Two algorithms for the solution of polynomial
equations to limiting machine precision

J. A. Grant* and G. D. Hitchins?

Two algorithms are presented for the solution of polynomial equations, one for real coefficients, the
other for complex coefficients. The theoretical development of the method used is briefly reviewed,
together with a fuller account of its practical implementation.

(Received August 1973)

1. Introduction

In an earlier paper (Grant and Hitchins, 1971) it was shown
how a minimisation technique could be used to give an always
convergent algorithm for finding the roots of a general poly-
nomial equation. [A similar approach has been suggested in
Moore (1967) and Moore (1973).] There it was proposed that
the algorithm should be used to find good initial approxi-
mations ready for refinement using the standard Newton or
Bairstow iterations until limiting machine precision is attained.
Here two implementations of the method are given, one for
polynomials with real coefficients, the other for polynomials
with complex coefficients. For both, the one method is used
until the calculated value of the polynomial at the estimate of a
root lies within a computed error bound, indicating that no
further refinement of the root can be made and that it has been
found as accurately as the machine precision permits.

The implementations are given in the form of ALGOL 60
procedures realpolsolv and compolsolv, written on the assump-
tion that they will be used on a computer using binary arith-
metic, one of the parameters of the procedures specifying the
accuracy of the floating point arithmetic used.

In Section 2, the main features of the method are briefly
reviewed. Section 3 is devoted to the question of terminating
the iterations, whilst other particular points in the imple-
mentation are described in Section 4. Finally, in Section 5,
some account is given of the tests the algorithms have under-
gone to check their robustness. The algorithms themselves are
given in Appendix 1.

2. Basis of the method
Consider the polynomial
f@) =ay +az" ' +... +a, 0))
where the coefficients a, may be real or complex. Let
f2) = f(x + iy) = R(x,y) + iJ(x, y)
where R and J are real functions. Then the problem of finding
a zero of (1) is equivalent to finding a solution of the pair of
non-linear equations
R(x,y) =0=J(x,y) 2
which, in turn, is equivalent to finding a minimum of the
function
¢ = ¢(2) = R*(x, y) + J*(x,). 3
In the earlier paper, it was proved that a minimum could be
found using the following algorithm:
(a) choose some initial point z,;
(b) at the point z, evaluate the correction vector

1 RR, + JJ, @
R? +J2 \UR, - RJ,

where R, J and the partial derivatives R, and J, are all taken

4z, = —

atz,;
(c) for A, =1,%, 4, ..., set z¥ =z, + 4,4z, and choose 4,
as large as possible, say AM,) that

d(z,) — ¢(zY) > 24(z,)0 &)
where ¢ is some small positive number, in practice ;, — 4;
(d)set z,,, = z, + Aydz, and, if sufficient accuracy has not
been achJeved when taking z,,; as an estimate of a zero of
(1) return to (b).

[In the later discussions, the whole minimisation process w11E
be referred to as ‘a search’, whilst stage (c) will be referred to a%“
‘a step’.]

The only difficulty that can arise within a search is that zU
may be at or near a saddle-point of ¢, when 4z, will be elthei’i
undefined or large. o

However, to use the above as the basis of a complete polym
nomial solver, some deflation process must be associated with itz
Thus, there are five major points to be considered in ang
1mplementat10n

09/woo°d

1. The choice of initial point for a search
Assuming that forward deflation is to be used; it is desirable t@
find the roots in increasing order of modulus. Thus a sens1bl§
choice for the initial point would appear to be the originz
Since, however, in the case of a real polynomial, a purely reab
estimate for a root leads to another purely real estimate, it i
necessary to start from a point displaced from the origin an&
generally z, is taken to be 0-001 + 0-1i. An option, however, i
built into the procedures of starting from an alternative poin
in the search for the first root.

6 Aq 01280V

2. The test for closeness to a saddle point

At a saddle point, R, = 0 = J, and the immediately obviou§
test would be one on R2 + J2. However, R, = 0 = J, wil]
also hold at a multiple root, when R? + J2 will also be zer
which will not be the case at a saddle point. Thus a usefi

test must involve both R? + J 2 and R’ + J. Now E
N
o
Az=—A1 RR, + JJ, N,
" R? +J2 \JUR, — RJ,
whence
R*+ J?
|4z,|* = m

and in the neighbourhood of a saddle point this could be
expected to be O(p~?) where p is the maximum relative error
in any floating point operation. Thus having calculated R, J,
R, and J, at z,, the quantity

KR* +J% — (RZ+JD)
where k is some small number depending on the working
precision, is examined. If it is negative, the direction of search

*Department of Mathematics, University of Bradford, Bradford BD7 1DP.
tCentre for Computer Studies, University of Leeds (now at the Computing Centre, University College, Cardiff).

The Computer Journal

should be meaningful, though the predicted step may still be
large; if it is positive, it is possible that the search has led to a
saddle point.

In the earlier paper, it was explained how the Lehmer—Schur
algorithm could be used to determine a sensible movement
away from a saddle-point. In practice, the implementation
requires a good deal of coding, which has only rarely been
required, and then only for artificial problems. Thus it was
decided to adopt an ‘ad hoc’ approach, an exit from the
procedure being forced when a saddle point situation has been
detected, re-entry with an alternative starting point for the
current search being allowed.

