thus
y = (S1+ S2)x3 — (251 + S2)x% 4+ Six
x is allowed to take on a series of values between 0 and 1 and the
corresponding values of y are calculated from the equation of the
cubic. x and y are multiplied by r to convert to actual distances.
Consider the point P, thus found. From the geometry of the figure

Y. = Y1+ rxcsin 0 + ryccos 0

Y; Xe — X;
dnf= "M gt
r

r

L Ye= Y14+ x(Ye — Y1) + y(X2 — X1)
similarly

Xe = X1+ xd{ X2 — X1) — ye(Y2 — Y1)
X. and Y. are the co-ordinates of the point in the practical XY
system.

To the Editor
The Computer Journal

Sir
Reading variable length records using FORTRAN IV
The letter by Messrs Hathaway and Van Viliet (page 190, May 1974),
led me to reconsider the method I had been using to read variable
length records from disc, using FORTRAN IV. The records consist
of a major segment, with two types of minor segment, each of which
may occur a variable number of times. The major segment includes
two-byte count fields for each minor segment type. Maximum

record length is about 3,400 bytes and average lengths about 1,300

bytes.

The method of reading, which has been in use in this recently
developed program, is the most obvious, that is, an indexed READ,
viz.:

READ (9, 110, END = 500) MAJOR, COUNT1, COUNT2,
SPARE, ((COUNTR(, J),1=1,91),J =1, COUNTI),
((COMNTS(, J), I = 1, 78), J = 1, COUNT2)

A formatted READ was used for no better reason than convenience

of handling the data once read in.

Since this FORTRAN program produced CPU times of the order
of 30 secs, whereas reports from the same file using Informatics
MARK IV produced times of the order of a few seconds only, I was
concerned at its apparent inefficiency.

By way of experiment, I wrote four small programs to test the
various possible methods of reading variable length records in
FORTRAN. Two of the methods used an indexed READ of the
kind referred to above, one formatted and one unformatted. The
other two methods were based on the letter of Hathaway and Van
Viliet, and used a FORTRAN subroutine with run-time dimension-
ing of a buffer array, viz:

SUBROUTINE READ (ARRAY, SIZE)
DIMENSION ARRAY (SIZE)
READ (9, 20) ARRAY

20 FORMAT etc.

Again, these two methods used formatted and unformatted READ
statements in the subroutines.

The main problem in using this latter method is that the record
size is unknown until the READ is performed. This was solved by
reading through the file once, to get the two count fields from each
record, which were stored in arrays. The file was rewound and read
again, using the stored count fields to calculate the size of each
record before reading it using the subroutine described.

The four programs were used to read the same file of 100 of the
variable length records referred to, from a Type 3330 disc on an
IBM 370 Model 155 using the G-level FORTRAN compiler. The
CPU times were as follows:

CPU Time (secs)

Formatted Unformatted
Indexed READ 203 12-3
Subroutine 11-8 07

The result for the unformatted READ in the subroutine was so
striking that the operation of the program was tested and the run
repeated, with the same result. Clearly it must be possihle to get

Volume 18 Number3

below even 0-7 secs, because that program contains the preliminary
read of the file to establish the record sizes.

To remove the need for this preliminary read, a subroutine was
written in Assembler to read the next record from the file into a
specified array. Using this subroutine in a small FORTRAN
program a CPU time of 0-4 secs was achieved for the same file of
100 records.

It is clear that very worthwhile savings of CPU time can be made,
at the expense of slightly more complicated coding, and that
variable length records can be handled quite efficiently by
FORTRAN, even without specially written subroutines.

I would like to thank Dr. K. M. Howell for drawing my attention
to the original letter and Mr. D. J. Wilson who wrote the Assembler
subroutine.

Yours faithfully,

D. F. ARTHUR

Management Services Department
ICI Fibres
Hookstone Road
Harrogate
Yorkshire HG2 8QN
29 November 1974

To the Editor
The Computer Journal

Sir

WwioJ} papeojumoq

Check digits and error correction
The letter from Dr. A. M. Andrew (The Computer Journal, Vol. H,
p. 382) was of interest to me because I have been looking at tﬁs
subject in connection with a specific problem, namely how to reduoe
the number of computer runs needed to achieve 100 per cent acag-
acy in updating a set of files. If even one error is detected, a re-rin
is needed. In the case I have investigated, there is a record key of
six digits and I tried using two check digits together with an err&-
correcting facility if any of the resulting eight-digit input numbers
failed to check. S
The results were encouraging though they failed to achievega
100 per cent correction rate even for single-digit errors. The che@k
digits were defined by

.E dif; = 0 (modulo 100)

where the d; are the digits of the eight-digit number and the ﬁ
weighting factors.

The optimum values of the f; were found semi-empirically. Th§l
are: 43, 47, 9, 31, 39, 37, 10, 1. This set of factors leads to at magst
two possible corrections to be tested for any non-zero check sufi.
Even when there are two possibilities, one may be ruled out if;ft
would lead to a corrected digit which is either negative or greagr
than 9.

The order of these factors was determined by optimising the chan@e
of correcting other types of errors if single-digit errors happen@d
not to satisfy the particular check sum found. These are: °

1. Any number of consecutive digits in error by the same amoung
2. Interchange of adjacent digits,
3. Interchange of the outer digits in a group of three.

In a test of the method, a set of 1,000 eight-digit numbers was
generated from a pseudo-random sequence of six-digit numbers
with two check digits attached. These were given to two punch
operators, one experienced and the other a novice. The first girl
made only five errors, all of which were detected and corrected.
automatically.

The second girl had errors of several different kinds which were:
difficult to analyse statistically, notably ‘offsets’ where the correct
number is punched in the wrong columns. The test corrected 62 out
of 82 wrong eight-digit numbers but also mis-corrected 18 including
1 out of 63 single-digit errors. (308 188 60, punched 301 188 60,

82/ ﬁgL/elowe/

¥20¢ I

. mis-corrected 301 187 60).

My conclusion is that, although not 100 per cent effective, this
method can be very useful in reducing the number of computer
re-runs caused by punching errors as long as the error rates are low
to start with and ‘offset’ errors are unlikely.

The economics of using the technique depend partly on the cost of

283





