909,2,
100 92,909,9, ,9,999991

NB Runs of lengths 1, 2, 5 and 9 were adopted as permissible
runs

Table 4 Compression by run-length encoding with zero
aperture

Run-length encoding

Method 1 Method 2 Method 3
Comp. Assoc. Comp. Assoc. Comp. Assoc.
ratio RMS ratio RMS ratio RMS
error error error
MIN 1112 0 1-07 O 0987 0
MAX 1171 0 1-53 0 126 0
AVERAGE 132 0 123 0 109 0

analysis revealed that between 69 per cent and 79 per cent of
all runs were of length one.

In an attempt to increase the length of the runs, and thereby
increase the extent to which the data could be compressed, the
technique of “finite aperture sampling’ was used. With finite
aperture sampling, samples are considered to be the same if they
differ by less than a predetermined amount. In the tests on the
ESRO 1 data the two sizes of aperture, + 1 PCM quantisation
unit and +7 PCM quantisation units, were used*. These
apertures correspond respectively to 4 1/256 = 0-4 per cent and
+7/256 = 27 per cent of peak signal value; and it follows that,
when using an aperture of size +1 PCM unit, the maximum
error that can occur between the original and the reconstructed
data is 0-4 per cent of the peak signal value. When sampling
with an aperture of +7 PCM units this maximum error
increases to 2-7 per cent.

The extent to which the satellite data could be compressed
when usmg run-length encoding with finite aperture sampling
is shown in Table 5 and Table 6.

On consideration of Tables 5 and 6 a number of important
points are 1mmed1ately apparent. The first point to note is tham
Method 1 is clearly more efficient than either of the two othﬁ'
methods. This is to be expected since with Methods 2 and 3 g
restriction is placed on the maximum permlssxble run-lengtl%
A second point to note is that, as regards compression efficiency,
there is little difference between Methods 2 and 3. As regards
practical implementation, Method 1 is more difficult to
implement than Methods 2 and 3, and Method 3 is easier t®
implement than Method 2. The difficulty associated wi@
Method 1 stems from the fact that the number of diﬂ'erex%

=

the lengths of the sub-runs were encoded using a Shannon-
Fano code. In the third method the naturally occurring runs
were again broken down into sub-runs, and the lengths of the
sub-runs were encoded using a set of fixed-length 2-bit code
words.

The way in which naturally occurring runs were broken down
into sequences of permissible sub-runs is shown in Table 3.
The set of permissible run lengths of 1, 2, 5 and 9 were chosen
in an arbitrary manner since, at present, the answers to the
questions of: ‘What constitutes an optimum set of fixed run
lengths ?” and ‘How should the set be determined from and how
is it related to the probability distribution governing the natur-
ally occurring run lengths ?°, are not known. In a general sense
these are quite fundamental questions that should be examined
further since in practice the number of naturally occurring runs
will be large, and, therefore, run-length encoding using natur-
ally occurring runs will require large encoding and decoding
books which tend to be prohibitively complex. On account of
this code-book complexity it is highly likely that any hardware
implementation of run-length encoding will involve the use of a
limited set of permissible run-lengths, and it is therefore neces-
sary to know how to determine the set.

The results obtained when applying the three versions of run-
length encoding to compress ESRO 1 data are shown in
Table 4. From Table 4 it can be seen that the first method is the
most efficient, and that the second method is slightly better than
the third method. If the results of Table 4 are compared with
those of Tables 1 and 2 it will be noted that the compression that
can be achieved by run-length encoding appears to be some-
what disappointing. The reason for the poorness of the result is
that the ESRO 1 data contained very few long runs and con-
sisted mainly of runs of length equal to one. The data used
in the study were specially selected by ESOC to provide a
stringent test of the compression techniques investigated and

Table 5 Compression by run-length encoding with a +1 PCM
quantisation unit aperture

8

Run-length encoding g

Method 1 Method2 ~ Method3 5

Q.