3. Restriction of step-size

The desirability of finding the roots in increasing order of
modulus and the possibility of predicting a large step in a
meaningful direction have both been mentioned. To encourage
the former and to nullify the effect of the latter, it was decided
to impose the restriction that the maximum step length that
could be taken at any stage should be unity. Thus, having
found that the predicted direction of search is a valid one

s? = |4z,|?

is calculated. For s < 1, the iteration proceeds normally.
Otherwise Az, is replaced by Az/s, which is equivalent to
replacing ¢ in (5) by 6/s. With this restriction on step-size, it is
desirable to transform the polynomial to ensure that it has at
least one root within the unit circle. Use is made of the Schur
algorithm (Ralston, 1965) to test whether there is a root in the
unit circle; if not, the transformation z — 2z is applied re-
peatedly until the test is satisfied. For higher degree polynomials,
this can lead to large coefficients and a normalisation consisting
of division by an integral power of 2 is used, the power being
chosen to make the product of the non-zero coefficients
approximately equal to unity. If necessary, the transformation
and the normalisation are repeated after each deflation.

4. Termination of the iteration

The basic iteration can be used to limiting machine precision
in the sense that it is terminated when the calculated values of
R and J are less than the possible accumulated rounding error.

A fuller discussion is given in the next section.

5. Deflation process) .
Although the roots are generally found in increasing order of

modulus, composite deflation as advocated in Peters and
Wilkinson (1971) is incorporated into the procedures.

3. Evaluation of R and J and the termination of the iterations
In this section, the analysis of Peters and Wilkinson (1971) is
followed and similar notation is used. It is assumed that

filxty)=xx /1 +e)
Ax x y) = xy(1 + ¢)
Axy) = x(1 + ¢)fy

where |e] < p = 27%, with ¢ the number of binary digits in the

mantissa of a floating point number.

Basically, there are two types of evaluation to be considered:
(a) a real polynomial taken at a complex point;
(b) a complex polynomial taken at a complex point.
For the former, Wilkinson (1965) is followed, leading to the
evaluation of the polynomial (1) at the point x + iy by using

the recurrence

bo = ag, by = a; — pbo
b, = ay — pb—y — qbi-2, k=23,..,n—1
bn =a, + xbn—l - qbn—z ’

where p = —2x and ¢ = x? + y* when

Volume 18 Number 3

fx+iy)=0b,+iyb,.y =R+ iJ .
Adams (1967) derives an error bound on the calculated func-
tion values, which under the assumptions given above and
using single length arithmetic only, is given by the recurrence
eo = 08]bg|
e = Ix +iylee_y + |bul = Vqe-1 + |bul, k=1,2,...,n
when

Ifx + iy) = (R + iD)] < Qlxb,—4| — 816, + Valb,-4l)
+ 10e,)p = E

and x + iy is accepted as a zero if
Jé=|R+iJ|<E.

Assuming that e, dominates the expression for E and that the
maximum relative error in taking a square root is p, allowance
can be made for the rounding errors committed in the evalu-
ation of E by replacing E by E(1 + p)**+.

Wilkinson (1965) also shows that the required values of R, and
J, can be found by extending the algorithm thus:

co = by, ¢4 =by — pcoy
e =by — pey—y — qk—2, k=2,3,...,n—3
Cp2 = bn-2 — qCp—s
when
Rx = _zyzcn—3 + bn—l
and
Je = 2y(xCp-3 + €,-3) -

For the evaluation of a complex polynomial for a complex
argument, the complex form of the standard Horner algorithm
is used. For

f@) = (ap + ibo)z" + (a; + ib)z" ' + ... + a, + ib,
with a,, b, real, taken at the point x + iy, use is made of the
recurrence relations

Co = ay, do = by
Cp.= XCmy — Yoy + @ k=1,2,...n
di = y&y—y + Xd—y + by

when R = ¢, and J = d,. Analysis of this algorithm (Appendix
2) shows that an error bound can be computed using the
recurrence
go=ho=1

g = Ixl(8k-1 + lex=1l) + I¥I(i—y + |di—1]) + lal + 2|ck|}
by = [YI(8k-1 + le=1D) + Xy + |di—1D) + [bel + 2]dy|

k=12,..,n
when bounds on the errors in R and J are given by pg, and ph,

respectively, or, allowing for possible errors committed during
the evaluations of g, and A4,, more precisely by

pg(1 + p)* and ph,(1 + p)*" .

Thus x + iy is accepted as a root of the complex polynomial
when

IR| < pgi(1 + p)*" and |J| < ph,(1 + p)*" .

The required values of R, and J, are again readily found by

extending the basic recurrence:
Uy = Co, Vo = dp

Up =Xty — V01 + G| p _ 1 o n—1
U = Y-y + X0y + 4 e

when R, = u,_, and J, = v,_;.

259

20z 1dy g1 uo 3s8nB Aq 012807/852/€/81/2101E/|UlWwod/Wwod dno"olwspeoe)/:sdjy Wolj POPEOJUMOQ

=

4. Organisational details

It is hoped that the bodies of the two proceduresrealpolsolvand
compolsolv given below are largely self-explanatory. There are,
however, certain less obvious points.

1. Function evaluation and the test for convergence

These are embodied in a parameter-less procedure statement
called function, the algorithms described in Section 3 being
used to evaluate R, J, R, and J, at a given point. In realpolsolv,
the test on convergence is applied on each function evaluation,
the boolean sat being set to true when the test shows that
convergence has taken place. For compolsolv, the convergence
test is not applied immediately as it involves more than a
doubling in the time of the function evaluation; instead it is
activated (using sat) when either more than 20 steps have been
taken in a search or the last step taken was less than ;o — 5.

2. Preliminary tests on the polynomials

Two tests are included to detect extreme cases. One leads to an
error exit if it is found that either the leading coefficient is
exactly zero, or the degree is less than one. The other detects
simple and multiple roots at the origin.

3. Scaling of the polynomial

As mentioned above, the coefficients in the polynomial may get
large due to the transformations used to bring a zero within the
unit circle. To avoid any resulting difficulties, the coefficients
are scaled by an integral power of 2, chosen so that the product
of the moduli of those coefficients (with modulus greater than
10 — 5) is of the order of unity.

4. Transformation of the polynomial

The Schur test is used to see whether or not there is a zero in
the unit circle; if not, the transformation z — 2z is applied.
A record of the number of such transformations is held by
means of the variable fac which equals 2* when r transfor-
mations have been applied. ‘This form was adopted for the
convenience resulting when having to transform calculated zeros
to zeros of the original polynomial. The inverse transformation
must also be applied to the coefficients of the deflated poly-
nomial before the forced exit brought about by the detectio
of the possibility of a saddle point. :

5. Acceptance of and deflation with a calculated root

When a root has been isolated to limiting precision, it is
removed from the polynomial using the composite deflation
- technique of Peters and Wilkinson (1971). In compolsolv, there
is an immediate investigation to see whether the conjugate
of the root just found also satisfies the equation and, to this
end, a boolean variable first root serves to indicate whether the
first root of a possible conjugate pair is being calculated.

In realpolsoly, care has to be taken to distinguish between the
first root of a complex pair, when a second root is immedi-
ately available, and a complex root in which the imaginary part
is due to the computational process. If the imaginary part is
greater than 0-1, it is assumed that the estimate represents a
complex root and deflation by a quadratic factor proceeds
directly. For smaller imaginary parts, the polynomial is
examined to see whether it is satisfied by the real part of the
estimate only. If it is, a real root is accepted and a composite
linear deflation is performed; otherwise a conjugate pair of
complex roots is accepted and composite deflation proceeds
with a quadratic factor.

6. Abnormal entry and exit forced by detection of a saddle point
When a saddle-point has been detected as described earlier, an
error exit from the procedure is forced. To allow for subsequent
re-entry with a new starting point for a search, the coefficients

260

of the deflated polynomial must be transformed back to the
coefficients of the deflated polynomial in the original variable.
Having done this, the integer variable ind is given the value 2
and the exit is forced.

On normal exit from the procedures, ind will have the value 0.
The value 1 is reserved for the case of a zero leading coefficient.
Detection of ind having the value 2, can be followed by re-entry
with ind unchanged. [Normal entry is with ind zero.] On this
entry, the starting point for the first search is taken from the
first components of the arrays subsequently used for holding
the calculated root estimates. [Root estimates are held in these
arrays in reverse order of computation.]

5. Results
The two procedures realpolsolv and compolsolv have been
tested extensively and without failure on the ICL KDF9 at the
University of Leeds. This machine has a 48-bit word, 39 of
which are used in the mantissa of a floating point number.
Both polynomial solvers have been used successfully on all the
polynomials proposed by Henrici and Watkins (1965). In
addition, they have been used on polynomials with coefficientsy
taken from pseudo-random uniform distributions over variouss
ranges and with degrees varying between 5 and 50. In all, bothg
procedures were tested on over 200 polynomials and no failureg
occurred. To check that the calculated estimates of the roots=
were meaningful, the first of the a posteriori error analyses%
proposed by Peters and Wilkinson (1971) was applied to severaE:
of the test problems. Allowing for the general worsening of th@_
error bounds as the degree of the polynomial increases, they
results again appeared satisfactory. For both procedures, the:
number of steps taken per search was of the order indicated ing_
detail in an earlier paper (Grant and Hitchins, 1971). S
The presence of a saddle-point was not detected for any of thés
test polynomials. However, this part of the procedures was
tested on the polynomials z* + 1, z" + i, which have saddle%
points at the origin. For sufficiently large values of n, the startiné_
point for a search lies within the regions of influence of these
saddle-points and an exit is forced. Re-entry with the starting:.
point close to the unit circle led to successful convergence to a?z
root, followed by the complete solution of the resulting deflateds
polynomial. «