Comp. Assoc. Comp. Assoc. Comp. Assoc.%

ratio RMS ratio RMS ratio RMS &

error error error §

(pem (pem (pem =

units) units) units) %

MIN 1-74 057 158 087 152 0-87 E
MAX 2442 048 207 065 200 065 <
AVERAGE 2:04 056 180 078 172 078 3

Table 6 Compression by run-length encoding with a +
PCM quantisation unit aperture

ieoz 1idy 41 up

Run-length encoding

Method 1 Method 2 Method 3
Comp. Assoc. Comp. Assoc. Comp. Assoc.
ratio RMS . ratio RMS ratio RMS
error error error
(pem (pem (pem
units) units) units)
MIN 326 265 265 287 2:60 2-87
MAX 990 300 494 276 477 276
AVERAGE 566 273 352 282 345 2:82

*The apertures were obtained by discarding the appropriate binary-digit differences in the 8-bit representation of data samples.
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naturally occurring runs may be very large and hence the
associated Shannon-Fano code book (which has to be stored)
may also be very large. With Methods 2 and 3 the size of the
code book is determined by the number of different run-lengths
that are permitted. Method 3 is simpler than Method 2
because the encoding and decoding procedures are easier to
perform with fixed-length than with variable-length code words.

From Tables 5 and 6 it can be seen that average compression
ratios of about 3-5:1 are possible with Methods 2 and 3 and
that with Method 1 the average compression ratio is approxi-
mately 5:1. Although these results are not startling, they are
encouraging, especially when it is realised that the data used
in the study were of a much more fluctuating nature than that
likely to be encountered in general.

2.2.3. Compression by Hadamard transformation encoding
Fairly recently (Pratt et al., 1969) the suggestion has been
made that signal transformation techniques such as the Fourier
and Hadamard transformations may be useful as a means of
reducing the bandwidth necessary for the transmission of
television pictures. In this section the application of the
Hadamard transformation to data compression is described and
the compression results obtained when applying the technique
to ESRO 1 data are presented.

The basic idea underlying compression by the Hadamard
transformation technique is that by the process of trans-
formation some of the redundancy may be removed from the
signal, and, therefore, if the signal is stored in the form that it
has in the transform domain less storage capacity may be
necessary.

A more detailed understanding of the functioning of the
Hadamard transformation, and of the reasons why it may be
used to achieve data compression, can be gained from an
examination of the process and from consideration of a simple
example. In applying the Hadamard transformation technique
the data are broken down into blocks of N2 samples and, for
each block, the samples which are denoted by x,, x,, . .
are arranged as an N x N data matrix

X1 oeooeXN2-N+1
[D(X)] = | : :

XN

. XN2

xNz

The Hadamard transform matrix, G(U) is then obtained using
the matrix equation

[6(U)] = [H]- [D(X)] - [H] (1)

where [H] is an N by N Hadamard matrix and [ D(X)] is the
data matrix.

As an example, suppose four data samples x;, x,, x3 and x,
are arranged as 2 x 2 matrix

X, X
D X = 1 3 ’
[ ( )] [xz x4]
and the Hadamard transformation is taken according to

Equation 1 by using the 2 x 2 Hadamard matrix [i _:] .

If this is done the Hadamard transformation is found to be

[6(V)] = [Z; Zj] = [i _i] [2 fcj E —1] B

I:(xl + x2 + X3 + JC4) (xl + x2 - x3 - X4)]
(x1 — x3 + x3 — xg) (x; — X — X3 + Xy)

It will be noted that the element u, is comprised of the sum of
the data samples and that the elements u,, u3, and u, are made
up of sums and the differences of the data samples. It thus
follows that if the data are slowly varying, that is, samples do
not change appreciably over the set, then the element u, will be
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large and all other elements will be relatively small. It is this
fact which makes data compression possible. If the data
samples are slowly varying over the set then compression can
be achieved if only the large elements of the transform matrix
[G(U)] are stored, and all other elements are set to zero or
some small value.