Appendix 1 The algorithms

Aq 01280%/852/

procedure realpolsolv(a, nn, rez, imz, tol, ind);
comment This procedure attempts to solve a real polynomia?
equation of degree nn using the search algorithm proposed-
in Grant and Hitchins (1971) to limiting machine precision>
On entry, the coefficients of the polynomial are held in th
array a[0: nn], with a[0] holding the coefficient of th&
highest power. On normal entry, the parameter ind has valug
zero and will remain zero on successful exit with thé
calculated estimates of the roots held as rez[k] + iimz[k],
k = 1(1)nn, in approximate decreasing order of magnitude.
The parameter tol gives the precision of the floating binary
arithmetic used, normally 2 1 (—t), where t is the number
of bits in the mantissa.
Abnormal exits will be indicated by ind having value 1
or 2. The former implies that either a[0] = 0 or nn < 1.
For ind = 2, a possible saddle point has been detected. The
degree of the reduced polynomial is stored in nn and its
coefficients are held in a[0] to a[nn], the roots obtained
thus far being stored in the arrays rez and imz starting with
rez[nn + 1] + iimz[nn + 1]. An immediate re-entry is
possible with ind unchanged and with a new starting point
for the search held in rez[1] + iimz[1];
value tol; real tol;
integer nn, ind; real array a, rez, imz;

The Computer Journal

begin integer i, k, n;
real r, j, rx, jx, sig, t, scale, g, tol2, s1,s2,s, x, y, fun, nfun,
fac;
real array b, c[0: nn]; boolean sat, flag;
switch ss := finish, linear, quadratic;
procedure function;
comment Evaluates r, rx, j, jx at the point x + iy and applies
the Adams test. The boolean variable sat is given the value
true if the test is satisfied;
begin real p, g, al, a2, a3, bl, b2, b3, ¢, t;
integer k, m;
pi=—20xx;q:=xxx+yxy;t:=sqtq);
a2 := b2 :=00;
bl :=al := a[0]; ¢ := abs(al) x 0:8; m:=n —2;
for k := 1 step 1 until m do
begin a3 := a2; a2 := al;
al :=a[k] —p x a2 —q x a3;c:=1t x ¢ + abs(al);
b3 :=02;b2:=b1;bl :=al —p x b2 —q x b3
end;
a3:=a2;a2:=al;al :=a[n—1] —p x a2 — g x a3;
ri=an]+xxal —qgxa2;j:=al x y,
rx:=al —20 x b2 xyxy,
Jjx:=20x yx (bl — x x b2);
c:=1tx (t x ¢+ abs(al)) + abs(r);
sat := sqre(r x r + j x j) < (20 x abs(x x al) — 8-0 x
(abs(r) + abs(al) x t) + 10-0 x ¢) x tol x (1 + tol)
1(4 xn+3)
end of procedure function;
fac := 1-0; flag := ind = 2; ind := 0; tol2 := tol x sqrt
(tol); n := nn;
if a[0] = 0-0 or n < 1 then begin ind := 1; goto fail end;
zerotest
if a[n] = 0-0 then begin
rez[n] :=imz[n] := 0:0; n := n — 1; goto zerotest end;
normalisation:
scale := 0-0;
for i := 0 step 1 until n do
if abs(a[i]) > ;o — 5 then scale := scale + In(abs(al[i]));
k := scale/(n + 1) x In(2-0)); scale := 2:0 1 (—k);
for i := O step 1 until n do b[i] := a[i] := a[i] x scale;
comment Test for low order polynomial for explicit

solution;
if n < 2 then goto ss[n + 1];
schur test:
for i := nstep —1 until 1 do
_begin

for k := 1 step 1 until i do c[k — 1] := b[i] x b[k] —
b[0] x b[i — k];
if c[i — 1] < —tol then goto search;
t :=if ¢[i — 1] < 10 then 1-0 else 1-0/c[i — 1];
fork :=i — 1step —1 until 0 do b[k] := c[k] x ¢
end of schur test for zero in unit circle;
comment fransformation ;
fac := 2-0 x fac; scale := 1-0;
fori:=n — 1 step —1 until 0 do
begin scale : = 2:0 x scale; b[i] := a[i] :=a[i] x scale end;
goto schur test;
search:
if flag then
begin x := rez[1]; y := imz[1] + tol; flag := false end
else begin x := ;o — 3; y := 01 end;
Sfunction; fun :=r X r + j X j;
again:
g:i=rx X rx +jx X jx;
if g < fun x tol2 then
begin ind := 2; scale := 1-0;
fori :=n — 1 step —1 until 0 do
begin scale := scale x fac; a[i] := a[i]/scale end;

Volume 18 Number 3

goto fail

end with possible saddle point detected,

sli= —(r x rx +j x jx)/g; 52 := (r x jx — j X rx)/g;

sig i= 2,0 — 4; 5 := sqri(sl x sl + 52 x s2);

if s > 1:0 then begin s1 := sl/s; s2 := s2/s; sig 1= sig/s
end;

comment Valid direction of search has been determined, now
proceed to determine suitable step;

x:=x+sl;y:=y+ s2;

loop:

Sfunction; if not sat then

begin nfun :=r x r + j x j;

if fun — nfun < sig x fun then

begin s1 := 0-5 X sl; 52 := 05 x §2; 5 := 05 x s
sig 1= 0-5 x sig;

x:=x—sl;y:=y— s2; goto loop end;

Jfun := nfun; goto again end;

comment newroot;

fun 1= 1:0/tol2; k := 0; imz[n] := y X fac;

if abs(y) > 0-1 then goto complex;

comment Check possibility of real root;

sl := y; y := 00; function; y := sl;

if not sat then goto complex;

comment Real root accepted and both backward and forward
deflations are performed with linear factor;

rez[n] := x x fac;imz[n] :=00;n:=n—1;

b[0] := a[0]; c[n] := —a[n + 1]/x;

for i := 1 step 1 until » do

begin b[i] := a[i] + x x b[i — 1];
cn—i]l:=(n—i+1]—aln—i+ 1])/x

end;

goto join;

comment Complex root accepted and both backward and
forward deflations are performed with quadratic factor;

complex:
rez[n] := rez[n — 1] := x X fac;
imz[n — 1] := —imz[n]; n :=n — 2;
r:=20xx;j:=—-(xxx+yxy);
b[0] := a[0]; b[1] := a[1] + r x b[0];
cln] := —aln + 2]/j;
cn —1]:= —(a[n + 1] + r x c[n])}j;

for i := 2 step 1 until n do
begin b[i] := a[i] + r x b[i — 1] + j x b[i — 2];

cn—il:i=—-@n—-i+2]—cn—i+2]+rx
cln —i+ 1D)jj

end;

comment Matching point for composite deflation;

Jjoin:
for i := O step 1 until n do
begin nfun := abs(b[i]) + abs(c[i]);
if nfun > tol then
begin nfun : = abs(b[i] — c[i])/nfun;
if nfun < fun then begin fun := nfun; k := i end
end end;
for i := k — 1 step —1 until 0 do a[i] := b[i];
a[k] := 0-5 x (b[k] + c[K]);
for i := k + 1 step 1 until n do a[i] := c[i];
goto normalisation;
linear:
rez[1] := —a[1]/a[0] X fac; imz[1] := 0-0; goto finish;
quadratic:
r:=a[l] x a[1] — 40 x a[0] x a[2];
if r < 0:0 then
begin rez[2] := rez[1] := —0'5 x a[1]/a[0] x fac;
imz[2] := 0-5 x sqrt(—r)/a[0] x fac;
imz[1] := —imz[2];
goto finish end;
imz[1] := imz[2] := 0-0;
»

261

20z udy 81 uo 1s8nb Aq 01.280%/852/€/81/101E/|uf0d/W0d"dNO"oILEPEDE//:SARY W) PAPEO|UMOQ

rez[1] := 0-5 x (—a[1] — sign(a[1]) x sqrt(r))/a[0] x
Jac;
reszc] 1= a[2]/(rez[1] x a[0]) x fac x fac;

finish:
n:=0;-
fail: nn :=n

end of realpolsolv;

procedure compolsolv(ar, ac, nn, rez, imz, tol, ind);
comment This procedure attempts to solve the complex

polynomial equation
(ar[0] + iac[0])z 1 nn + (ar[1] + iac[1])z 1} (nn — 1) +

...+ ar[nn] + iac[nn] =0
using the search algorithm proposed in Grant and Hitchins
(1971) to limiting machine precision. On normal entry, the
parameter ind has value zero and will remain zero on success-
ful exit with the calculated estimates of the roots held in
rez[k] + iimz[k], k = 1(1)nn, in approximate decreasing
order of magnitude. The parameter tol gives the precision
of the floating binary arithmetic used, normally 21 (—1),
where t is the number of bits in the mantissa.

Abnormal exits will be indicated by ind having value 1
or 2. The former implies that either ar[0] =0 and
ac[0] = 0, or nn < 1. For ind = 2, a possible saddle point
has been detected. The degree of the reduced polynomial is
stored in nn and its coefficients are held as ar[k] + iac[k],
k = 0(1)nn, the roots obtained thus far being stored in the
arrays rez and imz starting with rez[nn + 1] + iimz[nn +
1]. An immediate re-entry is possible with ind unchanged
and with a new starting point for the search held in
rez[1] + iimz[1];

value rol; real rol;
integer nn, ind; real array ar, ac, rez, imz;
begin integer i, k, fc, n; real array br, bc, cr, cc[0: nn];

real sig, X, y, I, X, j, jx, fun, nfun, t, tol2, s1, 52, s, scale, g,
JSac;
boolean sat, first, root, flag;
procedure function;
comment Evaluates r, j, rx, jx, at the point x + iy. The
running complex error bound is applied if the boolean
variable sat is true on entry. Sat is true on exit if the
bound is satisfied;
begin real nc, oc, nd, od, ne, oe, nf, of, ng, og, nh, oh, t,u, v,
w, bound,;
integer i, m;
m:=n-—1;
oe := oc := ar[0]; of :=od :=ac[0]; og := oh :=1-0;
t := abs(x); u := abs(y);
for i := 1 step 1 until m do
begin nc := x x oc — y x od + ar[il;
nd:=y x oc + x x od + aclil;
ne:=nc+ x x oe —y x of;
nf:=nd +y x oe + x X of;
if sat then
begin v := og + abs(oc); w := oh + abs(od);
t x v+ ux w+ abs(ar[i]) + 2-0 x abs(nc);

ng .=
nh=ux v+t xw+ abs(ac[i]) + 2:0 x abs(nd);
og := ng; oh := nh end;
oc := nc; od := nd; oe := ne; of := nf

end;

r:=xxoc—yx od+ ar[n];

ji=y x oc+ x x od + ac[n];

rx := ne; jx := nf;

if sat then

begin v := og + abs(oc); w := oh + abs(od);
ng:=tx v+ ux w+ absar[n]) + 2-0 x abs(r);
nh:=ux v+t xw+ abs(ac[n]) + 20 x abs(j);
bound := (1 + tol) 1 (5 x n) x tol;

sat 1= abs(r) < bound x ng and abs(j) < bound x nh

.

schur test:

comment transformation;

search:

again:

end end of function;

fac :=1-0; flag :=ind=2; ind :=0; tol2 :=tol X sqrt (tol);
n:= nn;

if (ar[0] = 0:0 and ac[0] = 0-0) or n < 1 then

begin ind := 1; goto fail end;

Zerotest:

if n = 1 then goto finish;
if ar[n] # 0-0 or ac[n] # 0-0 then goto normalisation;
rez[n] := imz[n] := 0-:0; n := n — 1; goto zerotest;

normalisation:

scale := 0-0;

for i := 0O step 1 until » do

if ar[i] # 0-0 or ac[i] # 0-0 then

begin if abs(ar[i]) > abs(ac[i])
then fun := abs(ar[i]) x sqrt(l + (ac[i]/ar[i]) 1 2)
else fun := abs(ac[i]) x sqrt(1 + (ar[i]/ac[i]) 1T 2);
if fun > ;o — 5 then scale := scale + In(fun)

end;

k := scale/((n + 1) x In(2-0)); scale := 2-:0 T (—k);

for i := 0 step 1 until » do

begin br[i] := ar[i] := ar[i] x scale;
be[i] := ac[i] := ac[i] x scale
end;

for i := nstep —1 until 1 do
begin for k := 1 step 1 until i do
begin cr[k — 1] := br[i] x br[k] + bc[i] x bc[k] —
br[0] x br[i — k] — be[0] x bc[i — k];
cc[k — 1] := br[i] x bc[k] — be[i] x br[k] +
br[0] x bc[i — k] — bc[0] x br[i — k]
end;
if cr[i — 1] < —tol then goto search;
t := if abs (cr[i — 1]) < 10 then 1-0 else 1-0/
abs(cr[i — 1]);
for k := i — 1 step —1 until O do
begin br[k] := cr[k] x t; be[k] := cc[k] x t end
end of schur test for zero in unit circle;

11U WoJy pepeojumog

fac := 20 x fac; scale := 1-0;
fori:=n — 1 step —1 until 0 do
begin scale := 2:0 x scale;
br[i] := ar[i] := scale x ar[i];
be[i] := ac[i] := scale x ac[i]
end of transformation;
goto schur test;

sat := false; fc :=1;

if flag then

begin x := rez[1]; y := imz[1]; flag := false end
else begin x := ;o — 3;y := 0-1 end;

first root := true; function; fun :=r x r +j X j;

202 1udy 8| uo }sanb Aq 01.280%/852/€/8 | /31011e/|uliod/woo dnoolwepede//:sd

fe:=fe+ 1;sat := fc > 20; g :=rx X rx + jx X jx;
if g < fun x tol2 then
begin ind := 2; scale := 1-0;
fori := n — 1 step —1 until 0 do
begin scale : = scale x fac; ar[i] := ar[i]/scale;
br[i] := br[i]/scale
end; goto fail
end with possible saddle point detected;
sli= —(r x rx +j x jx)/g;s2 := (=j x rx + r X jx)[g;
sig 1= 20— 4;
s 1= sqrt(sl x s1 + 52 x s2); if s > 1-0 then
begin s1 := sl/s; s2 := s2/s; sig := sig/s end;
comment Valid direction of search has been determined,
now proceed to determine suitable step;
x:=x+sl;y:=y+ 52

loop:

fei=fc+ 1;sat :=s < 1o — Sorfc>20;