Analternative interpretation of the Hadamard transformation
method of data compression can be given in terms of an ortho-
gonal function representation of data sequences. It is possible
to show (Turner, 1973) that the transformation of Equation 1
yields exactly those coefficients that are obtained when the
data sequence x,, . . ., xy2 is expanded in terms of N? Walsh
functions. This can be seen more clearly by considering again
the example of above. If the normalised Walsh functions
Wal (al) = 1/4(1, 1, 19 1), Wal (az) = 1/4(11 _19 1, _1);
Wal (a3) = 1/4(1, 19 _1’ —1)9 Wal (a4) = 1/4(11 _15 _1’ 1)
are used as orthogonal basis vectors and the data sequence
X3, X3, X3, X4 is expanded as a sum of these Walsh functions,
that is,

(x4, X3, X3, X4) = a, Wal (a,) + a, Wal (a;)) + a; Wal (a3)
+ a, Wal (a,) ,
then it is found that the coefficients, which are obtained by

making use of the orthogonality properties of Walsh functions,
are

a, = (x; + x, + x3 + x4);
ay = (X1 — X3 + X3 — X4);
az = (x; + X, — X3 — X4)

and
a, =(x; —x, — x3 +x,) .

If the data are slowly varying then Wal (@,) will be the
major contributing term in the expansion representing the
data sequence, and the associated coefficient, a,, will be large
and all other coefficients relatively small. It will be noted that
the coefficients a,, a,, a; and a, are exactly the same coefficients
that were obtained as elements of the transform matrix

[G(U)].
If [G(U)] is used to denote the stored compressed data
matrix then an estimate, [ D(X)], of the original data can be

obtained from the stored matrix [G(U)] by using the equation

[DCN] = 20 [HIIG)ILA] @

It should be noted that if [G(U)] = [G(U)] then [D(X)] =
[D(X)], that is, the data can be recovered without any loss of
fidelity.

In applying the Hadamard transformation technique to
ESRO 1, data, blocks of 16 data samples were used and a

Table 7 Methods of encoding the transform matrix [G(U)]

Matrix Encoding scheme
compression
method no.
1 12 bits to encode element a
3 bits to encode each of elements b, . . ., p.
2 12 bits to encode element a
3 bits to encode each of elements b, f, e
2 bits to encode each other element.
3 12 bits to encode element a
2 bits to encode each of elements b, . . ., p.
4 12 bits to encode element a

3 bits to encode each element b, f, e
Neglect other elements.
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Table 8 Compression ratios and associated RMS errors
obtained with Hadamard transformation encoding

1 2
Comp. RMS Comp. RMS
ratio error ratio error
(pcm units) (pcm units)
MIN 225 6-50 2-85 6-67
MAX 2:25 23-50 2-85 23-60
AVERAGE 225 15-27 2-85 15-42
3 4
Comp. RMS Comp. RMS
ratio error ratio error
(pem units) (pcm units)
MIN 3-05 6-71 6-10 6-77
MAX 3-05 2370 6-10 23-70
AVERAGE  3:05 15-49 6-10 15-42

number of different methods of compressing the transform
matrix,

a b c d
_le f gk
UM =|; 5 & 1
mmn o p
I 1 1 171 [x x, x3 x4 1 1 11
1 -1 1 -1 X X6 X7 Xg 1 -1 1-1
- 1 1 _1 —1 xg xlo x“ xlz 1 1 - 1_1
1 -1 -1 1 X13 X14 X15 X316 1 -1-11
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were examined. The methods used are shown in Table 7 and
the overall data compression obtained from the application of
these various matrix compression schemes are shown in Table 8.
If the results of Table 8 are compared with those of Table 6
it will be seen that Matrix Compression Methods 1, 2 and 3
give overall data compression ratios that are not significantly
different from those obtained by run-length encoding, but that
the RMS errors are much worse than those resulting from run-
length encoding. In the case of Matrix Compression Method 4,
the overall data compression ratios are generally higher than
those obtainable by run-length encoding. At present, tests are
being carried out using larger apertures to determine the data
compression ratios that are obtainable with run-length encod-
ing for RMS errors similar to those that arise with Hadmard
transformation encoding and matrix compression method 4.

3. Conclusions
In this paper, various techniques of data compression have
been considered, and the results obtained when applying them
to ESRO 1 satellite data are given.

An inspection of the Tables shows that, in general run-lengtg
encoding tends to give the best compression results;
particularly when apertures are employed. If apertures canng
be used then the modified Shannon-Fano technique gives the
best compression.
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