The Computer Journal

Sfunction; if sat then goto newroot;
nfun :=r xr+jxj;
if fun — nfun < sig x fun then
begin s1 := 0-5 x sl; 52 :=0-5 x 52; 5 := 05 X 53
sig 1= 05 x sig; x := x — sl; y 1=y — 52; goto loop
end;
fun := nfun; goto again;
new root:
rez[n] := x x fac;imz[n] :=y x fac;n:=n—1;
comment Forward and backward deflations are performed
with the complex root;
s:=x X X+ y x y; br[0] := ar[0]; bc[0] := ac[0];
cc[n] := (y x ar[n + 1] — x x ac[n + 1])/s;
cr[n] := (=x x ar[n + 1] — y x ac[n + 1])/s;
for i := 1 step 1 until » do
begin
br[i]:= ar[i] + x x br[i — 1] — y x be[i — 1];
be[i] := ac[i] + x x be[i — 11 + y x br[i — 1];
cfn—il:i=(=xx(@n—i+1]—cn—i+1])
—y x (acln — i + 1] — cc[n — i+ 1])/s;
ccfn—il:=(p x(@nh—-—i+1]—cr—-i+1])
—x x (@ac[n—i+ 1] —cc[n—i+ 1]))/s
end;
fun := 1.0/tol2; k := 0;
comment Matching point for composite deflation evaluated,
for i := 0 step 1 until » do
begin
nfun := abs(br[i]) + abs(cr[i])
+ abs(bc[i]) + abs(cclil);
if nfun > tol then
begin nfun := (abs(br[i] — cr[i]) +
abs(bc[i] — cclil))/nfun
if nfun < fun then begin fun := nfun; k := i end
end end;
fori:= k — 1 step —1 umtil 0 do
begin ar[i] := br[i]; ac[i] := bc[i] end;
ar[k] := 0:5 x (br[k] + cr[k]); ac[k] := 0-5 x
(belk] + cc[k]);
fori:= k + 1 step 1 until n do
begin ar[i] := cr[i]; ac[i] := cc[i] end;
if n # 1 then
begin if not first root then goto normalisation;
comment Check for conjugate complex being a root;

y 1= — y; first root := false; function;
goto if sat then new root else normalisation end;
Sinish:

n:= 0;nfun := ar[0] 12 + ac[0] 1 2;
rez[1] := —(ar[0] x ar[1] + ac[0] x ac[1]) x fac/nfun;
imz[1] := (ar[1] x ac[0] — ar[0] x ac[1]) x fac/nfun;
fail:nn :=n
end of compolsolv;

Appendix 2
Analysis of Horner’s Algorithm for a complex polynomial
taken at a complex point.

R+ =f0+ 1) = @) = 2 @+ b=~

Exact Algorithm

Yo = oy Yk = XVk—1 — YOp—1 + ak} k
=1,2,...,n
8o = bg, 0k = Y¥k—1 + X6_1 + by

when

and

Volume 18 Number 3

Computational
¢o = Ao, & = fi(XCh—y — Y-y + ak)} k=1.2....n
dy = bo, d = filyci—y + Xdi—y + by)
when _
R =g,
and
J=d,.
Using standard analysis assuming evaluation proceeds from
left to right:
e = [(xcr—y(1 + 810 — Y1 (1 + &2,0)/(1 + N + all
L+n0 .
Multiplying through and neglecting second order terms
el + My g+ Map) = XC—a(1 + &15) — v (1 + &3) +
a1 + 114
or

o = xc (1 + &13) — yde—,(1 + g0 + all + 1) —
My + 120 -

Similarly

dp = yeo_ (1 + €1 p) + xdp_ (1 + e20) + b(1 + 1) —
dnix + M2 -

Set

C = Yk T &
and

dk = 6k +f;c ’
then

P + & = XPy—1 + X€—1 + XCk—1 81k — Yok—1 — V-1 —
Y-y eap + @l + 110 — alny i + N2,

or

€ = Xey_y + XCy—1 &5 — W1 — V-1 24 + G M1k —
My, + M2 -

Similarly

fo=Yer-1 + Yooy Erp + Xfioq + Xdioy &2k + by —
d(ni, x + N2 1) -

Define
8o =ho =1
g = Ixl(gu—1 + lex—ql) + IVI(—y + |di-al) + &l + 2|Ck|}
hy = |yl(gk-1 + [ee—1D) + |xI(A-1 + |dy—1l) + lbk|1+ 2]dy|
=1,2,...,n

then _

h’n_ n|=lR—R|<pgn
and

Ian - dnl = lJ— J_l < phn

Note that the recurrence is started with go = A, = 1 instead
of, as might have been expected, go = 4o = 0 to allow for
certain extreme cases. Consider, for example, a polynomial in
which all the coefficients are of the form O(1) + iO(p) and
suppose that it is to be evaluated in the neighbourhood of a
zero at the point x + iy = O(1) + iO(p). From the algorithm
above it is clear that Jis O(p).

Consider now the recurrences for g, and 4. Starting with
8o = ho = 0, it is seen that s, = O(p) and it is unlikely that
|7} < ph, will be true. On the other hand, with go = 4y =1,
h, = O(1) and the convergence test has some chance of being
satisfied. This change in starting value is equivalent to assuming
that the coefficient a, + ib, may be rounded. The need for the
change is due to the fact that in the standard analysis, terms of
second order in p are assumed negligible, whilst in the extreme
case considered above, the significant terms of f; are all of
second order, but are not ignored.

Z Iudy g1 uo 3senB Aq 01Z807/852/€/81/o10Ne/|Ulwod/Wwod dno"olwspese)/:sdjy Wolj paPEojUMOQ

o
N
=

References

Apawms, D. A. (1967). A Stopping Criterion for Polynomial Root Finding, CACM, Vol. 10, pp. 655-658.
GRANT, J. A., and HitcHIns, G. D. (1971). An Always Convergent Minimization Technique for the Solution of Polynomial Equations,

JIMA, Vol. 8, pp. 122-129.

Henricl, P., and WATKINS, B. O. (1965). Finding Zeros of a Polynomial by the Q-D Algorithm, CACM, Vol. 8, pp. 570-574.
MOORE, J. B. (1967). A Convergent Algorithm for Solving Polynomial Equations, JACM, Vol. 14, pp. 311-315.
MOORE, J. B. (1973). A Consistently Rapid Algorithm for Solving Polynomial Equations, Technical Report EE 7301, Dept. of Electrical

Engineering, University of Newcastle, NSW, Australia.

PETERS, G., and WILKINSON, J. H. (1971). Practical Problems Arising in the Solution of Polynomial Equations, JIMA, Vol. 8, pp. 16-35.
RALSTON, A. (1965). A First Course in Numerical Analysis, McGraw-Hill.

WILKINSON, J. H. (1965).

The Algebraic Eigenvalue Problem, Oxford University Press.

Book review

Finite Automata, by B. A. Trakhtenbrot and Ya. M. Barzdin, 1973;
translated from the Russian by D. Louvish, 362 pages. (North-
Holland, Dfl. 60.00.)

This book describes the theoretical aspects of finite automata and
their relationship to languages and w-languages (i.e. languages con-
taining infinitely long words.) Starting with elementary definitions
and theorems the authors go on to describe various properties of
finite state languages. There is a comparison of meta-languages for
finite automata and a description of current work on the identifica-
tion of automata from input/output information.

Chapter 1 contains a description of outputless automata and the
properties of their corresponding languages under various opera-
tions such as concatenation, iteration and the less well-known
operations of projection and cylindrification. Transition graphs are
introduced and there are short sections on probabilistic automata
and the grammars of finite state languages.

In the second chapter automata with outputs are discussed in-
cluding equivalence and decision problems. McNaughton’s infinite
game analogy is used to show the correspondence between operators
and finite automata. In particular, it is shown that certain operators
are not realisable as automata.

An account of languages for specifying automata is given in
Chapter 3. This includes a description of the meta-language I which
is based on propositional logic. A comparison of meta-languages
demonstrates that I is the most powerful yet devised. Synthesis of
automata corresponding to given descriptions is also discussed.

The last two chapters, written by Barzdin, deal with the problem of
automata identification given only input/output specifications. This
part of the book contains several previously unpublished results
involving statistical estimation of automata parameters. These
results have applications in other fields such as syntactic pattern
recognition.

Although the book contains a good introduction in which the main
concepts are explained carefully it is not really suitable as a first
course in finite automata theory since the mathematical approach
may be unfamiliar to many readers. However, it will be interesting
to those who have a basic knowledge of automata theory or a
mathematical background. The presentation is concise and each
chapter contains supplementary problems for the reader to consider.

English readers may have difficulties with the terminology (for

eojumoqg

instance, what is usually called a finite state acceptor or recognises
is referred to as an anchored automaton) but the translator%
notes are helpful as are the notes and references at the end of eac§
chapter. >
R. H. Kemp (Leicestet}

Discrete Models, by D. Greenspan, 1973; 165 pages. (Addisor@
Wesley Applied Mathematics and Computation Monograph%
US$16.00 hard cover, US$8.50 paperback.) O

This is a disappointing book. The subject of discrete modelling oﬁ

more specifically, computer simulation of physical processes is 8

fascinating one and there are a number of important principles thai

can now be enunciated. But in his simplistic approach the auth

has gone too far in denying the usefulness of the concepts of limi

derivative, etc. and hence of continuous models. As a result he has

all sorts of problems in trying to analyse the behaviour of hi?s’
discrete models and has to present each as an inspired guess rathe‘i
than the result of rational design.

For example, on page 9 stability is defined for an 1mt1al-va]u@
problem yielding y; = 0, 1,2, . . ., n, as each || being less than thg
largest number that can be held by one’s computer! Such a vague;
empty concept can hardly lead to much understanding or discriminds
tion. On pages 11, 12 a particular and non-obvious choice of differs
ence replacements for velocity and acceleration leads to equatiorns
for the one-dimensional motion of a particle which obey discrefg
momentum and energy conservation laws. Not until page 103 is ij_
conceded that this can be done in other ways and a more symmetrig
scheme is given which is ‘inherently more stable, and hence more
economical’. A ‘stability’ analysis for a non-linear oscillator g
given on pages 25-28 based on the behaviour as n — o, but thi§
fails to distinguish the vital difference between this limit and that i in
which n — o0 as At — 0 so that n At — ¢, nor that between lmeajg
and nonlinear problems: moreover, it is incorrectly claimed that
such analyses, based on energy methods, do not appear in standard
texts.

It is indeed unfortunate that such absorbing topics as Nonlinear
String Vibrations, Planetary Motion and Discrete Newtonian
Gravitation, the n-Body Problem and Discrete Fluid Models are so
superficially treated in this book.

K. W. MorToN (Reading)

The Computer Journal

